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Abstract—In this paper we analyze multiple wireless LAN
(WLAN) traces from university and corporate campuses. In par-
ticular, we consider an important event between mobile nodes in
wireless networks – encounters. We seek to understand encounter
patterns in the mobile network from a holistic view by a graph
analysis approach. Such an analysis sheds light on the diverse, non-
homogeneous nature of users in the given environments in terms of
their encounter events with other nodes. Furthermore, we evaluate
the feasibility of forming an infrastructure-less network to reach
most of the nodes utilizing time-varying inter-node connectivity
through encounters, and the robustness of such an ad hoc com-
munication network.

Our analysis shows that while the encounter events are “sparse”
(i.e., any given node does not encounter with many other nodes),
the connectivity of the whole network is well-maintained, and a
Small World pattern of nodal encounter emerges for the observation
periods longer than one day. More interestingly, the encounter events
collectively form a robust communication network, in which store-
carry-forward message dissemination can be mostly successful with
at least 20% of non-cooperative nodes or removal of short-lived (up
to minutes) encounter events.

I. INTRODUCTION

In recent years, due to the rapid increase in popularity of
wireless network devices, there has been a pressing need to
understand how these devices are used in realistic settings. Such
investigations would help both the network administrators and the
protocol or service designers to plan, design, and implement fu-
ture mobile networks with the awareness of actual user behaviors
and adequate solutions. To address this need, many researchers
have collected detailed wireless network traces with different
natures (e.g., those available at [36], [35]), with a majority of them
being collected from the currently dominant wireless network
technology: 802.11 wireless LANs (WLANs).

Most empirical analysis of wireless LAN (WLAN) users
focuses on understanding users as individuals to unravel their
behavioral patterns [3], [4], [2], [23], classify users [5], [31], or
propose realistic mobility or traffic models [10], [11], [26]. The
understanding of individual behavior is important in itself, but
it does not reveal how the mobile nodes (MNs) in the WLAN
could potentially interact with one another based on their realistic
activities. In this paper, we seek an understanding beyond the
level of individual users, and look into a simple yet important
interaction event among MNs: encounters, defined as the event
when two MNs move into the radio range and they are able to
communicate with each other directly if the users choose to do
so. Encounters are important events in wireless networks as they
provide chances for MNs to directly communicate, even without
an infrastructure. By studying the encounters between MNs in

realistic settings, we develop an understanding of the properties
of potential infrastructure-less networks in such environments.
We analyze month-long WLAN traces from five university and
corporate campuses, and compare our observations to distill and
explain the commonalities and differences observed.

The goal of the research is to extend the WLAN trace-based
analysis beyond the understanding of individual user behaviors,
and seek to form a new line of analysis from inter-user re-
lationship and network structure points of view. Specifically,
this research attempts to empirically investigate and answer the
following questions: (1) Given the current usage pattern of WLAN
users, how do we characterize the opportunities of direct inter-user
encounter patterns? Based on these encounter events, do we have
sufficient opportunities to link the whole user population into one
connected community? (2) How can we interpret the underlying
reason of, if any, common patterns of the encounters across
multiple data sets? (3) Based on encounter relationships between
different user pairs, can we classify users and evaluate how such
relationships affect the network-wide connectivity? and finally (4)
How robust is potential encounter-based communication (when
information is spread using mutual encounters between mobile
nodes only) based on current encounter patterns?

We first aim to quantify the distribution of encounter events for
a mobile node. From all the traces we studied, we find that the
distribution of encounter events is highly asymmetric, indicating
a heterogeneous user population. Surprisingly, on average, we
find that a given user only encounters between 1.33% and
6.7% of the whole user population within a month. The total
number of encounter events for each MN follows the BiPareto
distribution and spans across several orders of magnitude. These
findings suggest that the behavior of MNs is not i.i.d., which
is commonly assumed in many research work. Secondly, we
utilize a graph analysis approach to understand the network
pattern formed by encounter events among MNs. We utilize the
Small World model [7] to understand the characteristics of the
encounter-relationship graphs (ER graphs), in which two nodes
are connected by a link if they ever encounter. We find that
although direct encounters of individual nodes happen only to a
small portion of node pairs among the whole population, WLAN
users form connected Small World graphs via encounters, and the
metrics of these resulting Small World graphs (i.e., disconnected
ratio, clustering coefficient, and path length) converge surprisingly
quickly in about one day to its long-term steady values in most
cases.

We look further into the asymmetry of inter-user relationships
by quantifying the closeness (i.e., potential friendship) between
node pairs with several metrics (e.g., based on time duration,
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frequency, etc. of a given user pair spends together). These friend-
ship indexes capture the observed closeness between the involved
MNs from the trace. The empirical distributions of the friendship
indexes mostly follow the exponential distribution, with few node
pairs showing strong relationships. Furthermore, we investigate
the issue of how friendship influence the network connectivity
(i.e., the graph properties of the encounter-relationship (ER)
graphs). Our finding points out that, similar to social relationship
networks [12], close friends in WLANs often form cliques and
not-so-close friends are keys to widely-reached connectivity in a
network.

Finally, we propose information diffusion experiments to un-
derstand how messages could be spread among users without the
help of an infrastructure. We use a simple message spreading
strategy (i.e., the epidemic routing [15]) to investigate whether it
is possible to rely on mutual encounters to spread messages across
the network. Surprisingly, given the seemingly very low ratio of
the whole population a given node encounters with, the encounter
events form a wide-reaching communication network, and the
messages spread to most nodes in the population successfully.
We further show that even with a relatively high percentage of
users being selfish (i.e., not participating in information prop-
agation), the information still spreads and reaches most of the
population, indicating the richness of the encounter patterns in
current WLAN users. Also, if encounters with short time duration
are not exploited, the performances of information diffusion do
not degrade significantly.

The remainder of the paper is organized as follows: We review
related work in section II, and introduce the WLAN data sets we
use with the basic definitions in III. We study the encounters
between MNs in section IV and introduce the Small World
approach to explain the encounter-relationship graph in section
V. Then we discuss the findings in our effort to capture potential
friendship between MNs in section VI. Finally, the information
diffusion experiment is explained in section VII. We discuss the
potential applications of our findings in section VIII and conclude
in section IX.

II. RELATED WORK

In this paper we utilize the WLAN traces available to the
research community (e.g., [39], [40], [38], [37], downloaded
from trace archives at [36] and [35]) collected from university
and corporate campuses with different characteristics. Former
studies on the traces focused mostly on analyzing the behavior of
individual users, such as obtaining individual usage statistics [3],
[4], quantifying user mobility related metrics [2], [23], classifying
users based on behavioral characteristics [5], [31], or proposing
mobility and traffic models for the users [10], [11], [26]. In this
work we take one step further to study the relationships between
users in the traces. We bring up new perspectives to study the
WLAN traces by looking into encounter distributions and utilizing
the Small World theory to describe the encounter relationship
graph. Small World graph model is proposed in [7] and widely
utilized to describe various networks in many areas, such as social
networks, Internet topology, and electrical power networks [8].

In [9] the author applied the concept of Small World to devise a
contact-based resource discovery scheme in wireless networks.

The understanding of inter-node relationships and encounter
patterns in mobile networks can be useful and sometimes es-
sential for classes of future mobile networking protocols. For
example, encounter histories are used to discover routes in ad
hoc network routing protocols (e.g. MAID [22], EASE [21]),
and nodal encounter events are used directly in delay tolerant
networks (DTNs [13]) to propagate packets. Bai et. al. find that,
under mobility models with homogeneous, i.i.d. nodal behaviors
(i.e., each node follows exactly the same model with some
randomness), eventually each node encounters with all other
nodes in the network (i.e., achieving 100% encounter ratio) [22].
However, the empirical observations from large WLAN traces
show very different characteristics, with most nodes encountering
only a very small portion of the whole population, during a time
frame as long as a month. This observation indicates that the user
populations in university and corporate campuses are actually not
homogeneous.

In recent years, message forwarding in sparse, frequently
disconnected mobile networks (generally known as delay tolerant
networks, DTNs) receives increasing attention from the research
community. Most of the previous work in this area focus on
designing packet forwarding heuristics [14], [15], [17], [16]. In
general, different degrees of knowledge of mobility pattern is
assumed [14], or a homogeneous mobility model is used [17].
As nodal encounter events directly provide the communication
opportunities in DTNs, an understanding of the nodal encounter
patterns from realistic environments is important for designing
DTN protocols. While designing a DTN routing protocol is not
our goal in this particular study, our work complements the above
studies from an empirical point of view, and investigates the issue
of whether the store-and-forward model is potentially feasible
under current usage pattern of wireless devices. Our findings, as
shown in section VII, are encouraging. In [29], the authors also
use derived encounter patterns from WLAN traces and develop a
routing strategy based on the frequent association pattern of MNs,
with the main focus on utilizing the encounter patterns. We, on the
contrary, focus more on the understanding of encounter patterns
itself.

There are also research works explicitly focused on collecting
encounter traces using small mobile devices [18], [28], [27] with
similar motivation as ours. We believe that the traces collected
from these small-scale experiments and the large-scale WLAN
traces complement each other and provide understanding of
communication opportunities in different settings. We will discuss
this point more in the next section when we introduce our data
sets.

Similar graph analysis of potential communication opportu-
nities has also been done based on student class schedules in
a university in [32]. We must note, however, that the class
registration information is an indirect indicator of the physical
locations of the students, and hence does not directly translate
into a graph of communication opportunities. In addition, the
class schedule does not capture the mobility patterns outside of
the classes. Using the traces for actual location information of
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the devices, by our discretion, seems to be a better information
source to understand the communication opportunities.

III. BACKGROUND

A. Wireless LAN Traces

In this study we mainly focus on WLAN traces collected from
university campuses and corporations. We obtain WLAN traces
from five different sources, including totally over 60,000 distinct
users and over 2,000 access points (APs) in the traces. To our
best knowledge this is the most extensive data set analyzed so
far. Among the traces, the USC and UF traces are collected
specifically for the purpose of our study, while Dartmouth [38],
UCSD [40], and MIT [39] traces were collected by other research
groups.

These five WLAN traces are chosen to represent different
environments, user populations, location granularity, and trace-
collection methods. The traces were collected with different
methodologies, but we are able to derive the association his-
tory for each MN from all five traces. By association history,
we mean the timestamps of events related to changes of user
association, including a MN starts/ends association with an AP,
or re-associates (roams) to another AP. We derive the location of
a MN (i.e., the AP associated with) at any given time from these
events. In these traces, each mobile node (MN) is represented by
its unique MAC address. We assume that each MN is controlled
by a unique user in this paper, and we use the terms MN, node,
and user interchangeably.

In order to make the results we get below comparable between
traces, we only analyze selected one-month chunks from the
longer data sets. We summarize detailed information of these
traces in Table I. Note that, we have chosen to analyze one month
chunks from the traces only to keep the analysis manageable.
We have taken other months from the traces to validate that the
findings in the paper are not specific to the selected time frames.

Please note that the selection of data sets span across a quite
long time frame, from year 2002 to 2008. While most of the
traces were collected in an earlier stage of WLAN adoption, we
have added a recent data set from University of Florida1. The
importance of the Florida data set is in its recency and scale. The
addition of the data set validates that our findings are valid not
only in the early stage of WLAN introduction (around 2003 to
2005), but also after the technology has been widely accepted and
become ubiquitous. This data set is collected from UF campus
where most of the heavily populated area on campus has both
indoor and outdoor WLAN coverage, and using WLAN outdoor
is quite common – this justifies that the Small World encounter
pattern we discover are not due to the limitation of the technology
deployment (i.e., earlier WLAN deployments were more limited
to indoor “hot spots” and the Small World could arise due to
people clustering in these hot spots). The scale of the data set is
the largest in terms of both number of access points and users.

1We are also in the process of anonymizing the data set and preparing it for
public release on MobiLib [35].

B. Derived Encounter Events

In this paper, we focus on analyzing user encounter events
based on the WLAN traces. The encounter events between users
are derived based on their association history in the WLAN traces.
If two users associate with the same location (i.e., switch port
in the USC trace, access point (AP) for all other traces) for
overlapped time intervals, they are assumed to encounter (i.e.,
being able to communicate) with each other. The approximation
may be not completely accurate, as there can be nodes associated
with the same AP but unable to communicate directly, nodes
being able to communicate while associated with different APs,
or nodes encountering outside the coverage of any AP. However,
we believe that the encounter events derived from WLAN traces
capture the major portion of MNs within direct communication
range under current usage pattern.

Our approach of deriving encounter events from WLAN traces
complements the experimental approach used in [18], [28], [27].
Utilizing always-on, easy-to-carry devices such as iMOTES or
PDAs, in those works researchers are able to capture human
encounters with high accuracy. However, encounters in human
mobility do not always translate into encounters in computing
devices and hence communication opportunities, as the natural
usage patterns (such as devices turning on/off, preferred locations
to operate the devices, etc.) are not captured by these always-
on devices. The WLAN-trace-based analysis, on the other hand,
captures the usage pattern truthfully, but may miss encounters
out of the coverage region of access points. The two approaches
have strengths in different aspects and can be complementary. In
addition, deriving encounter events from WLAN traces has the
advantage of obtaining a much larger data size (e.g., thousands
of nodes) as compared to the experiment approach (e.g., tens
to hundreds of nodes) taken in [18], [28], [27]. The WLAN
traces have been collected for years in university campuses
or corporations and they provide opportunities to understand
encounter patterns across longer time period. We also believe that,
the derived encounter events from WLAN traces occur mainly
when users remain stationary and use their devices (as opposed
to passing by each other while walking). These encounter events
with longer durations are more useful for information exchange.
In addition, many users would either turn off their devices or put
them into sleep mode while moving (and not actively using the
devices). In this aspect the derived encounter traces are suitable
for investigation of information diffusion performances under
realistic usage pattern.

IV. ENCOUNTERS BETWEEN NODES

The distribution of the encounter events is the first step to
understand the structure of inter-MN relationship in the traces.
The direct questions to ask about the encounter events are: How
many other MNs does a user meet? Do nodes meet with each
other repeatedly or not? To answer these questions, we show in
Fig. 1 the complementary CDF (CCDF) of the fraction of other
MNs a given MN has encountered through the whole trace period
(i.e., one month). From the figure we observe that all the nodes
in WLAN traces encounter only at most about 50% of the user
population within a month, with the UCSD trace being the only
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TABLE I
STATISTICS OF STUDIED TRACES

Trace Unique Unique Unique Trace User type Environment Analyzed part Users in Labels used
source users APs buildings duration in this paper analyzed part in graphs

MIT [39] 1,366 173 3 Jul. 20 ’02 to Generic 3 Engineer Whole trace 1,366 MITAug. 17 ’02 buildings

Dartmouth [38] 10,296 623 188 Apr. ’01 to Generic University Jul. 2003 2,518 Dart-03
Jun. ’04 campus Apr. 2004 5,582 Dart-04

UCSD [40] 275 518 N/A Sep. 22 ’02 to PDA only University Sep. 22 ’02 to 275 UCSDDec. 8 ’02 campus Oct. 21 ’02

USC [37] 4,548 79 73 Dec 03-Now (trap) Generic University Apr. 20, ’05 to 4,528 USCports Apr 20 05-Now (detail) campus May. 19 ’05

UF 44,751 728 N/A August 2007 to Generic University Jan. 14, ’08 to 32,695 UFNow campus Feb. 13, ’08
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Fig. 1. CCDF of unique encounter fraction.

exception. This may be partly due to the fact that the 275 PDA
users in the UCSD trace were all selected from the freshman
class, and they tend to stay in several common dorms [3] (in
other words, the MNs in this trace are selected from a correlated
sub-group of the whole population on campus). In all other traces,
on average a MN encounters with only 1.33% (UF) to 6.70%
(Dart-04) of the whole user population within the 30-day trace
period. The small average encounter ratio is a combined result of
several reasons: (1) most MNs are not always on, and (2) most
MNs do not visit many locations [23], hence they can only meet
with those who also visit this small set of locations.

Low encounter percentage as shown in the traces is not
observed in typical simulation scenarios used for performance
evaluation in the literature. In typical synthetic mobility scenar-
ios [6], all nodes follow the same model to make i.i.d. movement
decisions, and eventually encounter with all other nodes [22].
The encounter pattern from real wireless network traces reflects
that university campus is a heterogeneous environment rather
than a homogeneous one constructed by the synthetic models
with statistically i.i.d. nodes. To better understand how protocols
perform in such heterogeneous environments, using homogeneous
synthetic models is not sufficient. This finding adds to the
motivation of using a flexible mobility model, such as the TVC
model [10], which is capable of describing nodes with diverse,
heterogeneous behavior for future protocol evaluations.

We also show the CCDF of the total encounter events a MN
has throughout the trace period in Fig. 2. We observe the total
encounter counts for MNs in each trace span across several
orders of magnitude. There are both MNs with extremely few
or many encounters. This is another evidence of heterogeneous
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Fig. 2. CCDF of total encounter count.

behavior among MNs. The actual number of total encounters
depends on the environment and population size in the traces.
However, regardless of the environment, the curves for the total
encounter count derived from WLAN traces seem to follow
the BiPareto distribution. We fit the BiPareto distribution curves
to the empirical distribution curves, and use the Kolmogorov-
Smirnov test [19] to examine the quality of fit. The resulting
D-statistics for all traces are between 0.068 and 0.025, which
indicates we have a reasonably good fit between the BiPareto
distribution curves and the empirical distribution curves. Details
of the Kolmogorov-Smirnov test and the parameters of the fitted
BiPareto distribution curves are listed in Appendix A.

A closer investigation of the relationship between the unique
encounter count and the total encounter count of the same MN
reveals that high unique encounter count does not always imply
high total encounter count. The correlation coefficients between
the unique encounter count and the total encounter count for
various traces range from 0.732 to 0.195. Except for the UCSD
trace, all other traces have correlation coefficients below 0.6. In
particular, we observe that some nodes have not many unique
encounter counts, but high total encounter counts. This indicates
that some node pairs may have a lot of repetitive encounters,
suggesting their closer relationship than other pairs. This point
warrants further study, and we will show some initial attempts on
quantifying the potential friendship between MNs in section VI.

V. ENCOUNTER-RELATIONSHIP GRAPH

In section IV, we see that MNs have low percentage of unique
encounters among the whole population. Given this fact, we
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raise a question regarding the possibility of establishing campus-
wide communication among the majority of MNs via encounters
alone. That is, do encounter events link MNs on the campus into
one single community, or just many small cliques?

To investigate this question, we define a static encounter-
relationship graph (ER graph) as follows: Each MN is represented
by a node in the ER graph, and an edge is added between
two nodes if the two corresponding MNs have encountered at
least once during the studied trace period. By the construction
of the ER graph, we collect all encounter events between MNs
within a time period and collapse them on a static graph. The
exact timing of encounters are ignored, and we focus on the
structure of interconnections built between nodes by available
encounter events during that period of time. The concept of ER
graph is introduced to capture the potential of establishing a
connected network among MNs based on direct encounters alone,
and understand the structure of such a network.

We use three important metrics to describe the characteristics
of the encounter-relationship graphs, defined as follows:
• The clustering coefficient (CC) is used to describe the

tendency of nodes to form cliques in a graph. It is formally
defined as [8]:

CC =
∑M

n=1 CC(n)
M

, (1)

where

CC(n) =

∑
a,b∈N(n) I(a ∈ N(b))

|N(n)| · (|N(n)| − 1)
. (2)

N(n) is the set of neighbors of node n in the ER graph and
|N(n)| is its cardinality. I(·) is the indicator function. M is
the total number of nodes in the graph.
Intuitively, the clustering coefficient is the average ratio of
neighbors of a given node that are also neighbors of one
another. Higher CC indicates higher tendency that neighbors
of a given node are also neighbors to each other, or heavy
“cliquishness” in the relationship between MNs formed
through encounters.

• The disconnected ratio (DR) is used to describe the
connectivity of the ER graph. It is defined as:

DR =
∑M

a=1(M − |C(a)|)
M(M − 1)

, (3)

where C(a) is the set of nodes that are in the same
connected sub-graph with node a. DR indicates, on average,
the percentage of unreachable node starting from a given
node in the graph.

• The average path length (PL) is used to describe the degree
of separation of nodes in the ER graph. It is defined as:

PL = (1−DR) · PLcon + DR · PLdisc, (4)

where PLcon is the average path length among the connected
part of the ER graph, defined as:

PLcon =

∑M
a=1

∑
b∈C(a) PL(a, b)

∑M
a=1 |C(a)|

. (5)
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Fig. 3. Change in the ER graph metrics with respect to trace period.

PL(a, b) is the hop count of the shortest path between node
pair (a, b) in the ER graph2. PLdisc is the penalty on the
average path length for disconnected node pairs in the ER
graph. In the following we use the average path length of
the regular graphs (defined later) with the same node number
and average node degree for PLdisc.

Taking the USC trace, the Dartmouth trace (Dart-04), and the
UCSD trace as examples, we show the evolution of the three
metrics with respect to various studied trace periods in Fig. 3.
The graphs for other traces show very similar trends, and we
leave them in Appendix B. From Fig. 3 (a) we note that given
sufficient long trace durations, the ER graphs have low DR (not
larger than 10% for traces longer than one day in most cases),
which implies that nodal encounters are sufficient to provide
opportunities to connect almost all nodes, even though each
node encounters only a small subset of MNs directly. This is
an encouraging result that points out the feasibility of building
a large, widely-reach network relying only on direct encounters.
Although the DR starts out very high with very short trace periods
(i.e., for trace durations under one day) since MNs have not
moved around to create encounters yet, it decreases rather quickly
as the trace period increases. Within one day, the disconnected
ratios reduce to around 10%. Although the numbers of MNs in
the ER graph keep increasing as we look at longer trace periods,
in most cases the DR does not change significantly after one day.

Another interesting finding is revealed by the other two graph
metrics, the clustering coefficient (CC) and the average path
length (PL). To highlight a unique property of these ER graphs,

2Note this path is not the same as the shortest spatial path between node pair
(a, b), which may not even exist.
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TABLE II
EQUATIONS FOR THE CC AND PL FOR THE REGULAR AND RANDOM GRAPHS

WITH M NODES AND AVERAGE NODE DEGREE d [7], [8].

Graph type Clustering coefficient Average path length
Regular graph 3(d− 2)/4(d− 1) M/2d
Random graph d/M log(d)/log(M)

we also calculate the CC and the PL for regular graphs and
random graphs with the same corresponding total node number
M and average node degree d. These quantities can be calculated
according to equations in Table II. In the regular graphs, nodes are
first arranged on a circle and each node is connected to d closest
neighbors on the circle. In the random graphs, d randomly chosen
nodes are assigned as neighbors for each node. Typically, regular
graphs have high CC and PL while random graphs have low CC
and PL. They are the two extreme cases on the spectrum. In Fig.
3 (b), we show the normalized CC’s and PL’s of the ER graphs
for various trace periods. These normalized metrics represent,
on the scale from 0 (corresponding to the random graph) to 1
(corresponding to the regular graph), where the metrics of the
ER graphs fall. They are defined as:

CCnorm =
CC − CCrand

CCreg − CCrand
, (6)

PLnorm =
PL− PLrand

PLreg − PLrand
, (7)

where CCnorm and PLnorm represent the normalized CC and
PL, respectively. The subscripts reg and rand imply that the
corresponding metric is obtained from the regular graph and the
random graph, respectively, with the same total node number and
average node degree.

We observe that ER graphs display high normalized CC’s
which are close to those of the corresponding regular graphs (i.e.,
normalized CC’s being close to 1, and in some cases even higher
than 1), and low normalized PL’s which are close to those of the
corresponding random graphs. This highlights a special pattern
of encounters in all WLAN traces: Nodes visiting similar sets of
APs are highly likely to encounter with all others and introduce
highly connected clusters among these nodes, leading to high
CC. This phenomenon is especially obvious for very short traces,
since most MNs do not change its association to the APs to create
many encounters. The ER graphs for short trace periods feature
many small disconnected cliques, each of them being a full-mesh
formed by MNs associated with the same AP for that trace period.
As we look at longer traces, some of the nodes in one cluster also
have random encounters with nodes in other clusters, and these
links serve as the “shortcuts” in the ER graphs that reduce the
PL. In the literature, graphs with high CC close to the regular
graphs and low PL close to the random graphs are referred to
as the Small World graphs [7], [8]. By looking at various traces,
we indicate that the ER graphs formed by encounters among
the mobile nodes appear to be Small World graphs. We also
observe that both PL and CC converges to its final values
rather quickly in about one day for most traces, although
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Fig. 4. Illustration of the association matrix to describe a given user’s location
visiting preference.

the size of ER graphs keeps increasing as more nodes appear in
longer traces.

To further unravel the reasons of the emergence of Small World
ER graphs, we follow up on the intuition briefly introduced in
the last paragraph. We correlate the notion of similarity metric of
nodal association pattern introduced in [5] and the Small World
graphs to validate this intuition.

In this similarity metric, we compare the eigen-behavior vec-
tors [5] of mobile nodes using the following formula:

Sim(UserA, UserB) =

rank(A)∑
i=1

rank(B)∑
j=1

waiwbj |ai · bj |, (8)

where vectors ai’s and bj’s are the eigen-behavior vectors;
wai and wbj are the corresponding weights. This is essentially
the weighted cosine similarity between the two sets of eigen-
behavior vectors. The eigen-behavior vectors are obtained by
collecting user mobility preferences into an association matrix,
as illustrated in Fig. 4. This association matrix lists in each row
the percentage of online time a user spends at various locations
each day, while each column in the matrix corresponds to a given
location in the trace. The eigen-behavior vectors and its weights
are obtained by applying singular value decomposition to the
association matrix, and they serve as summaries of the major
mobility trends of a given user. Essentially, this similarity metric
compares how similar two users are in terms of their long-run
mobility trend. We have demonstrated that this similarity metric
can be used to classify users effectively into groups with similar
mobility trends [5]. Here, we focus on the relationship between
this similarity metric and the Small World encounter pattern we
discovered.

We devise the following experiment to understand the effect
of mutual similarities between users’ mobility on the global
encounter patterns. Using USC trace as an example, we categorize
all user pairs into four zones, as illustrated in Fig. 5. Zone A
consists of user pairs who are highly similar (with the similarity
metric above 0.8), and zone B, C, and D consist of user pairs
with less similarity in each zone. The boundaries between the
zones are so chosen that, when we consider an average user, it
has roughly similar number of encounters falling in each zone.

After designating user pairs into zones, we redraw the ER
graphs to include only links between two nodes in the graph if the
node pair belongs to a certain zone. This is an effort to evaluate
how links among similar or dissimilar users play its roles in the
resulting ER graphs. For ER graphs including links from various
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TABLE III
THE GRAPH PROPERTIES OF THE ER GRAPHS WITH SELECTED LINKS (ONLY LINKS FALLING INTO CERTAIN SIMILARITY CATEGORIES (SEE FIG. 5 FOR THE BINS)

ARE INCLUDED).

Links included from zone A B C D AB BC CD ABC BCD ABCD (all)
Average node degree 72.48 72.16 62.27 62.73 144.62 134.43 125.00 206.89 197.16 269.62

Disconnected Ratio (%) 96.85 8.98 11.35 7.25 6.36 4.22 4.26 2.40 1.49 0.53
Clustering Coefficient 0.7814 0.4568 0.1737 0.2968 0.6973 0.4896 0.3578 0.6339 0.5003 0.6117
Average Path Length 30.424 5.653 6.483 5.005 3.895 3.010 3.033 2.591 2.375 2.233

� � ��� � �� � �� � ��
6 LP LODULW\ �P HWULF �YD OXH

& DWHJR U\
$%&'

Fig. 5. Classification of node pairs into different categories based on their
similarity metric range.

zones, we again obtain the three graph metrics introduced earlier
this section, and summarize them in Table III.

We see from Table III that when the ER graphs include only
edges from one zone, under similar average node degree in the ER
graph (we have chosen the categorization bins carefully to ensure
this), if the edges are formed between nodes with high similarity,
it results in high disconnected ratio and clustering coefficient in
general. This trend is especially pronounced for the ER graph
including only edges in zone A, validating our intuition that
extremely similar nodes (in terms of their mobility preferences)
form disjoint clusters. The node pairs that are dissimilar to each
other (e.g., node pairs in zone D) lead to an ER graph with low
disconnected ratio, low clustering coefficient and low average path
length. Similar trend is also observed when we include edges from
two or three zones – indeed taking edges from only similar nodes
increase the CC and PL, and the inclusion of edges between
dissimilar nodes decrease DR, CC, and PL.

The above observations reveal that the heavy cliquishness in the
ER graphs stems from groups of nodes visiting similar locations.
Notice although it is not guaranteed that all of them end up
encountering each other3, in practice users do meet with other
users with similar mobility preference with higher probability.
On the other hand, we observe that as encounter events between
dissimilar nodes are added into the ER graph, the DR, CC, and
PL begin to fall, indicating the special role of “short-cuts between
the cliques” played by these random links.

Finally, we acknowledge that the ER graph representation does
not capture the time order of the encounter events. Nonetheless,
it helps us to understand that different mobile users play different
roles from the view point of the network-wide encounter pattern.
One can leverage this understanding to incorporate network
structure awareness into routing protocols. One such example is
to push messages to nodes with higher centrality in the network to
help message delivery [24]. Also, it has been observed that mobile
nodes tend to display daily/weekly recurrent mobility pattern [23].
Thus, some of the encounter events could also potentially be

3One can construct a synthetic trace where a group of people visit several
locations in a perfectly staggered cycle. Now while all these users are exactly
the same in terms of the location visiting preferences, they never encounter each
other.

recurrent. Given this, ignoring the ordering of encounter events
in ER graphs should not diminish its usefulness completely.

In the next section, we further investigate the interplay of inter-
node relationship and the ER graph structure, from a different
perspective. We consider the notion of potential friends as people
who I encounter repeatedly and frequently, and see how potential
friendship changes the structure of the ER graphs.

VI. CAPTURING POTENTIAL USER FRIENDSHIP IN WLAN
TRACES

In this section we quantify the potential friendship between
MNs based on information available from the traces, and its
influences on the ER graphs.

In our daily lives, we are bound to meet with colleagues and
friends much more often than others. We investigate using the
WLAN traces whether such an uneven distribution of closeness
among MN pairs exists, and try to measure it using the concept of
friendship dimensions. The likelihood or duration of encounters
between two MNs captures the closeness between them. Although
such closeness may or may not reflect actual friendship in a social
context4, it reveals the relationship between wireless devices as
displayed in their association patterns. We propose to identify
potential friendship between MN pairs based on three different
dimensions – Encounter duration, encounter count, and encounter
AP count, with the following definitions:
• Friendship index based on encounter time is defined as

Frdt(a, b) = Et(a, b)/OT (a), which is the ratio of the total
encounter duration (i.e., the sum of the durations of all their
encounter events) between node a and b, Et(a, b), to the
total online time of node a, OT (a). This is an indication
of how close node b is to node a based on the duration of
encounters. Note that in general Frdt(a, b) 6= Frdt(b, a)
and 0.0 ≤ Frdt(a, b) ≤ 1.0 for any node pair a and b.

• Friendship index based on encounter count is defined
as Frdc(a, b) = Ec(a, b)/S(a), which is the ratio between
the count of association sessions of node a that contain en-
counter events with node b, Ec(a, b), to the total association
session count of node a, S(a).

• Friendship index based on encounter AP count is defined
as FrdAP (a, b) = EAP (a, b)/AP (a), which is the ratio
between the number of APs at which node a has encounter
events with b, EAP (a, b), to the total APs node a visits,
AP (a).

4It is impossible to validate the actual relationship between users as the WLAN
traces are anonymized. However, we borrow the term friendship to indicate the
close relationship between MNs observed from the traces.
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Fig. 6. CCDF of friendship index based on time.

TABLE IV
CORRELATION COEFFICIENT FOR FRIENDSHIP INDEXES Frd(a, b) AND

Frd(b, a) FOR ALL TRACES

Trace name Friendship index based on
encounter time encounter count AP count

MIT 0.415 0.327 0.186
UCSD -0.024 -0.004 -0.003
USC 0.158 0.205 0.130

Dart-03 0.351 0.278 0.043
Dart-04 0.629 0.201 0.068

UF 0.190 0.091 0.036

We first observe how friendship indexes distribute among all
node pairs in the traces. As shown in Fig. 6, the CCDF curves
of friendship indexes based on encounter time seem to follow
exponential distributions for all campuses. We again use the
Kolmogorov-Smirnov test [19] to examine the quality of fit.
The resulting D-statistics for all traces are between 0.0356 and
0.0052, which indicates we have a reasonably good fit between
the exponential distribution curves and the empirical distribution
curves. The actual parameters we use for the fitting are listed in
Appendix A.

The exponential distribution of the friendship indexes is an
indication that the majority of nodes do not have tight relationship
with one another, even if they do encounter. In all the traces,
only less than 5% of ordered node pairs (a, b) have friendship
index Frdt(a, b) larger than 0.01. Among all node pairs with
non-zero friendship index, only 4.47% of them have friendship
index larger than 0.7, and another 11.85% of them with friendship
index between 0.4 to 0.7. In other words, we can say that the
friendship between the MNs is very “sparse” (i.e., only few pairs
of nodes can be called “friends” based on the above definitions).
Friendship indexes based on encounter frequency or encounter
AP count also show similar exponential distributions.

We also look into the issue of whether the friendship index for
an ordered node pair Frdt(a, b) and the reversed tuple Frdt(b, a)
are symmetric. We calculated the correlation coefficients for
all the traces for all three definitions of friendship indexes
considered, as shown in Table IV. The resulting correlation
coefficients between the friendship indexes of ordered node pair
(a, b) and (b, a) are low in most cases (ranging from 0.415 to
−0.024, the only exception being 0.629 for friendship index
based on encounter time for Dartmouth 2004 trace), implying
high asymmetry in friendship indexes.

After seeing the sparseness and high asymmetry of the friend-
ship between the MNs, we ask the following question: if we

consider friendship as a form of trust and establish inter-node
communication selectively based on friendship indexes, how
would that influence the structure of the encounter-relationship
graphs? Typically, a MN may not maintain relationships with
random MNs it encounters with for the first time, but is more
likely to maintain connections selectively only with those MNs
that are considered “trust-worthy”. To better understand the
interplay between the inter-node relationship and the resulting ER
graph structure, we try to include friends with various degrees
of closeness in the ER graph, and see how it influences the
structure of the graph. We use the friendship index based on
time as an example to show how different friendship levels of
included encounter events can change the structure of the ER
graph significantly.

We sort the list of nodes that node a has encountered according
to friendship index, Frdt(a, b),∀b 3 Frdt(a, b) 6= 0. After
sorting, each node picks a certain percentage of nodes from
the list with which to establish a link on the ER graph. This
is equivalent to a scenario where not all encounter events are
considered for inter-node communication. We choose nodes from
the top, middle, or bottom of the list and with various percentages,
and obtain the corresponding metrics for the new ER graphs that
include only the links to the chosen nodes. Note that the links in
these ER graphs are directed links when we consider friendship,
as friendship is asymmetric between a given node pair. Therefore,
we replace the definition of the clustering coefficient of a node
in Eq. (2) by the following

CC(n) =

∑
a∈F (n)

∑
b∈F (n) I(a ∈ F (b))

|F (n)| · (|F (n)| − 1)
, (9)

where F (n) is the set of friends that node n chooses to maintain
links with. Note that friendship is an asymmetric relationship, so
b ∈ F (a) does not imply a ∈ F (b). Here the clustering coefficient
is the average ratio of the included friends of a node that also
include each other as a friend. When calculating the average path
length and the disconnected ratio, we follow the same definitions
as introduced in section V, but the paths must follow the direction
of edges on the ER graph.

Following the above definitions, we obtain the metrics when
including given percentages of all encountered nodes from the
top, middle, or bottom of the sorted node list according to the
friendship index based on time. The figures are shown in Fig. 7.
We use the USC trace as an example, and similar results are also
observed in other traces. The figures show a clear trend that if
neighbors ranked high in the friendship index are included, the
resultant ER graph shows stronger clustering, and the average
path length and the disconnected ratio are much higher (i.e.,
inclined towards a regular graph). The result stems from the
fact that top friends of a given node are also likely to be top
friend among one another, forming small cliques in the graph.
The clustering coefficient remains high due to these cliques. The
disconnected ratio and the average path lengths are high due to the
lack of links between different cliques. On the other hand, when
low-ranked friends are included in the graph, the links included
are distributed in a more random fashion, reflected by the low
clustering coefficient and low average path length. Similar results
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are also observed in a social science study of friendship between
pupils [12]. As a larger portion of friends are included in the
graph, all three metrics converge to the values when all encounter
events are included5.

Therefore, although it is possible to create a campus-wide
community based solely on nodal encounters, it is not sufficient
to trust and utilize only top-ranked friends (or the MNs one
encounters frequently), as this results in an ER graph with
high clustering coefficient and average path length, and more
importantly may lead to a disconnected network. In order to
remain connected to a larger community, one should also use
some randomly-chosen users with smaller friendship index as they
are the key to reduce the degree of separation in the underlying
ER graph.

VII. INFORMATION DIFFUSION USING ENCOUNTERS

In addition to establishing relationship between nodes, en-
counters can also be utilized to diffuse information throughout
the network. In the network architecture generally known as
delay tolerant networks (DTN), information is spread with nodal
mobility and message exchanges at nodal encounters. The speed
and reachability of information diffusion among the nodes are
determined by the actual pattern and sequences of encounters.
In this section we seek to answer the question of whether the
current encounter patterns between MNs in wireless networks
are rich enough to be utilized for information diffusion. If the
answer is yes, what is the delay incurred in such a information
diffusion scheme, and how robust is it?

In this section, we first understand the optimistic expectation of
the potential performance of information diffusion under idealistic
assumptions in subsection VII-A. We then remove some of
the assumptions and evaluate the performance in more realistic
settings in subsequent subsections.

A. Ideal Performance of Information Diffusion

As the first step to understand the potential of information dif-
fusion under realistic encounter patterns, we make the following
idealistic assumptions: (1) There are sufficient bandwidth and re-
liable communication between MNs, and sufficient storage space
on all MNs. (2) MNs discover the communication opportunities
immediately when they encounter other MNs, and (3) every MN
in the network is willing to participate in forwarding information
for others. In the experiment in this subsection, we focus mainly
on analyzing how the encounter pattern itself influences the per-
formance of information diffusion. The experiments in subsection
VII-B and VII-C deal with more realistic scenarios when some
of the above assumptions are removed.

The diffusion mechanism we use is the following: When a
source node has some information to send, it simply transmits it
to all nodes it encounters with if they have not received the infor-
mation yet. All intermediate nodes cooperate in the information
diffusion process, keeping a copy of received information and

5Note that including 100% of friends means to include every MN encountered
in the ER graph, hence the resulting ER graph is the same as the one defined
earlier in section V.

forwarding it the same way as the source node does. This simple
approach is known as the epidemic routing in the literature [15].
Under perfect environment with sufficient resources, it achieves
the lowest delay and the highest delivery rate possible. While
there are many intelligent routing protocols proposed in the
literature of message forwarding protocols in DTN [16], [17],
[24], [29], [34], we choose to use the simple epidemic routing
for the following reasons: (1) The focus of the analysis is to
understand the reliability of the encounter patterns. We choose
the simplest protocol to avoid complex interaction between the
protocols chosen and the conclusion in our analysis. (2) Epidemic
routing may represent a “last resort” of sending a message in
DTN when other protocols fail. By observing when it fails in our
analysis, we establish the conditions where message forwarding
is not possible by any protocol.

In all the simulations (in this and the subsequent subsections),
we use a traffic pattern in which the source node has some
information to send to all other nodes. The source starts to
“diffuse” the information when it is first online. As time evolves,
nodes encounter with each other and an increasing portion of
the whole population receive the information. We study the
percentage of nodes that have not received the information within
various trace periods (i.e., the unreachable ratio) and show the
results in Fig. 8. Each point in the figures of this section is
an average value of choosing 30% of the nodes that appear the
earliest in the corresponding trace period as the sources.

From Fig. 8 we observe that even within a short trace period
(e.g., three days) the information can reach a moderate portion
of the population as the unreachable ratio is less than 20% in all
traces. As the trace period increases, reachability also improves.
In all except the Dart-03 trace, the unreachable ratios are
less than 2% if we allow one month for the information
diffusion. Given that most nodes encounter with only a very small
portion of the whole population, this result is perhaps beyond
our original expectation. It gives a positive confirmation that
it is potentially possible to deliver information relying only
on encounters, in a campus environment with high success rate,
under current user encounter pattern.

B. Performance of information diffusion with selfish users

After studying the ideal case, we consider a more realistic
setup. We first relax the ideal assumption (3) above. In some
cases, some of nodes may not be cooperative to propagate the
information. To understand how uncooperative users potentially
influence the feasibility of information diffusion, we carry out the
following experiment – we make a portion of users selfish such
that they never forward information for other sources, and we
study the performance degradation under this setup. For each of
the trace periods used, we increasingly make a certain percentage
of nodes selfish, starting from those with the highest unique
encounter counts. By making nodes with high unique encounter
counts selfish first, we eliminate more transmission opportunities
than if we pick selfish nodes randomly, hence we expect to
observe a greater impact on the performance.

The relationship between the percentage of selfish node and
the unreachable ratio for the USC trace is shown in Fig. 9. For
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trace).

the sake of conciseness, the figures for other traces are shown in
Appendix B, and they display similar trends. The result is very
surprising – for all trace periods tested, the unreachable ratio
does not increase significantly before at least 20% of nodes are
selfish. The performance is even more robust if we take longer
periods of trace. This implies that even a significant portion
of users are not willing to propagate information for others,
the underlying nodal encounter pattern is rich enough for
the information to find an alternative way through. Hence the
delivery rate is quite robust for up to an intermediate percentage of
selfish nodes. Note that the performance of information diffusion
is robust even if the nodes with the most chances to propagate the
information are not cooperative. We show how the average delay
of information diffusion changes with the increasing selfish node
percentage in Fig. 10 for the USC trace. In the figure, the average
delay increases for longer trace duration because information that
is not deliverable in shorter trace periods becomes deliverable.
More interestingly, for all tested trace durations, the average delay
does not increase significantly before more than 40% of the nodes
are selfish. This implies the average delay is also robust against
selfish user behavior up to an intermediate percentage.

C. Performance of Information Diffusion with Long Encounters
only

Another idealistic assumption we made is that the MNs can
communicate with each other successfully regardless of the
durations of encounter events. This may not be true in realis-
tic scenario due to wireless bandwidth limitations or delay in
discovering encounter events. To address this issue, we remove
short-lived encounter events that do not permit prompt discovery
and useful information exchange in the following experiment,

and re-evaluate the performance of information diffusion with
different minimum duration thresholds for an encounter event to
be considered useable.

In Fig. 11, we show the relationship between the unreachable
ratio versus the lower limit of encounter duration (i.e., we remove
all encounter events that have shorter durations than the value),
using the first 15-day traces from USC, Dartmouth, and UF
as examples. From the graph we observe that, the unreachable
ratio increases almost linearly as we increase the lower limit of
usable encounter duration. There is no obvious point at which
the performance suddenly degrades severely. We carry out the
experiments up to the shortest usable encounter threshold set
at one hour, a rather demanding scenario. Even in such cases,
besides the UF trace which has a very low encounter ratio (see
Fig. 1), the unreachable ratio is below 30%. This implies remov-
ing encounters with short durations does not cause abrupt
degradation in the performance of information diffusion, in
terms of both the reachability and the average delay (see Fig.
12). In other words, short encounters are not the key reason for
the success of information diffusion. The encounter events with
long durations are also rich enough to be utilized for message
propagation in most cases.

VIII. DISCUSSIONS AND FUTURE WORK

In this section we discuss the lessons learned and potential
applications of the findings in this paper.

In section IV we have seen very skewed encounter event
distributions and low encounter percentage of a given node. This
phenomenon is not observed in any of the synthetic mobility
models used for performance evaluation in the literature, as
most of them are simplistic i.i.d. models. Such a discrepancy
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calls for a realistic mobility model that not only captures the
mobility features of individual nodes, but also retains the inter-
node relationships. The time-variant community model [10] has
the potential to construct a scenario with heterogeneous nodal
behavior, given suitable parameters. In the future, we would like
to construct a formal procedure to obtain from collected WLAN
traces the right parameters to capture the mobility characteristics
of individuals and encounter characteristics of the whole popula-
tion.

The result of information diffusion experiments (section VII)
highlights positive potential of building a campus-wide com-
munication network without infrastructures. The robustness of
information diffusion brings up two interesting points: (1) For
message delivery, the delivery ratio and delay are not affected
significantly, even if we can not choose the shortest paths due to
non-cooperative users or unutilized short encounters. (2) On the
other hand, it would be difficult to prevent harmful or malicious
messages, such as computer worms or viruses, from propagating
through encounters [33]. Both observations are due to the richness
in the underlying encounter pattern providing abundant chances
for message delivery. The dynamics in the occurrence of such
message delivery paths also call for a more detailed investiga-
tion. Although this is partly done in [30] based on a small-
scale encounter trace collected at a conference, we believe that
the encounter patterns in a complex environment contain many
interesting phenomenons (such as regular, predictable encounters
and their role in message forwarding) to be further researched.
Building on top of such an understanding, the performance of
information diffusion under various information delivery schemes
and potential methods to thwart malicious information from

spreading are both directions for future work.
One promising direction we envision is to incorporate the un-

derstanding of encounter patterns (e.g., the Small World relation-
ship graph) into message forwarding protocols. This approach has
been taken, for example, in [24] where MNs exchange their past
encountered nodes to learn the “structure” of the network, and
nodes with high centrality measure serve as the nodes bridging
the cliques in the social network. Our take on this task is slightly
different – we use nodal mobility preferences as a way to profile
the intrinsic behavior of MNs [5]. This can be done by each MN
individually without any message exchange. As nodal mobility
leads to encounters, our theory is that MNs with similar mobility
profile are likely to form the cliques in the ER graphs. Leveraging
this fact, we seek to propose a protocol that sends messages
targeted at a specific mobility profile (e.g., those who prefer to use
WLAN in the library) [34]. We would like to extend the usage
of the concept of MN similarity based on the mobility profile
to design efficient message dissemination strategy – leveraging
the richness of random links between different cliques in the
Small World ER graph to spread the messages fast and with low
overhead.

IX. CONCLUSION

In this paper we investigate the network properties formed
by mobile nodes via inter-node encounters, based on multiple
empirical WLAN traces. We find that MNs encounter with only
a small subset of other nodes (on average between 1.33% to
6.70%), and the total encounter counts follow the BiPareto
distribution. In spite of low percentage of unique encounters,
the encounter relationship graph connects most of the MNs.
Furthermore, such encounter relationship graphs display Small
World graph characteristics, and its graph metrics converge to
its long-term value within short time periods. The relationship
between different pairs of MNs, however, is very skewed and can
be modeled by the exponential distribution. Establishing relation-
ships only with high-ranked friends leads to a network with high
clustering and disconnections, and using low-ranked friends is the
key for good reachability in the encounter-relationship graphs.
Finally, using simulation study with a simple protocol, we also
display the potential for information diffusion without relying on
the infrastructure, utilizing encounters and mobility of MNs alone.

The contributions of this work are two-folds: First, by in-
vestigating the inter-node encounters and utilizing the concept
of Small World, we provide new methodologies to understand
inter-user interactions in wireless networks. The understanding
gained by studying distributions of encounter events and the
encounter relationship graphs reveals the pattern of the network
formed between MNs under their usage pattern in the studied
environments. Second, by experimenting information diffusion
with current WLAN traces, we display the potential for the
success of information diffusion by the participation of only
wireless users (i.e. without infrastructure). The findings could be
utilized to design better user models, protocols or applications in
the future, as outlined in section VIII.



12

REFERENCES

[1] W. Hsu and A. Helmy, ”On Nodal Encounter Patterns in Wireless LAN
Traces,” the Second International Workshop On Wireless Network Measure-
ment (WiNMee 2006), April 2006.

[2] M. Balazinska and P. Castro, ”Characterizing Mobility and Network Usage
in a Corporate Wireless Local-Area Network,” In Proceedings of MobiSys
2003, pp. 303-316, May 2003.

[3] M. McNett and G. Voelker, ”Access and mobility of wireless PDA users,”
ACM SIGMOBILE Mobile Computing and Communications Review, v.7 n.4,
October 2003.

[4] T. Henderson, D. Kotz and I. Abyzov, ”The Changing Usage of a Mature
Campus-wide Wireless Network,” in Proceedings of ACM MobiCom 2004,
September 2004.

[5] W. Hsu, D. Dutta, and A. Helmy, ”Extended Abstract: Mining Behavioral
Groups in Large Wireless LANs” In Proceedings of ACM MOBICOM, Sep.
2007. Longer technical report available at http://arxiv.org/abs/cs/0606002

[6] T. Camp, J. Boleng, and V. Davies, ”A Survey of Mobility Models for
Ad Hoc Network Research,” Wireless Communication & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, vol. 2, no. 5, pp. 483-502, 2002.

[7] D. J. Watts and S. H. Strogatz. ”Collective Dynamics of ’Small-World’
Networks,” Nature, vol. 393, pp. 440-442, 1998.

[8] R. Albert and A. Barabasi, ”Statistical mechanics of complex networks,”
Review of modern physics, vol. 74, no. 1, pp. 47-97 , Jan. 2002.

[9] A. Helmy, ”Small Worlds in Wireless Networks,” IEEE Communications
Letters, pp. 490-492, Vol. 7, No. 10, October 2003.

[10] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, Modeling Time-
variant User Mobility in Wireless Mobile Networks, In Proceedings of IEEE
INFOCOM, Apr. 2007.

[11] C. Tuduce and T. Gross, ”A Mobility Model Based on WLAN Traces and
its Validation,” in Proceedings of IEEE INFOCOM, March 2005.

[12] A. Rapoport and W. Horvath, ”A Study of a Large Sociogram,” Behavioral
Science 6, 279-291, 1961.

[13] K. Fall, ”A Delay-Tolerant Network Architecture for Challenged Internets,”
In Proceedings of ACM SIGCOMM, August 2003.

[14] S. Jain, K. Fall, and R. Patra, ”Routing in a delay tolerant network,” In
Proceedings of ACM SIGCOMM, Aug. 2004.

[15] A. Vahdat and D. Becker, ”Epidemic Routing for Partially Connected Ad
Hoc Networks,” Technical Report CS-200006, Duke University, April 2000.

[16] A. Lindgren, A. Doria, and O. Scheln, ”Probabilistic routing in intermittently
connected networks,” Lecture Notes in Computer Science, vol. 3126, pp. 239
-V 254, Sep. 2004.

[17] T. Spyropoulos, K. Psounis, and C. Raghavendra, Efficient Routing in Inter-
mittently Connected Mobile Networks: The Single-copy Case, in ACM/IEEE
journal of Transactions on Networking, Feb. 2008

[18] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot, ” Pocket
Switched Networks and the Consequences of Human Mobility in Conference
Environments,” Workshop on Delay Tolerant Networking, Aug. 2005.

[19] R. Hogg and E. Tanis, ”Probability and Statistical Inference,” sixth edition,
Prentice Hall, 2001.

[20] W. Hsu and A. Helmy, ”IMPACT: Investigation of Mobile-
user Patterns Across University Campuses using WLAN Trace
Analysis,” unpublished USC technical report. Available at
http://nile.usc.edu/MobiLib/Trace analysis TR.pdf

[21] M. Grossglauser and M. Vetterli, ”Locating Nodes with EASE: Mobility
Diffusion of Last Encounters in Ad Hoc Networks,” In Proceeding of IEEE
INFOCOM, April 2003.

[22] F. Bai and A. Helmy, ”Impact of Mobility on Last Encounter Routing
Protocols,” in Proceedings of the Fourth Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON 2007), June 2007.

[23] W. Hsu and A. Helmy, ”On Important Aspects of Modeling User Asso-
ciations in Wireless LAN Traces,” the Second International Workshop On
Wireless Network Measurement (WiNMee 2006), April 2006.

[24] E. Daly and M. Haahr, ”Social Network Analysis for Routing in Discon-
nected Delay-Tolerant MANETs,” In Proceedings of ACM MOBIHOC, Sep.
2007.

[25] C. Nuzman, I. Saniee, W. Sweldens, and A. Weiss, ”A Compound Model
for TCP Connection Arrivals for LAN and WAN Applications,” Computer
Networks, 40:319V337, October 2002.

[26] M. Papadopouli, H. Shen, and M. Spanakis, ”Characterizing the Duration
and Association Patterns of Wireless Access in a Campus,” 11th European
Wireless Conference 2005, Nicosia, Cyprus, April 10-13, 2005.

[27] J. Su, A. Chin, A. Popivanova, A. Goel, and E. de Lara, User mobility for
opportunistic ad-hoc networking, in Proceedings of the 6th IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA04), 2004.

[28] N. Eagle and A. Pentland, ”Reality mining: sensing complex social systems,”
in Journal of Personal and Ubiquitous Computing, vol.10, no. 4, May 2006.

[29] J. Leguay, T. Friedman, and V. Conan, ”Evaluating Mobility Pattern Space
Routing for DTNs,” in Proceedings of INFOCOM 2006.

[30] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, ”Diversity of
forwarding paths in pocket switched networks,” in Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement (IMC 2007), Oct.
2007.

[31] M. Kim and D. Kotz, ”Periodic properties of user mobility and access-point
popularity,” in Journal of Personal and Ubiquitous Computing, 11(6), August,
2007.

[32] V. Srinivasan, M.Motani, and W. T. Ooi, ”Analysis and Implications of
Student Contact Patterns Derived from Campus Schedules,” in Proceedings
of MOBICOM 2006, Sep. 2006.

[33] S.Tanachaiwiwat and A. Helmy, ”On the Performance Evaluation of
Encounter-based Worm Interactions Based on Node Characteristics” ACM
Mobicom 2007 Workshop on Challenged Networks (CHANTS 2007), Mon-
treal, Quebec, Canada, Sep. 2007.

[34] W. Hsu, D. Dutta, and A. Helmy, ” Profile-Cast: Behavior-Aware Mobile
Networking,” in Proceedings of IEEE WCNC, Apr 2008.

[35] MobiLib: Community-wide Library of Mobility and Wireless Networks
Measurements. http://nile.cise.ufl.edu/MobiLib.

[36] CRAWDAD: A Community Resource for Archiving Wireless Data At
Dartmouth. http://crawdad.cs.dartmouth.edu/index.php.

[37] W. Hsu and A. Helmy, MobiLib USC WLAN trace data set. Downloaded
from http://nile.cise.ufl.edu/MobiLib/USC trace/

[38] D. Kotz, T. Henderson and I. Abyzov, CRAWDAD data set dart-
mouth/campus/ movement/01 04 (v. 2005-03-08). Downloaded from
http://crawdad.cs.dartmouth.edu/dartmouth/ campus/movement/01 04

[39] M. Balazinska and P. Castro, CRAWDAD data set ibm/watson (v. 2003-02-
19). Download from http://crawdad.cs.dartmouth.edu/ibm/watson

[40] M. McNett and G. M. Voelker, Wireless Topology Discovery project data
set. Download from http://sysnet.ucsd.edu/wtd/

APPENDIX A. BIPARETO DISTRIBUTION AND
KOLMOGOROV-SMIRNOV TEST

In this section we first briefly introduce the Kolmogorov-
Smirnov test and the BiPareto distribution, and then list the detail
numerical results of fitting BiPareto and exponential distribution
curves to total encounter (section IV) and friendship index (sec-
tion VI) distributions, respectively.

The BiPareto distribution is used in [25] to fit the number of
connections per user TCP session and mean connection inter-
arrival time in a TCP session. Later, BiPareto distribution is again
used in [26] to fit the distribution of association session length in
wireless LAN. The CCDF of BiPareto distribution is as follows:

Prob(X > x) = 1, x ≤ k, (10)

Prob(X > x) = (
x

k
)−α(

x + c

k + c
)α−β , x > k. (11)

The left part of the CCDF curve of the BiPareto distribution on
log-log scale is a straight line with slope −α. As the x variable
comes close to the turning point, c, the slope of the CCDF curve
gradually changes from −α to −β. In our study of total encounter
distributions, we choose k = 1 for all curves.

The Kolmogorov-Smirnov test is used to determine whether the
hypothesized distribution (in our case, the BiPareto distribution)
adequately fits the empirical distribution. The K-S test is not
sensitive to the binning of data set, unlike the Chi-square test [19].
Therefore we choose the K-S test in our study.
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TABLE V
BIPARETO DISTRIBUTION FITTING TO THE TOTAL ENCOUNTER CURVES AND

THE D-STATISTICS FOR THE K-S TEST

Trace name BiPareto parameters D-statistics
α β c

MIT 0.027 9.8 4000 0.036
UCSD 0.062 16.3 9900 0.068
USC 0.019 0.83 550 0.049

Dart-03 0.0723 0.81 290 0.049
Dart-04 0.0285 4.43 11850 0.025

UF 0.1071 1.324 392 0.0066

TABLE VI
EXPONENTIAL DISTRIBUTION FITTING TO THE FRIENDSHIP INDEX BASED ON

ENCOUNTER TIME CURVES AND THE D-STATISTICS FOR THE K-S TEST

Trace name λ D-statistics
MIT 369.19 0.0167
USC 305.3 0.0356

Dart-03 500.4 0.0052
Dart-04 411.81 0.0116

UF 579.06 0.0023

Referring to Fig. 13, in the K-S test the distances between
the hypothesized distribution and the empirical distribution are
measured throughout the range of random variable x, and the
maximum of the measured distances is called the D-statistics.
More formally, the D-statistics is defined as:

Dn = supx[| Fn(x)− F0(x) |], (12)

where Fn(x) and F0(x) are the empirical and hypothesized
distributions, respectively. Intuitively, the D-statistic measures
the maximum difference between the two distribution curves.
A smaller D-statistic indicates a better fit of the hypothesized
distribution to the empirical distribution.

We use the minimum squared error method to find the best
fit of BiPareto distribution curves to the empirical total encounter
distributions for various traces. The parameters are listed in Table
V. From the table we observe that the D-statistics are no larger
than 0.05 except for UCSD trace (0.07), indicating a reasonable
fit of the BiPareto distribution.

We also list the λ parameters we obtained using the minimum
squared error method to fit exponential distributions to the em-
pirical distribution of friendship indexes based on encounter time
in Table VI. The corresponding D-statistics are also listed.

APPENDIX B. ADDITIONAL GRAPHS FOR
ENCOUNTER-RELATIONSHIP GRAPHS METRICS AND

INFORMATION DIFFUSION EXPERIMENTS

In addition to the figures shown in section V, we also obtain
the same graph metrics for MIT, Dart-03, and UF traces. The
figures (Fig. 14) have similar trends as discussed in section V.
One interesting observation here is that for the MIT trace, the
disconnected ratio is very high until day 3 in the trace. A further
investigation reveals that the MIT trace collection was started on
a Saturday, and for a pure working environment (i.e., corporate
buildings) Saturdays and Sundays are the least active days. The
disconnected ratio is almost 100% until day 3 because the MNs
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Fig. 21. Information delivery ratio with various selfish node percentage and trace
period (UF trace).

0% 10% 20% 30% 40% 50% 60% 70%
0

100

200

300

400

500 Trace length
(days)

Av
er

ag
e 

de
la

y 
(h

ou
rs

)

Selfish node percentage

 2
 3
 6
 9
 12
 15
 18
 21
 24
 27

Fig. 22. Average message delay with various selfish node percentage and trace
period (UF trace).

that were on during the weekend are mostly stationary ones. We
observe a jump of number of node in the trace, a sudden decrease
in DR, and an abrupt change in both CC and PL on day three.

In addition to the USC trace, we further perform similar
information diffusion experiments on adding selfish user behavior
to the Dartmouth, MIT, and UF traces. The experiment setup is
the same as described in subsection VII-B. The results for the
average unreachable ratio are shown in Fig. 15, 17, 19, and 21
for the Dart-04, MIT, Dart-03, and UF traces, respectively. The
trends for Dart-04, MIT, and UF traces are similar to those shown
in subsection VII-B. For longer trace periods (above 9 days), the
unreachable ratio does not change significantly for up to 20%
of selfish nodes, and the robustness of performance increases if
longer trace periods are used. This confirms that the robustness
of information diffusion under current encounter patterns is not
an artifact of coarse location granularity in the USC trace. In the
Dart-03 trace, the performance of information diffusion is less
robust than other traces, due to its relatively lower encounter ratio
(cf. Fig. 1) and population among all the traces. The unreachable
ratio for the Dart-03 trace increases faster as compared to other
traces when we make users selfish. The results for the average
delay are shown in Fig. 16, 18, 20, and 22 for the Dart-04, MIT,
Dart-03, and UF traces, respectively. The results are similar to
Fig. 10 in subsection VII-B. One noticeable difference is that, in
some cases the average delay first increases as the selfish node
percentage increases, but later it decreases. This is due to the low
reachability (i.e., high unreachable ratio) – in this situation, only
MNs that are easy to reach will be able to receive the message,
leading to a decrease in the average delay (calculated from the
small subgroup of still reachable MNs).
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Fig. 13. Illustration of the D-statistics and the K-S
test.
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Fig. 14. Change in the ER graph metrics with respect to trace period.
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Fig. 15. Information delivery ratio with various
selfish node percentage and trace period (Dart-04
trace).
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Fig. 16. Average message delay with various
selfish node percentage and trace period (Dart-04
trace).
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Fig. 17. Information delivery ratio with various
selfish node percentage and trace period (MIT
trace).
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Fig. 18. Average message delay with various self-
ish node percentage and trace period (MIT trace).
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Fig. 19. Information delivery ratio with various
selfish node percentage and trace period (Dart-03
trace).
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Fig. 20. Average message delay with various
selfish node percentage and trace period (Dart-03
trace).
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