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Abstract. The security guarantees provided by SSL/TLS depend on the correct
authentication of servers through certificates signed by a trusted authority. How-
ever, as recent incidents have demonstrated, trust in these authorities is not well
placed. Increasingly, certificate authorities (by coercion or compromise) have
been creating forged certificates for a range of adversaries, allowing seemingly
secure communications to be intercepted via man-in-the-middle (MITM) attacks.
A variety of solutions have been proposed, but their complexity and deployment
costs have hindered their adoption. In this paper, we propose Direct Validation
of Certificates (DVCert), a novel protocol that, instead of relying on third-parties
for certificate validation, allows domains to directly and securely vouch for their
certificates using previously established user authentication credentials. By rely-
ing on a robust cryptographic construction, this relatively simple means of en-
hancing server identity validation is not only efficient and comparatively easy to
deploy, but it also solves other limitations of third-party solutions. Our extensive
experimental analysis in both desktop and mobile platforms shows that DVCert
transactions require little computation time on the server (e.g., less than 1 ms)
and are unlikely to degrade server performance or user experience. In short, we
provide a robust and practical mechanism to enhance server authentication and
protect web applications from MITM attacks against SSL/TLS.

1 Introduction

The Secure Sockets Layer (SSL) protocol and its successor, Transport Layer Security
(TLS), have become the de facto means of providing strong cryptographic protection
for network traffic. Their near universal integration with web browsers arguably makes
them the most visible pieces of security infrastructure for average users. While vulnera-
bilities are occasionally found in specific implementations, SSL/TLS are widely viewed
as robust means of providing confidentiality, integrity and server authentication. How-
ever, these guarantees are built on tenuous assumptions about the ability to authenticate
the server-side of a transaction by using digital certificates signed by a trusted third-
party certification authority (CA).

The security community has long been critical of the Public Key Infrastructure for
X.509 (PKIX) and its CA-based trust model [13, 19]. Much of the concern has focused
on the role of the CAs and their ability and motivation to not only correctly verify and



attest the coupling between an identity and a public key, but also to protect their own
resources. Browsers and operating systems determine what CAs users should trust by
default (i.e., trust anchors). However, this model has resulted in hundreds of CAs, all
equally trusted and from more than 50 different countries [11]. Due to this excessive
trust, CAs can forge certificates for any domain that will be accepted as valid by most
browsers. Thus, adversaries can obtain forged certificates by coercing or compromising
any CA and use them to execute man-in-the-middle (MITM) attacks against SSL/TLS
connections. Last year, the number of reported attacks against CAs increased consider-
ably [18, 23, 24, 35]. In some cases, adversaries were able to forge certificates for im-
portant web domains (e.g., google.com, yahoo.com and live.com). Even worse, it has
been estimated that a forged certificate was used to intercept close to 300,000 Gmail
sessions in Iran [27]. Furthermore, there is evidence that governments and private or-
ganizations are using forged certificates as part of their surveillance and censorship ef-
forts [28, 37, 38]. The frequency of these incidents is likely to increase in the future, as
more and more web applications rely on SSL/TLS to protect all their communications.

Multiple solutions have been proposed to deal with the threat imposed by forged
certificates and MITM attacks. The most popular approach is the use of additional third-
parties to extend or replace the rigid CA trust model (e.g., network notaries [31, 41],
public audit logs [12,26] and secure DNS (DNSSEC) [20]). In this approach, users can
select one or more third-parties to vouch for the authenticity of a certificate, improving
the chances of detecting a MITM attack. However, depending only on third-parties
for certificate validation has several shortcomings such as: significant deployment and
operational costs (e.g., additional infrastructure with high availability requirements),
more complex trust model for users, privacy concerns and more complex revocation
procedures. Therefore, the inherent complexity and costs associated with third-party
solutions have prevented their widespread deployment. As a result, most users still rely
on weak certificate validation checks to detect MITM attacks.

In this paper we propose Direct Validation of Certificates (DVCert), an efficient
and easy to deploy protocol that provides stronger certificate validation and effective
detection of MITM attacks without using third-parties. Our mechanism comes from a
simple observation – users have already established secrets (e.g., passwords) with their
most important web applications. DVCert allows web applications to use these secrets
to directly and securely attest for the authenticity of their certificates without exposing
those secrets to offline attacks. After a single round-trip DVCert transaction, a browser
receives the information required to validate all the certificates that could be used dur-
ing a session with the web application, including certificates from other domains. As
a result, to execute a MITM attack, an adversary not only needs to compromise a CA
but also each targeted web domain. A DVCert transaction uses a modified Password
Authenticated Key Exchange (PAKE) protocol known as PAK [8,29]. However, we are
not simply applying a known protocol; rather, we modified PAK to provide only server
authentication and integrity protection instead of mutual authentication and generation
of encryption keys (i.e., traditional use of PAKE protocols). These changes allow better
performance and simplify deployment without affecting PAK’s formal security proofs.
Our experimental evaluation shows that an optimized DVCert transaction requires little
computation time on the server (e.g., < 1 ms) and on the browser. More importantly,
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DVCert transactions are executed at most once per session; thus, their impact on server
performance or user experience is negligible. DVCert’s design also provides multiple
advantages over third-party solutions: simpler trust model, lower deployment and op-
erational costs (e.g., no additional infrastructure is required) and no privacy risks. Fi-
nally, DVCert is a readily available mechanism designed to improve the current CA
trust model and be compatible with third-party solutions such as DNSSEC, once these
solutions are deployed in the future. In so doing, we make the following contributions:

– Designing and implementing an efficient and easy to deploy mechanism to de-
tect MITM attacks against SSL/TLS without third-parties: We identify key
properties required to achieve a robust and practical defense against MITM attacks.
Based on these properties, we develop a protocol that provides more robust certifi-
cate validation and detects MITM attacks, even if the adversary uses forged cer-
tificates. By allowing web applications to attest directly for their certificates, our
mechanism avoids many of the challenges hindering the deployment of third-party
solutions. We implemented a proof-of-concept extension for Firefox and Firefox
for mobile browsers and a PHP-based server component to demonstrate the de-
ployability of our solution.

– Conducting an extensive performance analysis in multiple platforms: We char-
acterize DVCert’s performance using our prototype implementation in both desk-
top and mobile browsers. Our results show that an optimized DVCert transaction
requires 0.54 ms of computation time on the server and 12.03 and 97.70 ms on a lap-
top and on a smartphone respectively. Compared to a naı̈ve implementation, these
results represent a 94.96%, 55.07% and 77.82% improvement on the server, laptop
and smartphone correspondingly. Moreover, our experimental evaluation demon-
strates that DVCert transactions are as efficient as existing server operations (e.g.,
processing HTTPS requests). Thus, given their low frequency, DVCert transactions
are unlikely to degrade server performance or scalability. Furthermore, we apply
ProVerif [6] to formally verify DVCert’s resilience to offline dictionary attacks.

– Making our DVCert implementation available to the community: The DVCert
extension for Firefox and Firefox for mobile as well as the server PHP code are
available for evaluation at: http://www.cc.gatech.edu/˜idacosta/
dvcert/index.html.

The remainder of this paper is organized as follows: Section 2 offers important
background information on SSL/TLS and MITM attacks and presents our motivation;
Section 3 provides the design and formal description of DVCert; Section 4 presents our
security analysis of DVCert; Section 5 shows our experimental analysis and results;
Section 6 offers additional analysis and discussion of our proposed protocol; Section 7
provides an overview of important related work; and Section 8 presents our conclusions.

2 Background and Motivation

2.1 The SSL/TLS Protocols and Web Applications

The SSL/TLS protocols [10, 17] are the main security mechanisms used to protect the
communications between browsers and web applications. By providing a transparent
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Fig. 1: Example of a MITM attack against SSL/TLS. The adversary establishes two SSL/TLS
connections: one with the victim and one with the client. However, from the victim’s and server’s
point of view, there is only a single SSL/TLS connection.

encryption layer, SSL/TLS guarantee the confidentiality and integrity of the data travel-
ing across the Internet. Moreover, SSL/TLS allow browsers to authenticate web appli-
cation’s servers via X.509 digital certificates [2]. A digital certificate binds the server’s
identity (i.e., domain name) to the server’s public key and it is signed by a Certification
Authority (CA) trusted by both the server and the browser. CAs are required because
the browser and the server do not share any secrets at the SSL/TLS layer; thus, a trusted
third-party is needed to vouch for the authenticity of the server’s certificate. Certificates
can also be used for user authentication; however, this is not a common practice in
Internet scenarios.

Initially, due to performance considerations, most web applications used SSL/TLS
only to protect requests carrying private data (e.g., passwords, credit card numbers).
However, due to the increasing number of attacks against web sessions (e.g., session hi-
jacking), many applications have been forced to protect all their communications with
SSL/TLS. For this reason, is common that during a session, a browser establishes multi-
ple SSL/TLS connections not only with web application’s servers but also with servers
from third-party domains (e.g., CDNs and ads networks). Through a short survey from
the Alexa Top 20 US sites and popular online banking sites (15 in total), we determined
that an average of 12 certificates per domain were validated by the browser, with a min-
imum of 4 and a maximum of 22. Moreover, most sites included at least one certificate
from a third-party domain.

2.2 MITM Attacks against SSL/TLS

The security guarantees offered by SSL/TLS rely on the correct authentication of the
server. All such guarantees are rendered ineffective if an adversary is able to convince
users to accept an illegitimately generated certificate, as shown in Figure 1. First, the
adversary positions herself in the network path between the victim’s computer and the
server. When the victim sends a request for establishing a new SSL/TLS connection
with the server (message 1), the adversary intercepts and responds to it (message 4) us-
ing a forged certificate (Cert’). If the victim accepts this certificate, then she completes
the SSL/TLS setup with the adversary (messages 5 and 8), who has, as a result, suc-
cessfully masqueraded as the server. Simultaneously, the adversary establishes a new
SSL/TLS connection with the server (messages 2, 3, 6, and 7). At this point, the adver-
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sary has two active SSL/TLS connections: one with the victim and one with the server.
However, from the victim’s and server’s perspectives, there is only one secure connec-
tion in place. The adversary can now decrypt, re-encrypt and forward all the messages
exchanged between the victim and the server (messages 9 to 12). As a result, the ad-
versary can access private information (e.g., passwords) or even modify it (e.g., code
injection).

2.3 Problems with Third-Party Solutions

A considerable number of mechanisms have been proposed to improve server-side au-
thentication and protect against MITM attacks (see Section 7). The most popular ap-
proach is the use of additional third-party entities that can also vouch for the authentic-
ity of server certificates. Third-party solutions provide a number of benefits: protection
of the first connection to a new domain, scalable attestation of certificates for all public
domains and minimal requirements for web applications. Unfortunately, this approach
also faces several critical challenges. First, these mechanisms have significant deploy-
ment and operational costs. The additional infrastructure needed can be expensive to
deploy and operate due to requirements such as high-availability, data consistency, per-
formance and security. Even web applications can be affected by the operational over-
heads required by these mechanisms. Second, the resulting trust model is more com-
plex. The use of multiple trusted entities to choose from can make the trust model more
complex to evaluate and understand. Thus, average users are likely to rely on default
trust configurations. Moreover, trust is dynamic – a trusted entity today may become
an adversary tomorrow. Third, these mechanisms introduce new privacy risks. Users’
browsing activity is disclosed to third-party entities. Preventing this problem can add
complexity to these solutions. Fourth, certificate revocation procedures become more
complex. The use of multiple entities make revocation more difficult because of the ad-
ditional overhead required to revoke multiple proofs of authenticity (e.g., signatures).
Finally, captive portals typically interfere with these mechanisms. In places such as
airports and hotels, captive portals can block requests for certificate validation to exter-
nal entities before user registration. Thus, captive portals need to be modified to allow
additional certificate validation mechanisms.

3 Direct Validation of SSL/TLS Certificates

We present Direct Validation of SSL/TLS Certificates (DVCert), an efficient and prac-
tical mechanism that improves certificate validation and provides stronger protection
against MITM attacks. Instead of relying on third-parties, DVCert uses the existing
shared secrets between the user and the web application to directly validate server cer-
tificates. DVCert overcomes the limitations of third-party solutions while also reducing
the risks associated with using low-entropy keys in network protocols.

3.1 Scenario and Threat Model

Our scenario assumes a large, highly distributed web application. The application uses
SSL/TLS to protect all the communications with its users (i.e., always-on HTTPS). To
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establish SSL/TLS connections, the application has multiple certificates signed by a
trusted CA. In addition, the application’s web pages include content from third-party
servers. These servers also communicate using SSL/TLS and have their own valid cer-
tificates. We assume that SSL/TLS are correctly configured in the application’s servers
as well as in the third-party servers. Furthermore, users share a password with the ap-
plication and use HTML forms for authentication. Instead of plaintext passwords, the
application stores password salted hashes using public salt values. Finally, we assume
that users follow a robust password policy that is enforced by the application.

We consider a polynomial-time (PPT) adversary that has access to all the communi-
cation between the web application and its users. The adversary’s goal is to eavesdrop
and tamper with this communication by executing MITM attacks against SSL/TLS. To
perform such attacks, we assume that it is possible for the adversary to obtain forged
certificates for any domain that are signed by some trusted CA. However, the adversary
does not have access to users’ passwords, password salted hashes or server’s private
keys. Moreover, this model does not consider attacks against user computers or appli-
cation servers to obtain such information and attacks that exploit SSL/TLS implemen-
tation or configuration errors.

3.2 Desired Protocol Properties

We identified properties required to achieve an effective and practical defense against
MITM attacks. We then used these properties to design DVCert:

1. Effective detection of MITM attacks: the proposed mechanism must provide robust
server authentication and effective detection of MITM attacks against SSL/TLS,
even if illegitimately obtained certificates are used.

2. Robustness against offline attacks: the proposed mechanism should not leak infor-
mation about the user’s authentication credentials and must be resilient to offline
attacks such as dictionary and cryptanalytic attacks.

3. Deployability: the proposed mechanism should not require additional hardware or
software, only small changes to the browser and web application. In addition, it
should be simple to configure in both the browser and the web application.

4. Performance: the proposed mechanism must be efficient. It must not affect the over-
all performance and scalability of the web application. Moreover, it should not in-
troduce risks of DoS attacks.

5. Privacy: the proposed mechanism should not disclose user information to third-
parties and adversaries.

6. Compatibility: the proposed mechanism must not interfere with existing function-
ality in the browser and web application. Browsers not supporting the proposed
mechanism should still be able to access the web application. Moreover, the pro-
posed mechanism must be compatible with other certificate validation protocols.

7. Usability: the proposed mechanism should require minimal user intervention and
have minimal impact on user experience.

8. Simple trust model: the proposed mechanism should have an easier to understand
trust model in comparison to third-party solutions. Users must not be required to
make additional trust assessments.
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Fig. 2: High level overview of the DVCert protocol. First, the browser obtains a fresh DCL
(Domain Certificate List) after executing a DVCert transaction over SSL/TLS with the web ap-
plication (step 1). Second, the browser uses the fresh DCL to validate the certificates used in all
the SSL/TLS connections with the web application and associated third-parties (step 2).

3.3 Protocol Description

MITM attacks against SSL/TLS connections are possible because server certificates are
validated using only a single third-party signature and mutual authentication is weak.
DVCert addresses these problems by allowing web applications to use already available
shared secrets to vouch directly for the authenticity of certificates instead of relying
only on third-parties. Figure 2 shows a high level description of the DVCert protocol.
First, the browser establishes a SSL/TLS connection with the web application and then
executes a DVCert transaction based on the user’s password and a modified PAKE
protocol (step 1). In this transaction, the browser authenticates the web application and
receives its latest certificate information. The certificate information is shared using
a Domain Certificate List (DCL), a data structure maintained by the web application
that contains the fingerprints1 of all the certificates that could be used during a session
with the application. The DCL not only includes the fingerprints of the application’s
certificates but also of third-party’s certificates used in the application (e.g., CDNs and
ads networks). Second, the browser stores the DCL temporarily and uses it to validate
the certificates of each SSL/TLS connection with the application (step 2), including the
SSL/TLS channel established in step 1. If a certificate is not found in the DCL, then
the corresponding SSL/TLS connection is flagged as untrusted (i.e., probable MITM
attack). Once the DCL expires, a new DVCert transaction is executed (step 1) to update
it. Finally, to avoid asking for the user’s password on each transaction, the browser
securely stores the password salted hash (PSH) together with the DCL.

DVCert achieves our goals by building on a significantly modified version of PAK [8,
9,22,29]. PAK (and the PAKE family of protocols) is based on the Diffie-Hellman (DH)
key exchange and allows the use of low entropy secrets such as passwords to securely
establish a session secret (i.e., authenticated Diffie-Hellman). PAK was selected as a
starting point for our work because of its formal security proof and its ability to use
shorter exponents [30] for better performance when compared to other related PAKE-
based protocols. The major difference in our approach is that DVCert uses PAK only
for server authentication instead of mutual authentication and generation of encryption

1 A certificate fingerprint is the cryptographic hash of the binary representation (e.g., DER en-
coding) of the certificate.
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Shared information: g, p, d = domain, s = H(u|d). Hash functions H , H1, H2, H3, H4

Information held by Browser: u = username, pw = password
Information held by Server: P = H(pw|s), DCL = domain certificate list

Browser Server
a ∈ Zq

P = H(pw|s)

m1 = ga ×H1(u|d|P )(mod p) (1)
u, m1−−−−−−−−−−−→ m1 mod p

?

6= 0
b ∈ Zq

gab = ( m1
H1(u|d|P )

)b(mod p)

m2 = gb ×H2(u|d|P )(mod p)

r = (u|d|P |ga|gb|gab)
h1 = H3(r|H(DCL))

gab = ( m2
H2(u|d|P )

)a(mod p) (2)
m2, h1, h2, DCL←−−−−−−−−−−−−−−− h2 = H4(r)

r = (u|d|P |ga|gb|gab)
h1

?
= H3(r|H(DCL))

h2
?
= H4(r)

Operations:
x|y: concatenation of strings x and y
Hi(x): i-th standard cryptographic hash of x
Hi(x): special agreed-on cryptographic hash of x [9, 22]

Fig. 3: Detailed description of a DVCert transaction. DVCert uses a modified version of PAK to
establish a session secret (gab) that is used to protect the integrity of the DCL (Domain Certificate
List). At the end of the transaction, the server is authenticated and the browser can use the DCL
to verify all the certificates used during a session with this domain.

keys (standard use of PAKE protocols), and include features to protect the integrity of
the DCL and distinguish between tampering of the DCL and password errors. In other
words, only the browser verifies the session secret established during the transaction.
By not providing user authentication, DVCert requires fewer messages and, more im-
portantly, avoids changes to the browser login user interface – a major challenge for the
deployment of PAKE protocols in web applications [15]. Hence, DVCert is compatible
with current user authentication mechanisms (e.g., HTML form-based authentication).

Figure 3 shows the details of a DVCert transaction (step 1 on Figure 2). First, the
browser establishes a SSL/TLS connection with the server. This connection is used to
protect protocol information (e.g., usernames) from eavesdroppers. Next, the browser
generates a random exponent a (browser’s DH secret), computes the DH value ga and
uses it and the password salted hash P to compute m1. If the password salted hash is
not available for this domain (e.g., first DVCert transaction with this domain), then the
browser prompts the user for her username u and password pw, computes the password
salted hash P and stores it in a secure location for future transactions (i.e., the user
is prompted only once for her password). Once m1 has been calculated, the browser
sends it and the username u to the server using a special header field in a HTTP request
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(message 1) over SSL/TLS. After receiving the DVCert request, the server verifies that
m1 6= 0 to prevent a known attack, uses the username u to retrieve the password salted
hash P from the server’s database, generates the random exponent b (server’s DH se-
cret) and computes the DH value gb. The server now obtains the browser’s DH value
ga from m1, calculates the session secret gab and computes m2 and h2. In addition, the
server uses the latest version of the DCL to compute h1. Next, the server sends m2, h1,
h2 and the DCL to the browser in the HTTP response (message 2). Then, the browser
uses the received values to obtain the server’s DH value gb and to calculate the session
secret gab. Next, the browser uses the session secret gab and other protocol state infor-
mation to compute new h1 and h2 values. The browser now compares the computed h1

with the one received from the server. If the values match, then the DVCert transaction
was successful. Thus, the DCL file is trusted (i.e., has not been tampered with) and
can be used to validate certificates. In addition, the successful verification of h1 also
proves the server’s identity. If the h1 values do not match, then the browser proceeds
to verify h2. If this verification succeeds, then the DCL has been modified and there
is a high probability that a MITM is in progress. Therefore, neither the DCL nor any
communication with the server can be trusted. The browser displays a warning to the
user and halts the communications with the server. If the h2 values are different, then
the transaction could have failed due to a password error (e.g., user typed the wrong
password) or a MITM attack. Thus, the browser displays a warning and prompts the
user for a new password for a limited number of attempts. If the protocol still fails after
several attempts, then the browser halts all communications with the server. In other
words, h2 is used to differentiate between protocol failures due to a MITM attacks or
due to password errors.

After a successful DVCert transaction, the browser stores the DCL and the pass-
word salted hashes in a secure location isolated from other browser components. The
browser stores one DCL per domain for a limited period of time according to a domain
policy (e.g., once per session). Thus, the total number of DVCert requests per user is
significantly lower than the total number of SSL/TLS connections. When a SSL/TLS
connection is established with a server, the browser checks that the certificate is in the
corresponding DCL (step 2 in Figure 2). If the certificate is not in the DCL, then a
MITM attacks is likely to be in progress. Thus, the browser displays a warning to the
user and halts the communications with the server. Once a DCL expires, the browser
sends an automatic request (i.e., no user intervention) for a new DVCert transaction to
update the DCL.

Finally, DVCert assumes that PAK constants, the prime number p and the generator
g, are publicly known. For example, they can be hardcoded in DVCert’s browser and
server components. This measure is important to prevent an adversary from sending
bogus p and g values and tricking the user into an improper DVCert exchange that
could leak password information. Moreover, DVCert assumes that the web application
stores password salted hashes (P = H(pw|s)) and that salt values (s) are also publicly
known. If the salt is not known in advance, the browser can also send an additional
request to the server to obtain it.
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4 Security Analysis

DVCert main’s goal is to detect MITM attacks against SSL/TLS. DVCert achieves this
by effectively binding the SSL/TLS layer to the application layer (i.e., channel bind-
ing [4, 42]). As a result, a MITM adversary trying to avoid detection by modifying the
DCL is not only forced to compromise a CA to obtain a forged certificate but also to
compromise each of the targeted domains to obtain users’ authentication credentials.

An adversary can try to capture DVCert messages and use offline attacks to obtain
user authentication credentials. However, the attacker needs to execute a MITM attack
first to access DVCert messages. Thus, such attempts will be detected by DVCert. Fur-
thermore, PAK’s formal proofs of security for standard [8] and short exponents [30]
(i.e., 384 bits) provide strong guarantees that the adversary will not learn password in-
formation from DVCert messages. DVCert modifications to PAK do not affect these
proofs. For example, PAK and DVCert transmit the same number of hash values (2)
over the network. The main difference is that DVCert uses one message less and uses
the DCL as part of the computation of h1.

We used ProVerif [6], an automatic cryptographic protocol verifier, to formally char-
acterize DVCert. Using ProVerif, we successfully demonstrated that DVCert does not
leak password information (i.e., resilience to offline attacks). Due to space limitations,
ProVerif configuration details and results are available in DVCert’s web site.

Because DVCert does not provide user authentication, the credentials stored in the
browser or the server can be used to masquerade as the server but not as the user. There-
fore, DVCert offers resilience to server compromise similar to augmented PAKE proto-
cols. The adversary can still use offline dictionary attacks against the stolen credentials,
but the use of strong passwords can mitigate this risk.

The DCL includes fingerprints of certificates from third-party domains because
these certificates cannot be validated directly (users do not share secrets with these
domains). This is important because a MITM attack against a third-party SSL/TLS
connection could be used to compromise the session with the web application (e.g.,
code injection attacks). The web application is responsible for maintaining the latest
certificate information from third-party domains in the DCL. For example, the web ap-
plication could rely on existing secure connections with third-party domains to obtain
their certificate information. Alternatively, the application could rely on third-party val-
idation mechanisms (e.g., network notaries).

A concern with PAKE protocols is the risk of denial of service attacks due to the
cost of public key operations. DVCert mitigates this risk by optimizing such opera-
tions without reducing security. For example, DVCert can use shorter exponents for
better performance without affecting formal proofs of security. PAK allows the use of
exponents with a minimum size of 384 bits (1024 bits DH group) [30] while main-
taining a similar level of security. Another suggested optimization is the use of static
parameters in the server (i.e., b, gb and m2) to reduce the number of operations (see Sec-
tion 5). This technique affects the protocol’s perfect forward secrecy property; however,
DVCert does not require it (i.e., the session secret is not used for encryption). Finally,
the web application could also monitor and limit the number of DVCert requests a user
can make per day according to a domain policy.
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5 Experimental Analysis

We implemented DVCert browser and server components (see Figure 2) to evaluate
their performance and deployability. The DVCert browser component was implemented
as an extension for Firefox 10.0.x and Firefox for mobile (Fennec) 4.03b. The exten-
sions were written mainly in Javascript, but we also used C code for modular exponenti-
ation operations through Firefox’s js-ctypes API and the GMP library2. Approximately
500 lines of code were required for both extensions. The DVCert server component
was implemented in PHP and required approximately 400 lines of code. More impor-
tantly, the DVCert server component is completely independent of the web applica-
tion code; only access to the user database is required. PAK implementation details
as well as test vectors were obtained from the RFC 5683 [9] and the ITU-T Recom-
mendation X.1035 [22]. The experiments used a laptop (Apple MacBook Pro with
dual core 2.53 GHz processor, 4GB of memory and Mac OS X 10.6) and a smart-
phone (Samsung Galaxy S 4G with a 1 GHz Cortex-A8 processor, 512 MB of mem-
ory and Android 2.2.1) as our clients. On the server side, we used a Ubuntu 10.10
server with 2 quad-core 2.00 GHz processors, 16 GB of memory and Gigabit Ethernet.
The server was configured with Apache 2.2, PHP 5.3 and a 2048 bits RSA certificate.
Finally, our prototype DVCert implementation is currently available for evaluation at
http://www.cc.gatech.edu/˜idacosta/dvcert/index.html.

Certificate validation operations using the DCL are inexpensive. For example, for
each SSL/TLS connection, the browser executes one hash operation and one search op-
eration. Assuming an ordered DCL, binary search is used to determine if a certificate is
in the DCL with time O(log n), where the DCL’s size n is in the order of tens of cer-
tificates. In addition, the size of the DCL is small (e.g., a SHA-1 certificate fingerprint
requires only 160 bits). Hence, the impact on network bandwitdh due to the DCL is
negligible. Therefore, our experimental evaluation focused on the costs associated with
DVCert transactions where more complex operations take place.

First, we measured the time required to generate a DVCert request (tg) and the time
required to verify the corresponding response (tv) in the browser for different exponent
sizes: 2048, 1024 and 384 bits. Morevoer, we used a DCL with one certificate finger-
print in all the experiments. Table 1 shows the results for 100 DVCert transactions per
configuration using a laptop and a smartphone, including 95% confidence intervals. The
results show that for 2048 bits exponents, an often recommended size for standard key
exchange protocols [7], the browser required 26.78 ms and 440.58 ms of total com-
putation time (tg + tv) on the laptop and on the smartphone respectively. While these
computation times should not affect the user experience due to the low frequency of
DVCert transactions, we can see that using 384 bits exponents decreased these times
to 12.03 ms on the laptop (55.07% improvement) and 97.70 ms on the smartphone
(77.82% improvement); thus, reducing the chance that users may notice these opera-
tions.

2 Javascript-only DVCert add-ons for Firefox required an execution time at least one order of
magnitude higher than add-ons using C native code for modular exponentiation, particularly
in the smartphone. Ultimately, we envision DVCert to be implemented directly in the browser
and using native code for its operations.
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Exponent Size Laptop tg (ms) Laptop tv (ms) Smartphone tg (ms) Smartphone tv (ms)
2048 bits 10.36 (±0.0941) 16.42 (±0.2883) 171.92 (±1.7883) 268.66 (±9.6384)
1024 bits 3.95 (±0.0693) 9.55 (±0.1358) 48.68 (±2.1108) 71.88 (±7.8691)
384 bits 3.26 (±0.0860) 8.77 (±0.1382) 33.58 (±0.7279) 64.12 (±7.4392)

Table 1: DVCert request generation time (tg) and response verification time (tv), including 95%
confidence intervals, on a laptop and on a smartphone for different exponent sizes. For 384 bits
exponents, a DVCert transaction required a total time (tg + tv) of 12.03 ms on the laptop and
97.70 ms on the smartphone. Thus, these operations are unlikely to be noticed by users

Request Type tr (ms) td (ms) trsp (ms) tdsp (ms) % Imp. (tdsp)
HTTPS 1.17 (±0.0140) – 1.17 (±0.0140) – –

HTTPS + DVCert 2048 bits 11.88 (±0.0064) 10.71 6.66 (±0.0066) 5.49 48.74%
HTTPS + DVCert 1024 bits 3.02 (±0.0060) 1.85 2.20 (±0.0056) 1.03 44.32%
HTTPS + DVCert 384 bits 2.04 (±0.0084) 0.87 1.71 (±0.0060) 0.54 37.93%

Table 2: Server response time (tr) for a single HTTPS request (baseline) and single HTTPS
requests with DVCert using dynamic and static parameters (trsp) and different exponent sizes.
By subtracting the time of a single HTTPS request, we estimated the cost of DVCert operations
with static (td) and dynamic (tdsp) parameters and determined the percentage of improvement
(% Imp.) due to static parameters. For 384 bits and static parameters, DVCert operations required
half of the time used to server a single HTTPS request.

Second, we measured the server response time using network traces for single
HTTPS requests (baseline) and HTTPS requests with DVCert. Each request retrieved a
small HTML page (≈ 500 bytes. We chose this small size to measured only the over-
head added by SSL/TLS and DVCert). Moreover, our measurements did not include
SSL/TLS setup times. For HTTPS request with DVCert, we evaluated different ex-
ponent sizes (2048, 1024 and 384 bits) and the use of dynamic (tr) and static (trsp)
server parameters. Based on these measurements, we estimated how much time the
server spent on DVCert operations (td and tdsp) by subtracting the baseline time from
the HTTPS+DVCert server response times. The results for 100 DVCert transactions
per configuration are shown in Table 2, including 95% confidence intervals. The most
robust configuration, 2048 bits and dynamic parameters, required 10.71 ms of addi-
tional server computation time, while the most efficient configuration, 384 bits and
static parameters, required around 0.54 ms (94.96% improvement). Thus, the most effi-
cient DVCert configuration requires less time than serving a HTTPS request (1.17 ms)
and it is smaller than the average network jitter in the US (0.67 ms [5]). Also, Table 2
shows how static parameters can reduce DVCert processing time on the server by at
least 38%. Overall, these results show that DVCert operations have similar processing
requirements to other server operations (e.g., SSL/TLS setup, HTTPS requests process-
ing) while still maintaining robust security guarantees. Thus, it is unlikely that DVCert
could degrade server performance or increase the risk of DoS attacks.

Finally, we evaluated the overall impact of DVCert on server throughput in the
hypothetical scenario where each SSL/TLS connection includes a DVCert transaction
(i.e., upper bound). For this purpose, we measured the rate of HTTPS requests (using
one SSL/TLS connection per request) and the rate of HTTPS+DVCert requests that the
server can handle. As before, we evaluated DVCert with different exponent sizes (2048,
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Fig. 4: Comparison of the web server throughput for single HTTPS request and HTTPS requests
with DVCert in the hypothetical case that DVCert transactions are executed per SSL/TLS con-
nection (i.e., upper bound). HTTPS+DVCert configurations used different exponent sizes and
one configuration used static parameters (HTTPS+DVCert-sp). Using DVCert with 384 bits ex-
ponents allowed a maximum throughput close to the one achieved with single HTTPS requests.
Thus, DVCert transactions are unlikely to degrade server performance. Note: SSL/TLS connec-
tions used a 2048 bits RSA key.

1024 and 384 bits) and one setup with static parameters and 384 bits exponents. The
test load was generated with httperf, a HTTP traffic generator tool. Figure 4 shows the
results of this experiment for 10 measurements per point (300 in total), including 95%
confident intervals. This figure shows that, even if every SSL/TLS connection uses a
DVCert transaction, using 384 bits exponents allows a maximum throughput close to
the one obtained using single HTTPS requests. Moreover, 1024 bit exponents could also
allow a similar performance if static parameters are used (based on the results shown
in Table 2). Thus, using 1024 bits exponents or shorter and static parameters reduces
the risk of DoS attacks, eliminating the need for additional DoS defenses (e.g., client
puzzles).

6 Discussion

6.1 DVCert Benefits

In addition to meeting the design goals described in Section 3.2, DVCert solves most of
the problems hindering the deployment of third-party defenses against MITM attacks
(see Section 2.3). First, DVCert is easier to deploy and maintain. In most scenarios,
DVCert should not require additional infrastructure due to its low processing costs.
Only minor modifications are required to add DVCert support to the web application
and the browser (see Figure 2). For example, DVCert only needs access to the applica-
tion’s user database and certificate information (i.e., the DCL). Hence, DVCert can be
deployed as an independent service without modifying any existing functionality in the
application. In the browser, DVCert can also be implemented as an independent compo-
nent that only requires the certificate information used on each SSL/TLS connection and
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secure storage for the password salted hashes and DCL data. Moreover, by relying on
passwords, users do not need to deal with additional secrets or devices and can benefit
from DVCert on a wider range of platforms. Second, DVCert has a simpler trust model.
It relies on existing trust relationships between users and web applications; hence, users
do not need to assess and establish new trust relationships with third-parties. Third,
DVCert does not introduce new privacy risks. User browsing activity is not revealed to
third-parties when a certificate is validated using DVCert. This property is particularly
important for users with high privacy and anonymity requirements (e.g., Tor users).
Fourth, certificate revocation is simpler. For instance, a certificate can be revoked by
just removing it from the DCL. Thus, there is no need for mechanisms such as CRLs
and OCSP, both criticised due to their ineffectiveness [25]. Fifth, DVCert is more re-
silient to compromise than third-party approaches. Third-party solutions can vouch for
certificates belonging to a large number of domains. However, if compromised, then
all the protected domains could be affected by MITM attacks. In contrast, DVCert is
deployed independently per domain; thus, attacks against one domain will not affect
other domains. Finally, DVCert is compatible with captive portals in certain scenarios.
For instance, DVCert could verify the certificates of captive portals that already share a
secret with the user (e.g., account with a Wi-Fi provider) or where the user receives a
shared secret via a secondary channel (e.g., a paper receipt).

6.2 DVCert Limitations

DVCert allows web applications to vouch for their certificates using existing authenti-
cation credentials. Thus, DVCert can only protect web applications where the user has
an account and a shared secret. However, this is not a major limitation because most of
the web applications that are likely to be targeted by adversaries (e.g., sites with private
information) require authentication credentials. A related case are web applications that
rely on federated identity management (e.g., OpenID) or Single sign-on (SSO) systems.
Here, users share a password with an identity provider instead of the web application.
Still, DVCert can be extended to validate certificates in such scenarios. For instance, the
web application can provide its DCL to the identity provider during the login process.
Then, the browser can execute a DVCert transaction to obtain not only the DCL of the
identity provider but also of the targeted application. We plan to explore this idea in
our future work. Another limitation is that DVCert cannot be used to protect the first
connection to a web application. DVCert is by design a trust-on-first-use (TOFU) [41]
mechanism such as the SSH protocol. Therefore, when registering to a web application
for the first time, users can only rely on CA signatures and other third-party mechanisms
to validate certificates. However, for most scenarios, it is unlikely that adversaries will
be monitoring users before they have created an account with a web application. More-
over, applications with high security requirements could also use secondary channels to
protect the user registration process.

7 Related Work

Most browsers perform multiple checks to validate SSL/TLS servers certificates and
authenticate the server-side of the communication. If any of these checks fails (e.g.,

14



MITM attack), the browser relies on security indicators (e.g., warnings messages) to
notify the user. Unfortunately, average users tend to ignore these indicators due to the
lack of training and high false positive rates [36, 39]. More effective security indicators
have been proposed [39, 44, 45], but have not been widely adopted by major browser
vendors.

Multiple browser-based mechanisms have been proposed to detect forged certifi-
cates. For instance, browser extensions can keep track of the certificates used by the
browser and can detect certificate changes [1, 38]. While simple, the effectiveness of
this approach is affected by false positives and lack of user training. A related technique,
known as certificate pinning [16], uses a white-list of certificates for important domains
that are hardcoded in the browser. This solution is less prone to false positives; how-
ever, it is neither flexible nor scalable. A more robust approach is the use of secondary
channels such as cellular networks [34] and Tor [3] to obtain additional copies of the
server certificate. Assuming that adversaries have no control over the secondary chan-
nels, any inconsistency among the certificates received will indicate a possible MITM
attack. Unfortunately, this technique has considerable deployment costs and can intro-
duce significant delays to SSL/TLS connection setup.

Most research in the area of MITM defenses focuses on using additional third-
parties to improve or replace the CA trust model. For example, mechanisms such as
Perspectives [41], Convergence [31] and Crossbear [21] allow users to choose multi-
ple network notaries that can complement or replace CAs signatures. In this approach,
the browser queries notaries located in different network vantage points to determine if
they have observed similar certificate information for a particular domain. The Mutually
Endorsing CA Infrastructure (MECAI) [14] proposal also suggests the use of notaries
for certificate validation. However, instead of introducing new authorities, MECAI uses
existing CAs as notaries. Thus, in addition to verifying the CA signature, the browser
randomly queries other CAs for additional proofs of authenticity. A different tech-
nique is presented by the Electronic Frontier Foundation (EFF) Sovereign Keys (SK)
project [12]. In this project, a domain certificate includes an additional integrity sig-
nature created with the domain’s sovereign key. To verify this signature, browsers can
obtain the corresponding sovereign key from a semi-centralized, append-only public
data structure. Google’s Certificate Transparency (CT) [26] proposal also relies on a
similar data structure, but instead of storing keys, it stores records of each certificate
emitted by a CA. Browsers can then validate if they are using the correct certificate for
a particular domain by querying this public audit log. The IETF DNS-based Authen-
tication of Named Entities (DANE) working group [20] is developing protocols that
use secure DNS (DNSSEC) extensions to bind certificates to domain names. In this ap-
proach, often considered the most robust, certificates may have both CA and DNSSEC
signatures or only the latter. Finally, while third-party based solutions offer several ben-
efits, their adoption has been hindered by multiple problems such as deployment and
operational costs, lack of user training, false positives and others (see Section 2.3).

To a lesser degree, researchers have also explored the use of shared secrets (e.g.,
passwords) to defend against MITM attacks. For example, the TLS-SRP protocol [40]
uses SRP [43] for mutual authentication and SSL/TLS key derivation based on the
user’s password (i.e., certificates and CAs are not required). Hence, MITM attacks are
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not possible without knowledge of the user’s password. However, TLS-SRP requires
inter-layer communication between the application and the SSL/TLS stack, breaking
SSL/TLS transparency. A different technique is to use shared secrets for channel bind-
ing [42], as proposed in the Session Aware (TLS-SA) user authentication protocol [33].
To detect MITM attacks, TLS-SA uses authentication codes based on user credentials
and SSL/TLS session information, effectively binding the application and SSL/TLS lay-
ers. TLS-SA, however, requires client certificates and hardware tokens to resist offline
dictionary attacks, affecting its adoption. Finally, the Mutual Authentication Protocol
for HTTP [32] also combines user authentication with SSL/TLS channel binding, but
it relies on the user’s password instead of client certificates. To provide mutual authen-
tication and prevent offline guessing attacks, this mechanism relies on the direct im-
plementation of a PAKE protocol. However, this mechanism requires additional server
state, only protects the login connection and requires changes to the browser and web
application login UI (a significant challenge for deploying PAKE-based protocols [15]).

8 Conclusions

As recent incidents have demonstrated, adversaries are exploiting weaknesses in the CA
trust model to compromise communications protected by SSL/TLS via MITM attacks.
This trend is likely to accelerate as more and more web applications adopt SSL/TLS to
protect all their communications. Currently proposed solutions face multiple challenges
due to their complexity and deployment and operational costs; thus, they are unlikely to
be widely available in the near future. We present DVCert, a practical mechanism that
relies on previously established shared secrets to allow the web application to directly
and securely vouch for the authenticity of its certificates. By using a single round-trip
transaction with the web application, based on a modified PAK protocol, the browser
learns the information required to locally verify all the certificates that could be used
during a session with the application. Our experimental analysis shows that DVCert
transactions require little execution time on the server and the browser; therefore, they
should not have a serious impact on server performance or user experience. Finally,
DVCert could be extended to protect not only the integrity of SSL/TLS certificates but
also other application’s resources such as Javascript code and binary objects. We intend
to explore this approach in our future work.
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