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ABSTRACT
Modern networks are very complex. It is highly desirable to
reduce management complexity in next generation networks
design. Researchers have been seeking inspiration in natu-
ral observations to help better manage the ever increasing
complexity of modern networks. Bio-inspired and cognitive
networks have shown tremendous promise towards better
adapting networks to local stimuli intelligently, and to some
extent without human intervention.

In this paper, we discuss why the human brain is an ex-
cellent model for designing next generation smart networks.
Insights gained into macro-behavior of human brain and its
structural organization in the last decade are discussed. We
identify features that can be adapted for network model-
ing. We then propose a network design model based on our
understanding of the mind, how cognition is achieved, how
memory is formed, etc. We end this paper with a real life
network design problem we address using the proposed gen-
eral model.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
Networks; A.1 [General Literature]: INTRODUCTORY
AND SURVEY

General Terms
Cognitive Networks

Keywords
Bio inspired computing, Nature inspired computing, Cogni-
tive networks, Gray networking

1. INTRODUCTION
Neuroscience research has advanced at an exhilarating

pace over the last three decades. With modern technolo-
gies coming to their aid (EEG, EMG, fMRI, and PET scans
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to name some), neuroscientists today have a much better un-
derstanding of organization and functioning of various parts
of human brain. No doubt, more complex questions such
as what constitutes consciousness still remain a mystery.
Studies being conducted worldwide on stroke survivors and
epileptic patients have started answering questions related
to memory, vision, etc.

Network researchers recently have started looking at nat-
ural phenomena in hopes of better managing the increasing
complexity of modern networks. Ant behavior [1] [4] in lo-
cating food sources, virus spread models, epidemics [5] [7] [3]
and many other similar natural patterns are being studied
with the hope of using lessons learned from such studies in
ushering in next generation of smart networks. We believe
our own human brain organization might have the key to
solve some major issues in such networks. It is generally
thought that our brains are the most complex organs found
in our planet. With its billions of neuron interconnections,
yet functionally very efficient, our brain could provide some
answers long sought by the networking community.

In the past researchers in the field of AI have made some
significant progress towards making computers appear intel-
ligent, but most of these approaches are purely algorithmic
in the sense that given some external input, the algorithm
behavior can be modeled as a state machine. The approach
we take in this paper is very different as we try to model the
architecture and behavior of a large network, with individ-
ual nodes interacting and behaving using some peer-to-peer
overlay semantics.

At this point we should state that, although one can envi-
sion a global Internet wide network modeled after our pro-
posal, this would be challenging to achieve in reality. Secu-
rity concerns, inter-organization transit/relay restrictions,
and several political concerns make such a large scale intel-
ligent, self-configuring, overlay network deployment essen-
tially a non starter! Hence the ideas presented in this paper
will be applicable mostly in any large network deployment
where all participating nodes belong to the same organiza-
tion.

The main contribution of this paper is a network design
model that mimics the human brain with major focus on
adaptability and reliability. We first document some neural
observations discovered in the past decade by neuroscien-
tists, and compare those to some of the already known and
frequently used principles in communications and networks
research. Then we argue for the feasibility of using such a
model for future network designs and propose what could be
construed as a skeletal model for complex network designs.



Figure 1: The human brain

Figure 2: The limbic system

We call it ‘GRAY NETWORKING’ model. The reference
‘gray’ is inspired by the ‘gray matter’ which is a major com-
ponent of our central nervous system1 and consists of neu-
rons, dendrites, and axons. This model will undoubtedly
undergo several revisions in future as and when we know
more about our brain. This paper represents the start of
this process.

2. THE HUMAN BRAIN
In the past decade, studies conducted on numerous epilep-

tic and stroke patients have uncovered functional and struc-
tural components of the human brain previously unknown.
Research conducted in areas like phantom limbs, mind-body
therapy, functional and sensory mapping, e.g., have helped
us answer some of the fundamental questions about our
brain. Figure (1) shows the typical walnut-like shape of the
human brain. It shows the two halves separated by a thin
membrane (corpus callosum) that often acts as a filtering
mechanism for neural signals transmitted between the two
halves. Each half typically controls the action of the op-
posite half of the human body. The sensory receptors from
various body parts are received and processed by somatosen-
sory system of the brain. Using functional MRI tests (fMRI),
scientists have been able to map the various sections of the
brain that correspond to sensations produced by different
body parts. Figure (2) shows the human limbic system2.

1Gray matter: http://en.wikipedia.org/wiki/Grey matter
2
source: http://www.alinenewton.com/neuroscience.htm

Figure 3: The somatosensory map

The limbic system forms the inner structure of brain’s cor-
tex. It takes part in several higher level functions, including
forming of memory, emotions, sense of smell, etc. Figure (3)
shows the brain’s somatosensory map3. The relative signif-
icance of each organ determined by the size of the area of
the mapping corresponding to it, is generally shown using
‘to scale’ drawing of that body part, in a human-like figure
referred as homonculus (little man). This is also shown in
the figure.

The above paragraph gives a sketch of some of the major
components of human brain. In the next section we asso-
ciate some well known computing principles with the way
our brain is believed to work. Building on this, we then
propose an initial model of network design that generally
mirrors our brain.

3. COMPUTING PRINCIPLES ANALOGY
The way different components of our brain coordinate in

order to analyze external stimuli provides a deep insight into
principles that govern such behavior. As we expect, most of
these principles are in line with what research communities
have already proposed for efficient computing across several
disciplines. So the next question that arises naturally is,
“Can we tap these insights into designing a more efficient
and intelligent systems?” In this section we present some
of the recent findings on brain behavior by neuroscientists.
We correlate these findings with some well-known and widely
used engineering principles.

3.1 Observed characteristics
In his book [10], V. S. Ramachandran presents several

case studies involving stroke patients. Based on his own
observations and those of several other colleagues, he ex-
plains several abnormal behavioral patterns seen in these
case studies. His own research dealing with medical condi-
tion in amputees, where they experience pain in their ampu-
tated limb, termed “phantom” limbs has uncovered several
interesting facts on how our brain functions.

One very interesting observation is that every person is
born with a blind spot in each eye. This phenomena is in
fact very easy to observe4. Even though our both eyes have
blind spots in their view area, we do not see a weird black
hole when we see. The reason for this is that blind-spots for
the left and right eyes do not overlap, enabling our brain to
fill the missing details with sensory input from the other eye.
This is very similar to ‘redundancy ’ principle. In fact in

3
source: colorado.edu/intphys/Class/IPHY3730/image/figure5-7.jpg

4
http://www.blindspottest.com/



this case our brain exhibits complementary redundancy.
When we do the test for blind spots with one eye closed, we
still don’t see the blind spot region as a void, as the brain
fills in the missing details based on the sensory data of the
surrounding area. This shows probability based analysis
by our brain. Our brain fills in the missing data using what
seems to be the most likely to be present in our blind spot
using visual data of area surrounding our blind spots.

‘Compartmentalization ’ is another well known feature
of our brain. Scientists now generally agree that different re-
gions of our brain are responsible to different actions. Left
and right hemispheres in our brain perform different and
highly specialized functions. They are connected by a very
thin conductive membrane (corpus callosum) that acts as a
sieve for signals crossing from one hemisphere to another.
Stray signals that are not expected by the other hemisphere
or impulses that may be harmful are filtered out. This ex-
hibits the selective filtration ability of our brain. In fact
it can also use selective fusion of different data channels
to achieve some desired goal. We will see more about this
later.

Another important behavior that became apparent while
studying“phantom” limbs patients was the existence of both
feed-back as well as feed-forward control loops in our brain.
Our brain sends commands to multiple locations; one set
of commands is sent to the body parts for which the in-
tended action impulse is meant, and another set is sent to a
monitoring area in the brain. The monitoring region takes
appropriate actions if the actuators (or our body parts) de-
viate from the intended action.

Feed-back and feed-forward path can also be thought as
bottom-up or top-down action pathways. The feed-back and
feed-forward paths play a very important role and often
these act as supplementary information pathways as well.
For instance, if there are some missing data for brain to act
upon, it tries to fill the void by using long term data that
comes from the higher functional centers of our brain. Pri-
ority is always given to the bottom-up data channel over
the top-down data channel, as these data are the real-time
data sent up by the sensory mechanisms of our body. The
absence of a feed-back path in patients with stroke related
damage to the visual cortex of their brain resulted in hal-
lucinations in these patients. In a normal person, the feed-
forward data are generally vetoed by the feed-back sensory
impulse data, which keeps the hallucinations in check. This
shows that our brain uses a complex multi-level feedback
architecture. In fact one can argue that our brain employs
combination of feedback paths along with selective filtration
to perform many of its tasks.

Studies on memory formation have revealed several inter-
esting facts. Short term memory and its transition to long
term stored memory has been used for many years now in
AI and machine learning research. How exactly a memory
is formed is still unknown, but scientists now know that we
have different types of memory. There is a suggestion of
division of memory depending on tasks, e.g., existence of vi-
sual memory and linguistic memory, episodic memory and
semantic memory, and several others5. All these prelimi-
nary research data suggest existence of a complex, multi-
level memory structure.

Vision researchers have found that brain does visual pro-

5Memory: http://en.wikipedia.org/wiki/Memory

cessing in a highly optimized fashion. More processing is
done for vision regions that contain non-uniform, unstruc-
tured details than on regions that have regular features. For
instance, the brain gives more processing attention to visual
impulses that correspond to edges of a table than the top
smooth surface of the same table. A likely reason for this is
that the table top surface most likely will have smooth and
gradual changes to color and texture. This is corresponds
to data entropy where uniform data have low information
content whereas nonuniform data have more information.

Looking at these preceding observations, we see that our
brain employs several optimized methodologies in its func-
tioning. Given that our brain is one of the most complex
organs known to biology, it would only be appropriate to em-
ploy the known operational knowledge of our brain in design
of next generation smart, self-managing computer networks.

4. GRAY-NETWORKING MODEL
We propose general design guidelines that follow the ma-

jor structural and functional observations made on the hu-
man brain. We refer to this guideline as the Gray Net-
working Model. This model will be updated as and when
new facts are known about human brain.

Any computing design model can be claimed to fall under
‘Gray-Networking’ model if it incorporates majority of these
listed features:

• incorporates functional compartmentalization using clearly
defined functional components

• filters inter-component/inter-module communication us-
ing customizable filters

• incorporates a separate learning module and associ-
ated logic

• allows for criteria-based graduation of learned facts
into long term stable memory

• incorporates multiple and multilevel feedback / correc-
tive / control loops in design

• uses multiple sensors to gauge real-time network con-
ditions and other system parameters

• intelligently fills in missing data (see: top-down data
path) to achieve some task (policy based)

• deploys ample redundancy to allow for partial failures
and subsequent recovery (network plasticity)

In a human body, the brain along with the nervous system
is primary controller organ and therefore nature through the
course of evolution has provided for its protection (example:
hard skull). Similarly, the vital components in our design
must be protected from external as well as internal threats
to the system. Furthermore, we believe it is very impor-
tant that we incorporate human-in-the-loop in our design.
There is always the possibility that in course of time a self-
managing network may get stuck in some bad configuration.
Our ability to reset the system and gain control will be very
helpful and needed in such a scenario.

Thus these additional features should also be incorporated
irrespective of the original design goal:

• security provisions against both external and internal
threats



• mechanisms in place to keep a human in the loop

These are some of the major high level design features
associated with ‘Gray-Networking.’ We later give a hypo-
thetical high level design of a plausible network using the
above guidelines and present arguments in favor of the pro-
posed design. The following subsections attempt to throw
more light on some of the above mentioned guidelines.

4.1 Communication Filters
The motivation behind this feature is the brain’s central

membrane that partitions left and the right hemisphere and
acts as a filter between the impulses being exchanged be-
tween these hemispheres. Rogue and dangerous impulses are
often filtered out here. Similarly, in the ‘Gray-Networking’
model, each module should have an incoming message fil-
ter that first tries to filter out unnecessary or potentially
detrimental messages arriving from external modules. Ide-
ally, this is done in conjunction with feedback and fusion
handling.

4.2 Learning Module
Event postprocessing coupled with vital network param-

eters at the time of the event occurrence can lead to sig-
nificant knowledge generation that the network can use to
adapt more effectively in future. Hence use of a dedicated
knowledge generation and learning module is a major fea-
ture of this model. This learned behavior may be stored in a
short term memory, or may transition to a long term mem-
ory for future use depending on graduation criteria set up
during the design phase (which themselves may be subject to
adaptation). The learning subsystem may be centralized or
distributed depending on the design goals. The existence of
a top-down data path generally necessitates the use of a long
term memory module. The content of the long term mem-
ory may be populated using either a learning algorithm or
guided by organizational long term goals, or a combination
of both. In [6] the authors present a scheme for long-term
memory, mental models with respect to situation awareness
that could be used as a guideline to develop a memory sub-
system under GRAY NETWORKING model.

4.3 Ability to gauge Network Conditions
In order to minimize system administration burdens, next

generation computer networks have to be smart, self-healing,
and self-managing with auto configurability features built
in, leaving system administrators to do higher level anal-
ysis and design per organizational computing goals. Since
network operating conditions may change dramatically at
short notice, one of the requirements of this model is to
incorporate the use of sensors to determine real-time net-
work conditions. This will allow the network components
to readjust their working parameters in order to satisfy the
higher level organizational goals and services guarantees it
is designed to deliver. Sensors are also necessary for self
generation of event driven knowledge as mentioned in the
previous subsection.

A sensor node could be any typical network node con-
figured to perform specific measurements on some network
data. A sensor node (host) could perform traffic sensing
by performing packet inspection and report the measure-
ments periodically to some other node (part of higher control
plane). Another example of a sensor node could be taken
from honeypot [9] research. A node could be setup as a

honeypot node to attract malicious attacks to itself, thereby
sensing the state of mal-activity in the network. In a criti-
cal network one would need to use multilevel and possibly a
hierarchical sensor organization to achieve the desired goals.

4.4 Top-Down Vs Bottom Up Data-Path
Our brain has the capability to fill in missing impulse data

using data from higher cognition centers. Information flows
both bottom-up from actual sensors such as nerve endings,
eyes, ears to the brain, as well as top-down from higher pro-
cessing centers in the brain to muscles and other body parts.
Both these information channels aid each other in construc-
tion a consistent and complete picture of the external and
internal environments.

The same principle can be incorporated in next generation
network design. The capability to fill in missing information
chunks from statistical data stored in long term storage to
complete some critical task in the face of partial corruption
or an incomplete service request can prove a very powerful
tool in improving the end user perceived quality of service.
On the other hand, this feature could prove to be an Achilles
heel where strong security is desired. A fine balance between
usability and security then becomes a matter of correctly
defining the system policies. One important observation to
make here is the fact that if there ever arises a situation
where there are competing data values from both bottom-up
channel and top-down channel, the bottom-up data vetoes
the top down channel value, since the bottom-up data value
represents the actual value whereas the top down value is
statistical data from several past observations.

4.5 Network Plasticity
Neuro-plasticity [8] in our brain is well documented. Even

though the tasks of two hemispheres are now generally known,
it has been observed that in some scenarios, our brain, with
proper training can adapt and rewire itself in the face of
tissue damages. In such cases it has been observed that the
neural impulses that were processed by say the left hemi-
sphere before brain cell damage were later processed by re-
gions in the right hemisphere after training. In a recent
study [2] scientists have found evidence of brain rewiring in
test subjects that led to congenitally blind patients being
able to see. These studies suggest that the human brain’s
functional compartmentalization is not static but plastic in
nature, and our brain has the capability to rewire itself.

This concept of plasticity can be used in designing critical
service networks. With ample redundancy and smart logic
built into the network, we can design the next generation
critical networks to be able to survive infrastructure out-
ages, that is, self-heal by re-routing and re-orienting, i.e.,
reconfiguring its services via alternate paths.

We would like to disambiguate the plasticity behavior
from internet path rerouting in the face of link failures.
Although network link rerouting is indeed a valid form of
plasticity, from a neural viewpoint it could be viewed as an
alternate path for neural impulses using a different sets of
neurons, hence such plasticity is at a much lower level. Here
we are referring to migration of services and responsibili-
ties from a failed component (node) to another node. This
could be achieved using solicitations by a higher layer node
from participating nodes or even active recruiting. An ex-
ample could be a failed sensor node which may trigger the
monitor (in the higher plane) to recruit some other nodes in



the overlay network to take on the task of the failed sensor.
This could be achieved if a network design has provisions
for ample redundancy and has associated logic to perform
reconfiguration.

Benefits and Issues
Now that we have explained our model in some detail, we
will demonstrate its usefulness by modeling a real network
task based on ‘Gray Networking’ model. As will become
clear from the example architecture below, several of cur-
rent network tasks that are challenging to implement, can
be designed and implemented based on the proposed model.
But before that, let us look into possible benefits and draw-
backs of our proposal.

Possible Benefits
A main aim of this model is to reduce the network man-
agement burden. This could be achieved by incorporating
intelligence into the network. Furthermore exploiting adap-
tiveness of a network to achieve high degree of robustness
becomes possible. A network that is self healing and self
configuring can handle minor failures on its own, thereby
improving system availability. Our model also introduces
the notion of combining reconfiguration and redundancy,
and introduces the idea of coupling feedback and filtration.
Ultimately, the hope is that this model could be seen as
presenting a new paradigm in network design.

Possible Drawbacks
Since we are proposing a design guidelines based on a struc-
ture (our brain) that itself is not fully understood, the design
guidelines will undergo several revisions as we gain new un-
derstanding of our brain. From the design phase itself, one
must take care to address threats to the critical components.
One must take both external and internal threats into con-
sideration. A critical component if compromised could lead
to widespread service disruptions.

5. AN EXAMPLE NETWORK DESIGN
Figure (4) shows a simple organizational network incor-

porating our model guidelines. The example design is in no
way exhaustive, but it shows how using the model we pro-
posed above, one can quickly and with ease come up with
a design scenario for an intelligent network. The objective
of such a design is to demonstrate how using some of the
ideas mentioned in this paper, one can proceed to design a
smart network. The example network shows various high
level components that one may want to install.

The network schematic shows several nodes labeled ‘TA’
and ‘HP’. These nodes form a part of the sensor nodes or-
ganization. Nodes labeled ‘TA’ are traffic analyzers. They
perform packet inspection and may also report the network
load in their own neighborhood. The nodes labeled ‘HP’ are
honeypot [9] elements. These nodes form a part of the hon-
eypot network whose primary role is to analyze the threat
level to the organizational network. The traffic analyzers
report periodically to the ‘Resource Manager’ and the ‘HP’
nodes report to the ‘Intrusion Detection’ subsystem. An
autonomous self-tuning intrusion detection system [11] can
be used. The ‘Resource Manager’ and the ‘Intrusion Detec-
tion’ subsystem, both report to the ‘Configuration Genera-
tor’. ‘Configuration Generator’ has access to the list that

has entries on all the network components installed along
with their capabilities. It uses these data to generate each
component’s configuration parameters in such a manner so
as to achieve the larger organizational goals.

Sensor nodes report their own working status to ‘Compo-
nent Status’ monitor. In case a critical node fails, the ‘Task
Reassigner’ may delegate the responsibilities to some other
node in the network. It may float a volunteering request
among the online nodes or it may draft some nodes to per-
form the tasks of the failed nodes. This behavior demon-
strates how reconfiguration management and redundancy
could be coupled. Ample redundancy will generally make
the task of reconfiguration manager easier. The task binary
store could house several different types of functionality en-
ablers (binary codes, maybe) and depending on nodes being
recruited by task-reassigner, it may securely deliver the en-
abler module to volunteering nodes in the network.

The nodes then have to be designed in such a way that
they are capable of handling multiple and varied tasks as-
signed to them. This can be achieved if the application
stack is designed to allow a module to be replaced on the
fly. These binary chunks from task store then would get
stacked in the application layer of the destination node and
depending on the type of code or parameters installed on
them, their behavior could be changed in real time. This
demonstrates smart reconfiguration in the face of failures.

Another component shown is the ‘Authentication Subsys-
tem’. It may authenticate user login requests for the entire
session, or it can also be configured to authenticate them on
a per access request. It monitors the type of requests against
each user and reports this fact to the ‘User Access History’
manager. The memory management logic may then decide
whether to keep the information in the working memory or
transition it to the long term storage. Long term user ac-
cess history may also be linked to the ‘Intrusion Detection
Subsystem’ (IDS), which could allow it to function more ef-
ficiently. This also would then form a feedback path into the
IDS subsystem, and along with the feedback provided by the
sensor organization mentioned earlier would form a multi-
level feedback sub-system. The IDS subsystem would have
its own data filters tuned to sieve relevant data chunk from
multiple feedback loops. This demonstrates how feedbacks
and smart filtration could be coupled. Having this coupling
would simplify the design of sensor nodes. Sensors could be
designed to provide a wide array of data which would be
filtered by different network modules differently depending
on the needs and tasks performed by such modules.

The general ‘network state’ statistics over a period of time
could be stored in a long term memory subsystem. Let us
assume that periodically our ‘intelligent’ network accesses
the configuration parameters of all active components. And
depending on the ‘traffic analysis’ report and network ‘intru-
sion’ threat, it may realign the components’ configuration.
But say for some reason the most recent ‘traffic analysis’
report has not been generated, maybe due to ‘TA’ system
failures. In that scenario the missing data (i.e. the ‘traffic
analysis’ report) could be substituted using the statistical
traffic analysis data stored in the long term memory. In
fact, long term memory becomes necessary if a feed-forward
data path is incorporated in the network design.

The above high level sample network design incorporates
many features from our proposal. It demonstrates ‘plas-
ticity’, uses short term and long term ‘memory manage-



Figure 4: A sample network design

ment,’ has clear functional compartmentalization, uses feed-
back and feed-forward data loops, and makes use of sensors
to assess the network state. Each subsystem we referred to
in our example could itself be designed (recursively) on the
proposed model.

6. CONCLUSIONS
In this paper we have proposed a bio-inspired network

design model which is based largely on macro-functional in-
sights into a human brain. Hopefully using the guidelines
provided in this paper one can at least get a general sense of a
direction to think before designing the self-configuring, self-
healing, smart networks of tomorrow. This paper is a small
step in this direction. We will continue to update our model
as we gather more insights into the human brain. We also
presented an example network design demonstrating some
of the guidelines proposed in this paper.

7. FUTURE RESEARCH DIRECTION
This paper represents a first step toward gray networking

at best. We are working hard towards finalizing a validation
model and formalizing design objectives. Each component
of the gray networking model will require further research.

We believe the next several years will be very exciting and
will see influx of many innovative ideas into gray computing
and nature-inspired networking in general.
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