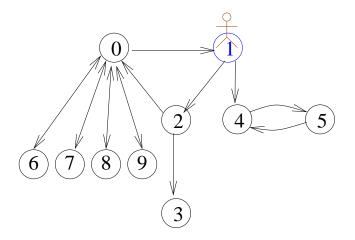
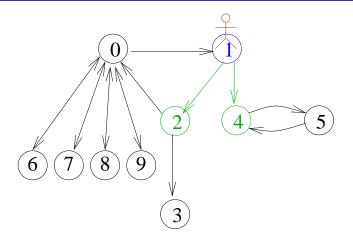
PageRank as a Function of the Damping Factor

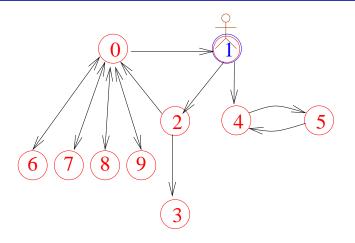
Paolo Boldi Sebastiano Vigna Massimo Santini Dipartimento di Scienze dell'Informazione Università degli Studi di Milano



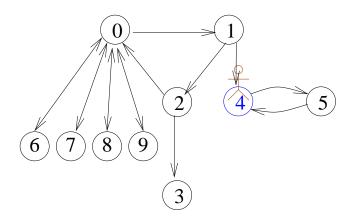
A surfer is wandering about the web...

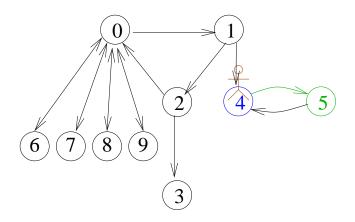


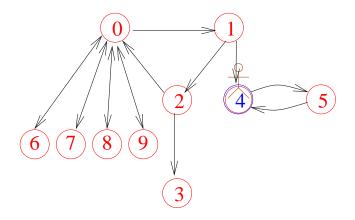
At each step, with probability α (s)he chooses the next page by clicking on a random link...

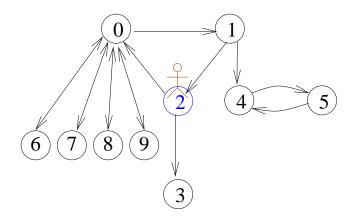


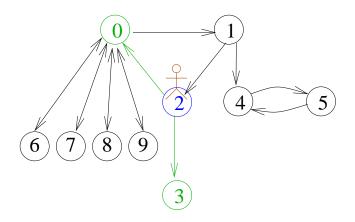
...with probability $1-\alpha$, (s)he jumps to a random node (chosen uniformly or according to a fixed distribution, the *preference* vector)

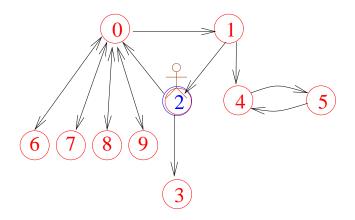


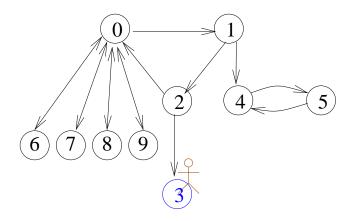


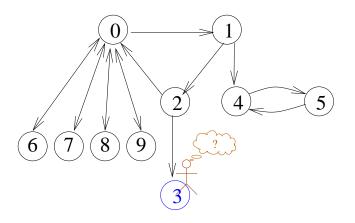




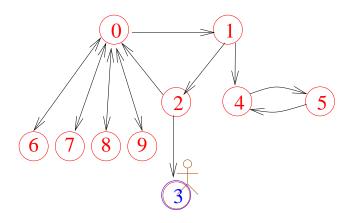




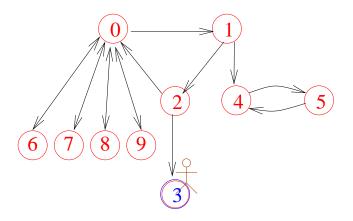




What if (s)he reaches a node with no outlinks (a dangling node)?



In that case, (s)he jumps to a random node with probability 1.



The PageRank of a page is the average fraction of time spent by the surfer on that page.

PageRank is the limit distribution of a stochastic process whose states are Web pages.

PageRank is the limit distribution of a stochastic process whose states are Web pages.

What does this distribution depend on?

PageRank is the limit distribution of a stochastic process whose states are Web pages.

What does this distribution depend on?

▶ the *graph G*

PageRank is the limit distribution of a stochastic process whose states are Web pages.

What does this distribution depend on?

- ▶ the graph G
- the preference vector v

PageRank is the limit distribution of a stochastic process whose states are Web pages.

What does this distribution depend on?

- ▶ the graph G
- the preference vector v
- the damping factor α .

PageRank is the limit distribution of a stochastic process whose states are Web pages.

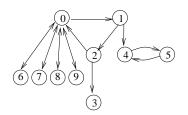
What does this distribution depend on?

- the graph G
- the preference vector v
- the damping factor α .

We will focus on the

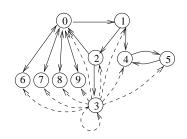
damping factor

G =the (adjacency matrix of the) graph



 $\bar{\it G}=$ the modified graph to eliminate dangling nodes

1	0	1	0	0	0	0	1	1	1	1
	0	0	1	0	1	0	0	0	0	0
	1	0	0	1	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	1
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0 /



P= the row-normalized version of \bar{G}

$$A(\alpha) = \alpha P + (1-\alpha) \mathbf{1}^T \mathbf{v}$$

$$\begin{pmatrix} \frac{1-\alpha}{10} & \frac{\alpha+1}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{\alpha+1}{10} & \frac{\alpha+1}{10} & \frac{\alpha+1}{10} \\ \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{4\alpha+1}{10} & \frac{1-\alpha}{10} \\ \frac{4\alpha+1}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{4\alpha+1}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} & \frac{1-\alpha}{10} \\ \frac{1}{10} & \frac{1}{10} \\ \frac{1-\alpha}{10} & \frac{1-\alpha}{10} \\ \frac{1-\alpha}{10} & \frac{1-\alpha}{10} \\ \frac{9\alpha+1}{10} & \frac{1-\alpha}{10} \\ \frac{9\alpha+1}{10} & \frac{1-\alpha}{10} \\ \frac{9\alpha+1}{10} & \frac{1-\alpha}{10} \\ \frac{9\alpha+1}{10} & \frac{1-\alpha}{10} \\ \frac{9\alpha+1}{10} & \frac{1-\alpha}{10} \\ \end{pmatrix}$$
(Here, we assumed $\mathbf{v} = (1/N)\mathbf{1}$)

▶ Is the definition of PageRank well-given?

- Is the definition of PageRank well-given?
- ▶ More formally: is $A(\alpha)$ guaranteed to have a unique stationary distribution?

- Is the definition of PageRank well-given?
- ▶ More formally: is $A(\alpha)$ guaranteed to have a unique stationary distribution?

Answer: $A(\alpha)$ is irreducible and aperiodic for all $\alpha \in [0,1)$.

- Is the definition of PageRank well-given?
- More formally: is $A(\alpha)$ guaranteed to have a unique stationary distribution?

Answer: $A(\alpha)$ is irreducible and aperiodic *for all* $\alpha \in [0,1)$. Hence, in that case, it has a unique limit distribution $\mathbf{r}(\alpha)$:

$$\mathbf{r}(\alpha)A(\alpha)=\mathbf{r}(\alpha)$$

- Is the definition of PageRank well-given?
- ▶ More formally: is $A(\alpha)$ guaranteed to have a unique stationary distribution?

Answer: $A(\alpha)$ is irreducible and aperiodic for all $\alpha \in [0,1)$. Hence, in that case, it has a unique limit distribution $\mathbf{r}(\alpha)$:

$$\mathbf{r}(\alpha)A(\alpha)=\mathbf{r}(\alpha)$$

 $\mathbf{r}(\alpha)$ is the PageRank vector, as a (vector) function of α :

$$\mathbf{r}:[0,1)\to [0,1]^n.$$

One usually computes and considers only $\mathbf{r}(0.85)$. Why 0.85?

▶ "the smart guys at Google use 0.85" (???)

- ▶ "the smart guys at Google use 0.85" (???)
- it works pretty well

- ▶ "the smart guys at Google use 0.85" (???)
- it works pretty well
- iterative algorithms that approximate PageRank converge quickly if $\alpha=0.85$: larger values would require more iterations; moreover. . .

- ▶ "the smart guys at Google use 0.85" (???)
- it works pretty well
- iterative algorithms that approximate PageRank converge quickly if $\alpha=0.85$: larger values would require more iterations; moreover. . .
- ightharpoonup . . . numeric instability arises when lpha is too close to 1. . .

Is that it?

Yet, we believe that understanding how $\mathbf{r}(\alpha)$ changes when α is modified is important.

Is that it?

Yet, we believe that understanding how $\mathbf{r}(\alpha)$ changes when α is modified is important.

▶ Basic knowledge about PageRank nature.

Is that it?

Yet, we believe that understanding how $\mathbf{r}(\alpha)$ changes when α is modified is important.

- Basic knowledge about PageRank nature.
- Variations of PageRank to obtain better/alternative ranking techniques (such as TotalRank [Boldi, '05]).

Is that it?

Yet, we believe that understanding how $\mathbf{r}(\alpha)$ changes when α is modified is important.

- Basic knowledge about PageRank nature.
- Variations of PageRank to obtain better/alternative ranking techniques (such as TotalRank [Boldi, '05]).
- ▶ Tool for link-spam detection [Zhang et al., '04].

▶ PageRank (values and rankings) change significantly when α is modified [Pretto, '02; Langville & Meyer., '04]

- ▶ PageRank (values and rankings) change significantly when α is modified [Pretto, '02; Langville & Meyer., '04]
- ▶ Convergence rate of the Power Method is α [Haveliwala & Kamvar, '03]

- ▶ PageRank (values and rankings) change significantly when α is modified [Pretto, '02; Langville & Meyer., '04]
- ▶ Convergence rate of the Power Method is α [Haveliwala & Kamvar, '03]
- ▶ The condition number of the PageRank problem is $(1+\alpha)/(1-\alpha)$ [Haveliwala & Kamvar, '03]

Explicit formula for PageRank

Explicitly [Haveliwala et al., '03]:

$$\mathbf{r}(\alpha) = (1 - \alpha)\mathbf{v}(I - \alpha P)^{-1}$$

Explicit formula for PageRank

Explicitly [Haveliwala et al., '03]:

$$\mathbf{r}(\alpha) = (1 - \alpha)\mathbf{v}(I - \alpha P)^{-1}$$

Hence, $\mathbf{r}(\alpha)$ is a rational function of α , with no singularities on [0,1)...

Explicit formula for PageRank

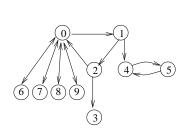
Explicitly [Haveliwala et al., '03]:

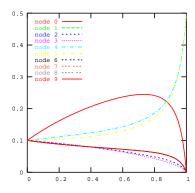
$$\mathbf{r}(\alpha) = (1 - \alpha)\mathbf{v}(I - \alpha P)^{-1}$$

Hence, $\mathbf{r}(\alpha)$ is a rational function of α , with no singularities on [0,1)...

 \dots it can be extended by continuity to [0,1].

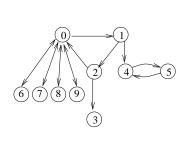
Our example

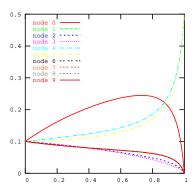




$$r_0(\alpha) = -5 \frac{(-1+\alpha)(\alpha^2 + 18\alpha + 4)}{8\alpha^4 + \alpha^3 - 170\alpha^2 - 20\alpha + 200}$$

Our example





$$r_1(\alpha) = -2 \frac{(-1+\alpha)(\alpha^2 + 2\alpha + 10)}{8\alpha^4 + \alpha^3 - 170\alpha^2 - 20\alpha + 200}$$

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

The "uniform" part added to P vanishes, whereas the part due to \bar{G} becomes larger: some interpret this fact as a hint that $\mathbf{r}(\alpha)$ becomes "more faithful to reality" when $\alpha \to 1$.

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

The "uniform" part added to P vanishes, whereas the part due to \bar{G} becomes larger: some interpret this fact as a hint that $\mathbf{r}(\alpha)$ becomes "more faithful to reality" when $\alpha \to 1$. Is this true?

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

The "uniform" part added to P vanishes, whereas the part due to \bar{G} becomes larger: some interpret this fact as a hint that $\mathbf{r}(\alpha)$ becomes "more faithful to reality" when $\alpha \to 1$. Is this true?

Since $\mathbf{r}(-)$ can be extended by continuity to [0,1], let:

$$\mathbf{r}^* = \lim_{\alpha \to 1^-} \mathbf{r}(\alpha).$$

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

The "uniform" part added to P vanishes, whereas the part due to \bar{G} becomes larger: some interpret this fact as a hint that $\mathbf{r}(\alpha)$ becomes "more faithful to reality" when $\alpha \to 1$. Is this true?

Since $\mathbf{r}(-)$ can be extended by continuity to [0,1], let:

$$\mathbf{r}^* = \lim_{\alpha \to 1^-} \mathbf{r}(\alpha).$$

 \mathbf{r}^* is a stationary distribution of P, i.e.,

$$\mathbf{r}^*P = \mathbf{r}^*$$

$$\lim_{\alpha \to 1} A(\alpha) = P.$$

The "uniform" part added to P vanishes, whereas the part due to \bar{G} becomes larger: some interpret this fact as a hint that $\mathbf{r}(\alpha)$ becomes "more faithful to reality" when $\alpha \to 1$. Is this true?

Since $\mathbf{r}(-)$ can be extended by continuity to [0,1], let:

$$\mathbf{r}^* = \lim_{\alpha \to 1^-} \mathbf{r}(\alpha).$$

 \mathbf{r}^* is a stationary distribution of P, i.e.,

$$\mathbf{r}^*P = \mathbf{r}^*$$

It is not unique, though, unless P itself is aperiodic and irreducible.

We would like to compute

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^T \mathbf{v})^n$$

We would like to compute

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^T \mathbf{v})^n$$

It could be tempting to exchange the limits (*i.e.* hope for uniform convergence), but...

We would like to compute

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^T \mathbf{v})^n$$

It could be tempting to exchange the limits (i.e. hope for uniform convergence), but...

▶ $A(\alpha) = \alpha P + (1 - \alpha)\mathbf{1}^T \mathbf{v}$ is irreducible for every $\alpha \in [0, 1)$,

We would like to compute

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^T \mathbf{v})^n$$

It could be tempting to exchange the limits (*i.e.* hope for uniform convergence), but...

▶ $A(\alpha) = \alpha P + (1 - \alpha) \mathbf{1}^T \mathbf{v}$ is irreducible for every $\alpha \in [0, 1)$, so $\lim_{n \to \infty} A(\alpha)^n$ is *stable*. . .

We would like to compute

$$\lim_{\alpha \to 1^{-}} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^{T} \mathbf{v})^{n}$$

It could be tempting to exchange the limits (*i.e.* hope for uniform convergence), but...

- ▶ $A(\alpha) = \alpha P + (1 \alpha) \mathbf{1}^T \mathbf{v}$ is irreducible for every $\alpha \in [0, 1)$, so $\lim_{n \to \infty} A(\alpha)^n$ is *stable*. . .
- ▶ on the other hand, $P = \lim_{\alpha \to 1^-} A(\alpha)$ can be reducible,

We would like to compute

$$\lim_{\alpha \to 1^{-}} \lim_{n \to \infty} (\alpha P + (1 - \alpha) \mathbf{1}^{T} \mathbf{v})^{n}$$

It could be tempting to exchange the limits (*i.e.* hope for uniform convergence), but...

- ▶ $A(\alpha) = \alpha P + (1 \alpha) \mathbf{1}^T \mathbf{v}$ is irreducible for every $\alpha \in [0, 1)$, so $\lim_{n \to \infty} A(\alpha)^n$ is *stable*. . .
- ▶ on the other hand, $P = \lim_{\alpha \to 1^-} A(\alpha)$ can be reducible, so $\lim_{n \to \infty} P^n$ needs not to be stable.

Some technicalities...

For a generic Markov chain P, the limit behaviour of P^n is

$$\lim_{n\to\infty} (P^{(nd_j+r)})_{i,j} = \pi_{i,j}^{(r)}$$

where d_j is the *period* of node j.

Some technicalities...

For a generic Markov chain P, the limit behaviour of P^n is

$$\lim_{n\to\infty} (P^{(nd_j+r)})_{i,j} = \pi_{i,j}^{(r)}$$

where d_i is the *period* of node j.

At least componentwise, these are converging subsequences, hence it is possible to define the *Cesaro* limit:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{0 < t \le n} P^t = \Pi, \qquad (\Pi)_{i,j} = \frac{1}{d_j} \sum_{1 \le r \le d_j} \pi_{i,j}^{(r)}.$$

Two easy Lemmas:

Two easy Lemmas:

$$\blacktriangleright \lim_{n\to\infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} (1-\alpha) \sum_{n\geq 0} (\alpha P)^n$$

Two easy Lemmas:

$$\blacktriangleright \lim_{n\to\infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} (1-\alpha) \sum_{n\geq 0} (\alpha P)^n$$

▶
$$(1-\alpha)\sum_{n\geq 0} \alpha^n a_n \sim a$$
 for every $a_n \to a$ (as $\alpha \to 1^-$)

Two easy Lemmas:

- $\blacktriangleright \lim_{n\to\infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} (1-\alpha) \sum_{n>0} (\alpha P)^n$
- ▶ $(1-\alpha)\sum_{n\geq 0} \alpha^n a_n \sim a$ for every $a_n \to a$ (as $\alpha \to 1^-$)

By the limiting behaviour of subsequences and the Cesaro limit

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} \Pi$$

Two easy Lemmas:

- $\lim_{n\to\infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} (1-\alpha) \sum_{n>0} (\alpha P)^n$
- ▶ $(1-\alpha)\sum_{n\geq 0} \alpha^n a_n \sim a$ for every $a_n \to a$ (as $\alpha \to 1^-$)

By the limiting behaviour of subsequences and the Cesaro limit

$$\lim_{\alpha \to 1^-} \lim_{n \to \infty} A(\alpha)^n = \mathbf{1}^T \mathbf{v} \Pi$$

or, from the point of view of the limit distribution,

$$\mathbf{r}^* = \lim_{\alpha \to 1^-} \lim_{n \to \infty} \mathbf{p}_0 A(\alpha)^n = \mathbf{v} \Pi.$$

(whatever the initial \mathbf{p}_0).

To understand what happens when $\alpha \to 1$, we can consider an (arbitrary) stationary distribution **t** of P.

To understand what happens when $\alpha \to 1$, we can consider an (arbitrary) stationary distribution **t** of P.

Of course $t_x = 0$ for all transient nodes x of P.

To understand what happens when $\alpha \to 1$, we can consider an (arbitrary) stationary distribution **t** of P.

Of course $t_x = 0$ for all transient nodes x of P.

A node x is *recurrent* iff its strongly connected component in \overline{G} has no outgoing arcs (except possibly for loops).

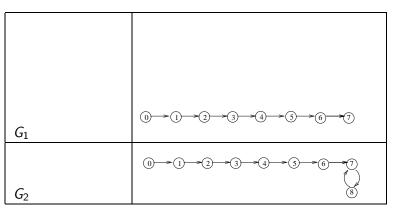
To understand what happens when $\alpha \to 1$, we can consider an (arbitrary) stationary distribution **t** of P.

Of course $t_x = 0$ for all transient nodes x of P.

A node x is *recurrent* iff its strongly connected component in \overline{G} has no outgoing arcs (except possibly for loops).

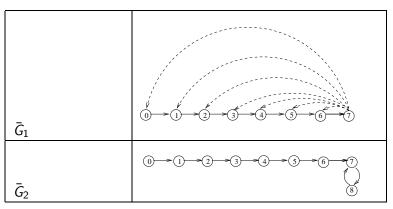
So what are the components of \bar{G} with no outgoing arcs?

Components of \bar{G}



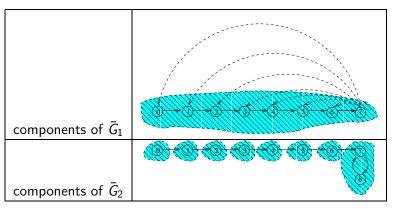
Two graphs: they look quite similar, but...

Components of \bar{G}



 \dots G_1 has a dangling node, whereas G_2 has none

Components of \bar{G}



All nodes are recurrent in G_1 , whereas all nodes except for 7 and 8 are transient in G_2

A general statement

Theorem

Except for degenerate cases a node is recurrent iff it belongs to a component of G that is nontrivial and has no arcs going out of it.

A general statement

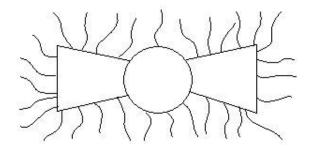
Theorem

Except for degenerate cases a node is recurrent iff it belongs to a component of G that is nontrivial and has no arcs going out of it.

The degenerate cases happen when there are no components satisfying the above conditions, in which case *every node is recurrent*:

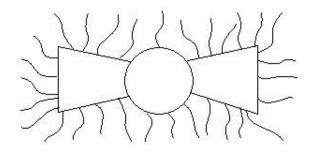
Bowtie

As a consequence, when $\alpha \to 1$, all PageRank concentrates in a bunch of pages that live in the rightmost part of the bowtie [Kumar et al., '00]:



Bowtie

As a consequence, when $\alpha \to 1$, all PageRank concentrates in a bunch of pages that live in the rightmost part of the bowtie [Kumar et al., '00]:



 $\mathbf{r}(\alpha)$ becomes meaningless as $\alpha \to 1!$

General behaviour

What about the general behaviour of $\mathbf{r}(\alpha)$?

General behaviour

What about the general behaviour of $\mathbf{r}(\alpha)$?

The following theorem gives an explicit formula for derivatives of PageRank:

Theorem

For every k > 0

$$\mathbf{r}^{(k)}(\alpha) = k! \ \mathbf{r}(\alpha) \left(Q(\alpha) - \frac{1}{1-\alpha} I \right) Q(\alpha)^{k-1}.$$

where

$$Q(\alpha) = P(I - \alpha P)^{-1}.$$

... is possible using a modification of the standard Power Method algorithm.

... is possible using a modification of the standard Power Method algorithm.

Theorem

There exists an algorithm that simultaneously approximates $\mathbf{r}(\alpha)$, $\mathbf{r}'(\alpha)$, $\mathbf{r}''(\alpha)$, ..., $\mathbf{r}^{(k)}(\alpha)$ (for a fixed value of $\alpha \in [0,1)$).

... is possible using a modification of the standard Power Method algorithm.

Theorem

There exists an algorithm that simultaneously approximates $\mathbf{r}(\alpha)$, $\mathbf{r}'(\alpha)$, $\mathbf{r}''(\alpha)$, ..., $\mathbf{r}^{(k)}(\alpha)$ (for a fixed value of $\alpha \in [0,1)$).

After t iterations, the difference (in norm) between $\mathbf{r}^{(j)}(\alpha)$ and its approximation is $O(t^j\alpha^t)$.

... is possible using a modification of the standard Power Method algorithm.

Theorem

There exists an algorithm that simultaneously approximates $\mathbf{r}(\alpha)$, $\mathbf{r}'(\alpha)$, $\mathbf{r}''(\alpha)$, ..., $\mathbf{r}^{(k)}(\alpha)$ (for a fixed value of $\alpha \in [0,1)$).

After t iterations, the difference (in norm) between $\mathbf{r}^{(j)}(\alpha)$ and its approximation is $O(t^j\alpha^t)$.

This algorithm provides *pointwise approximation for arbitary derivatives* with precision guarantee.

By definition, $Q(\alpha) = P(I - \alpha P)^{-1}$, so Q(0) = P.

By definition, $Q(\alpha) = P(I - \alpha P)^{-1}$, so Q(0) = P. Hence, since

$$\mathbf{r}^{(k)}(\alpha) = k! \ \mathbf{r}(\alpha) \left(Q(\alpha) - \frac{1}{1-\alpha} I \right) Q(\alpha)^{k-1}.$$

By definition, $Q(\alpha) = P(I - \alpha P)^{-1}$, so Q(0) = P. Hence, since

$$\mathbf{r}^{(k)}(\alpha) = k! \ \mathbf{r}(\alpha) \left(Q(\alpha) - \frac{1}{1-\alpha} I \right) Q(\alpha)^{k-1}.$$

we have

$$\mathbf{r}^{(k)}(0) = k! \mathbf{v}(P-I) P^{k-1}.$$

By definition, $Q(\alpha) = P(I - \alpha P)^{-1}$, so Q(0) = P. Hence, since

$$\mathbf{r}^{(k)}(\alpha) = k! \ \mathbf{r}(\alpha) \left(Q(\alpha) - \frac{1}{1-\alpha} I \right) Q(\alpha)^{k-1}.$$

we have

$$\mathbf{r}^{(k)}(0) = k! \mathbf{v}(P-I) P^{k-1}.$$

or, equivalently,

$$\mathbf{r}^{(k)}(0) = k! \mathbf{v} \left(P^k - P^{k-1} \right).$$

Maclaurin expansion

Hence, the Maclaurin expansion of $\mathbf{r}(\alpha)$, that is $\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \frac{\mathbf{r}^{(k)}(0)}{k!} \alpha^k$ can be written as

$$\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \mathbf{v} \left(P^k - P^{k-1} \right) \alpha^k.$$

Maclaurin expansion

Hence, the Maclaurin expansion of $\mathbf{r}(\alpha)$, that is $\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \frac{\mathbf{r}^{(k)}(0)}{k!} \alpha^k$ can be written as

$$\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \mathbf{v} \left(P^k - P^{k-1} \right) \alpha^k.$$

It can be shown that

Theorem

Let $\mathbf{R}_0, \mathbf{R}_1, \ldots$ be the approximations of PageRank computed by the Power Method for a certain value, say α_0 , of the damping factor.

Maclaurin expansion

Hence, the Maclaurin expansion of $\mathbf{r}(\alpha)$, that is $\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \frac{\mathbf{r}^{(k)}(0)}{k!} \alpha^k$ can be written as

$$\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \mathbf{v} \left(P^k - P^{k-1} \right) \alpha^k.$$

It can be shown that

Theorem

Let $\mathbf{R}_0, \mathbf{R}_1, \ldots$ be the approximations of PageRank computed by the Power Method for a certain value, say α_0 , of the damping factor.

Then, for all k,

$$\mathbf{v}\left(P^k - P^{k-1}\right) = \frac{R_k - R_{k-1}}{\alpha_0^k}.$$

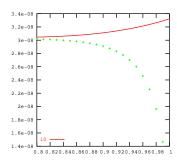
(by convention, $R_{-1} = \mathbf{0}$)

Using a simple variant of the standard Power Method, one can compute the coefficients of the Maclaurin expansion of $\mathbf{r}(\alpha)$:

ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t

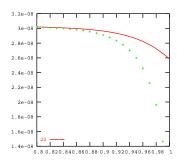
- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.

- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.



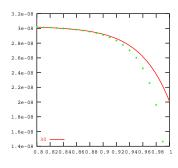
degree 10

- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.



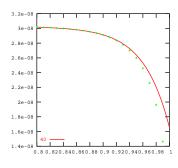
degree 20

- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.



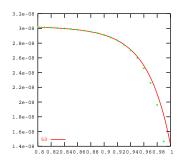
degree 30

- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.



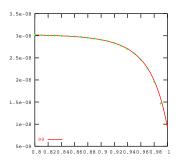
degree 40

- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.

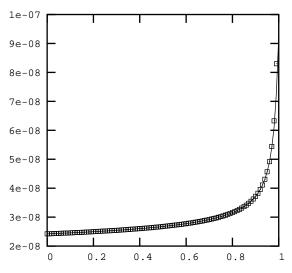


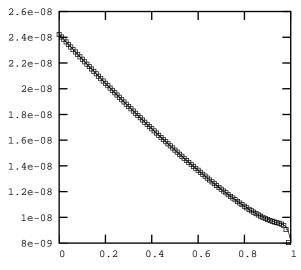
degree 50

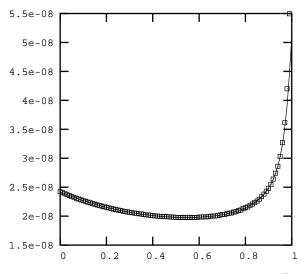
- ightharpoonup t iterations \Longrightarrow Maclaurin polynomial of degree t
- ▶ you can approximate *simultaneously* PageRank on all possible values of $\alpha \in [0,1)$.

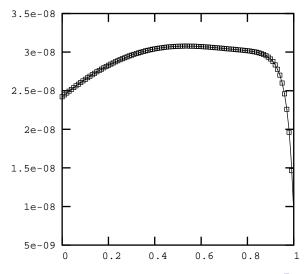


degree 99









Future work...

▶ Practical implications (?):

- Practical implications (?):
 - ▶ Is it possible to use the algorithms/properties described to detect/eliminate link spam? . . .

- Practical implications (?):
 - Is it possible to use the algorithms/properties described to detect/eliminate link spam? . . .
 - ...or to obtain new (better?) ranking techniques?

- Practical implications (?):
 - ▶ Is it possible to use the algorithms/properties described to detect/eliminate link spam? . . .
 - ...or to obtain new (better?) ranking techniques?
- On a more theoretical side:

- ► Practical implications (?):
 - ▶ Is it possible to use the algorithms/properties described to detect/eliminate link spam? . . .
 - ...or to obtain new (better?) ranking techniques?
- On a more theoretical side:
 - ▶ Is there a (deep and yet undiscovered) analytical reason behind the magical value 0.85?

Future work...

- Practical implications (?):
 - ▶ Is it possible to use the algorithms/properties described to detect/eliminate link spam? . . .
 - ...or to obtain new (better?) ranking techniques?
- On a more theoretical side:
 - ▶ Is there a (deep and yet undiscovered) analytical reason behind the magical value 0.85?

The "Laboratory for Web Algorithmics"

```
http://law.dsi.unimi.it/
```

provides (free) datasets and (GNU GPL) code for dealing with large web graphs and compute PageRank and friends...

