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Abstract—The past twenty years has seen the explosion of the
“shape zoo”: myriad shape representations, each with pros and
cons. Of the varied denizens, distance transforms and density
function shape representations have proven to be the most utile.
Distance transforms inherit the numerous geometric advantages
of implicit curve representations while density functions are
unmatched in their approach to the modeling of uncertainty and
noise in shape features. We have not seen much rapprochement
between these two representations in general. In this work, we
introduce a complex wave representation (CWR) of shape which
has the ability to simultaneously carry probabilistic information
via its magnitude and geometric information via its phase, achiev-
ing an integration of distance transforms and density function
shape representations. The CWR is a parametric representation
with cluster centers akin to a mixture model and curve normal
information akin to signed distance functions. We demonstrate
the perceptual gains of the CWR, highlight the advantages of
the probabilistic aspect for noisy shape alignment by a likelihood
approach, and fusing both aspects we show that the CWR leads
to a feature space in which kernel PCA yields approximate closed
curves and probability density functions.

I. INTRODUCTION

The construction of shape representations from unorganized
point-sets has long been a staple of pattern recognition,
computer vision, medical image analysis and related fields.
A variety of shape representations ranging from annotated,
sparse landmarks to full blown graph and mesh representations
have been deployed over the past twenty years. The myriad
representations in this “shape zoo” have in common the fun-
damental goal of imposing a specific structure on unorganized
point-sets with each successful representation accruing gains
in different shape matching, indexing and retrieval metrics.

In the shape zoo, the distance transform [1] and the prob-
ability density function [2], or shape distribution model, rep-
resentations have marked out disjoint territories. Their lack of
overlap has hindered co-development. Distance transforms, or
distance functions, construct a shape representation wherein a
bounded domain is parsed into a set of closed, nonintersecting
curves with each location marked by the distance to the closest
point on a curve. Allowing the field to be signed imbues
the field with information that can be used to distinguish
shape regions from their surroundings. This scalar field is
subsequently used in shape applications such as registration
and matching. The hallmark of distance transforms is the
implicit representation of a set of curves embedded in 2D via a

scalar field. Probability density functions also construct scalar
field shape representations but focus instead on assigning a
“probability mass” at each location based on the number of
points within a neighborhood. This scalar field is subsequently
used in shape applications such as registration and indexing.
The hallmark of density functions is the implicit grouping of
a set of points via an integrable and differentiable scalar field.
An orienting generalization that can be made at this juncture
is that distance transforms emphasize curve geometry whereas
density functions embody location uncertainty.

The lack of rapprochement between distance transforms and
density functions stems from their very different perspectives
on shape representation: the main advantage of the distance
transform is its implicit curve representation whereas that of
the density function is its representation of uncertainty (and
noise). The principal goal of this paper is the integration of
these two perspectives: we seek a unified representation which
simultaneously embodies curve information while continuing
to handle uncertainty. Such a representation would be im-
mensely beneficial to shape analysis provided the respective
advantages of both the distance and density functions are
preserved. To set the stage, we first turn to the mathematical
underpinnings of the distance function since they hold the key
to subsequent integration.

Distance transforms satisfy the static Hamilton-Jacobi equa-
tion ‖∇S(x)‖ = 1 where S(x) is the distance function.
If the signed distance function is sought, the zero level set
of S(x) is a set of curves embedded in 2D (or a set of
surfaces embedded in 3D). The difficulty of computing the
signed distance function from an unorganized set of points is
well known—essentially involving a search over all possible
sets of non intersecting curves embedded in 2D (or higher
dimensional counterparts in 3D). What is not so well known
is the curious fact that the static Hamilton-Jacobi equation—
a nonlinear differential equation—is closely related to the
static Schrödinger equation—a linear differential equation
[3]. It turns out that the distance function Hamilton-Jacobi
scalar field S(x) is approximately the phase of the complex
Schrödinger wave function ψ(x) which in turn is the solution
to the wave equation

−~2∇2ψ = ψ (1)

with the approximation becoming increasingly more accurate



as ~ → 0. Note that a relationship has only been established
between the Hamilton-Jacobi field S(x) and the phase of
the wave function ψ(x). Since a wave function magnitude is
related to a normalizable density function, it is natural to ask
whether probabilistic information concerning a shape can be
embedded in the wave function magnitude. To answer this
question, we turn to the estimation of density functions next.

Density functions estimated from unorganized point-sets
come in both parametric and non-parametric flavors. We find
shape densities in the form of histograms, mixtures of Gaus-
sians, wavelets and kernel expansions used in the literature [4],
[5]. If a mixture of Gaussians is sought, the density function
p(x) is peaked at a set of 2D (or 3D) “cluster centers” with
the degree of “peakedness” depending on the variance of the
underlying cluster. The difficulty of computing the mixture
density function from an unorganized set of points is well
known—essentially involving a search for cluster exemplars
and associated covariance matrices. The question at hand is
whether or not we can associate a density function p(x)
with the squared magnitude of the wave function with the
phase of the wave function continuing to play the role of
the distance function. If the answer is in the affirmative, we
have a candidate for an integrated shape representation with
the wave function magnitude and phase representing location
uncertainty and curve geometry respectively.

Distance functions have been put to very productive use in
the literature. On the mathematical applications side, in [6] a
distance transform of missing regions is used for transporting
inpainting information while in [7] distance transforms fuse
point-sets into connected meshes—clever applications of the
nonlocality of the distance transform beyond the classical
use as a vehicle for level-set frameworks [8]. In [9] a new
mathematical approach to computing the distance transform
is developed, widening the footprint of shape modeling. Re-
cently, a host of new approaches based on partial differential
equations ([10], [11], [12]) have gained traction. In [13],
[14], shape skeletons, their close association with distance
transforms and new scalar fields possessing related properties
are all formulated. Most of the techniques above boast an
appreciable perceptual or computational gain over traditional
shape computation methods.

The perceptual organization literature has also been a rich
source of inspiration for the present work. It is difficult to do
justice to the past forty years of work in this area—here we
attempt a very brief summary. Perceptual organization draws
on well founded Gestalt principles of grouping and suggests
local mechanisms for connectedness that can lead to global
properties (closed curves, illusory contours etc.). While the
mathematical principles underlying the mechanisms can vary
widely (differential equations, tensor voting, graph partitioning
etc.) [11], [15], [16], this literature has been mainly responsible
for stressing the importance of grouping and connectedness in
vision. Our work is in the same spirit in introducing a new
complex wave representation (CWR) of point-sets wherein
closed contours emerge from the wave function phase.

In this work, we show that a complex wave function ψ(x)

can indeed integrate both shape distribution and level-set
information in the magnitude and phase respectively. Drawing
upon previous work with mixture models, we design a com-
plex wave function with unknown “cluster exemplars” as free
parameters that have to be estimated using (for example) the
maximum likelihood principle. Departing from previous work,
we include a complex term with unknown curve normal pa-
rameters which also have to be estimated from an unorganized
point-set. Provided efficient estimation of location (cluster
center) and curve (normal) parameters can be achieved—
with initial evidence contained herein (see Section IV. A)
being quite encouraging—the CWR of shape portrays a highly
accurate near and far field with the benefit of linear updating
and an easily computable reproducing kernel. In this paper we
assume this aspect of the representation is provided—focusing
instead on application of the resulting curve representation.

II. UNDERPINNINGS OF THE REPRESENTATION

We begin by summarizing previous work which introduced
an approximation to the unsigned distance function [9] by
solving the static Schrödinger equation corresponding to the
static Hamilton-Jacobi equation ‖∇S‖ = 1:

Sτ (x) ≈ −τ log φτ (x;µ) = −τ log
N∑
k=1

exp

{
−‖x− µk‖

τ

}
,

(2)
where µ = {µi}Ni=1 is a collection of locations and the scalar
field φτ (x;µ) is the solution to the linear differential equation

−τ2∇2φτ (x;µ) + φτ (x;µ) =

N∑
k=1

δ(x− µk). (3)

In (3), τ is a free parameter and the approximation Sτ becomes
increasingly accurate as τ → 0. Since addition is a permitted
operation on φτ , superpositions of solutions are allowed, in
sharp contrast to standard distance transforms which do not
permit addition.

In the present work, we seek to go beyond the unsigned
distance transform (and linear differential equation approxima-
tions thereof). In shape analysis, connectedness is fundamental
to applications, but is rarely available explicitly from the
representation. Unsigned distance transforms solve a wave-
front equation that is not suited to dealing with issues of
connectedness. The approximation in (3) does not fare any
better since it is based on an isotropic Green’s function
solution evaluated at a point-set. To handle connectedness,
φτ must be modified. Drawing inspiration from the complex
nature of wave functions in physics, we introduce a complex
modulation factor to (2) that encodes normal information.
Intuitively, we can “delocalize” the normal of a shape by
propagating the phase as suggested by Huygens’ principle.
This leads to a phase factor exp{iν

T
k (x−µk)

λ } modulating the
real function φτ above (please see [18] for a more careful
consideration of this term).

The modulation acts as a local curve regularization or
control factor for the point-set, borne out in level sets of the
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Fig. 1. Visualization of ψ. Left: level sets of the unsigned distance transform. Center: oriented point-set. Right: level sets of the modular distance transform.
In the second row, the scanlines indicated by the red lines are shown. Near the point locations, the level set of the modular distance transform is much
clearer while for the unsigned distance function, the normal information is totally inaccurate near the data points. Conforming to the continuity requirement
for perceptual grouping [17] is a primary attribute of ψ. In the unsigned distance transform, the pectoral fin (the small fin below the gill fin) is basically
indiscernible whereas in the modular distance transform it is very clear. The point-set used is a sampling from the GatorBait data set1, specifically Acanthuridae
Acanthurus Chronixis composed of a linear superposition of shapes that individually form closed curves (refer to Section III. C).

phase of the complex wave. Note that the normal information
νk is attached to the center µk and therefore is an additional
set of parameters constraining the wave function ψ:

ψτ,λ(x;µ,ν) =

N∑
k=1

exp

{
−‖x− µk‖

2

τ
+ i

νTk (x− µk)
λ

}
,

(4)
where ν = {νk}Nk=1 is a collection of unit normal vectors.
Here we use the Gaussian kernel instead of the exponential
kernel since the differential equation aspect is less important.
Writing C = {µ,ν} to denote a set of points and the
associated unit normal vectors at these points, we call such a
collection an oriented point-set. The symbol N will be used to
represent the number of oriented points in C, with Ni referring
to the points in Ci when considering multiple oriented point-
sets. Henceforth, oriented point-sets have unit normals unless
otherwise specified. We will write ψ(x;C) as shorthand for
ψτ,λ(x;µ,ν) with τ and λ suppressed wherever not explicitly
needed. The wave function ψ(x;C) contains connectedness
information of the curve through the level sets of the phase,
probability density information via the squared magnitude, and
distance information through the logarithm of the magnitude
(as λ → ∞ and τ → 0). (Please see [9] for more details
regarding the latter.)

A technical issue arises due to wrapped nature of the 2D
wave function phase. At any location x, we obtain the modular
distance along the normal vector to the zero level set of the
phase

d̃(x;C) = λ arctan

(
Im[ψ(x;C)]

Re[ψ(x;C)]

)
. (5)

Note that the phase (carrying orientation data) is now a

1http://www.cise.ufl.edu/~anand/GatorBait_100.tgz

property of the field, see Fig. 1, and is therefore defined
everywhere. The unsigned distance transform obtained from
a point-set, despite also being defined everywhere, lacks the
crucial connectedness information, causing its zero level-sets
to be broken islands marooning the original points. The
connectedness component afforded by the phase is critical to
shape boundary representation and perceptual grouping.

III. PROPERTIES OF THE REPRESENTATION

A. Attributes Encoded by ψ

A principal advantage of using distance transforms is the in-
tegration of point information via a field. Nonlocal analysis of
shapes is enabled by this property. Unfortunately, the tight con-
straints imposed by the distance transform (such as ‖∇S‖ = 1)
do not permit averaging, component analysis and the like,
thereby limiting the effectiveness of the representation. The
wave representation ψ allows for superposition and other
operations (see Table I) enabling a richer variety of potential
applications than standard distance transforms. With distance
information in the magnitude along with connectedness and
orientation information provided by the phase, ψ preserves
the attractive properties of the signed distance function.

B. Analysis of ψ

There are some similarities between the wave function ψ
(with a Gaussian kernel) and a Gabor wavelet. The latter has
been extensively studied and used with great success in pattern
recognition [19]. Gabor wavelets have primarily been used as
function approximations and not in the distributional sense as
we have used them.
ψ(x;C) is continuous almost everywhere, and is defined

on all of R2, so the L2 norm of ψ(x) can be computed



TABLE I
Technical Layout of the Operations on ψ

Unsigned Distance d2(x;C) ≈ −τ log(ψψ)
Modular Distance (MD) d̃(x;C) = λ arctan

(
Im[ψ(x;C)]
Re[ψ(x;C)]

)
Curve Geometry n(x;C) = λ∇ arctan

(
Im[ψ(x;C)]
Re[ψ(x;C)]

)
Sampling Probability p(x;C) = |ψ|2/‖ψ‖22

Spatial Variance and Frequency Parameters τ, λ

MD Linearity ψ3(x;C3) = ψ1(x;C1) + ψ2(x;C2)→ d̃(x;C3) = d̃(x;C1
⋃
C2)

Kernel k((µj , νj), (µk, νk)) = τπ exp

{
− ‖µj−µk‖2

2τ
− τ‖νj−νk‖2

8λ2 +
i(νj+νk)(µj−µk)

2λ

}

easily using properties of the Gaussian integral and Fourier
transform:

‖ψ(x;C)‖22 =2τπ

N∑
k=1

N∑
j≥k

cos

(
(νj + νk)

T (µk − µj)
2λ

)
exp

{
−‖µk − µj‖

2

2τ
− τ ‖νk − νj‖

2

8λ2

}
. (6)

We can use the inner product (k) from Table I to get

〈ψ(x;C1), ψ(x;C2)〉 =
N1∑
k=1

N2∑
j=1

k((µk, νk), (µj , νj)) (7)

which we use as a reproducing kernel for comparing shapes
with position and normal parameters given by C1 and C2. The
function ψ at present is unnormalized but can be turned into a
square-root density (a probability amplitude) via normalization
(ψ → ψ

‖ψ‖2 ) which can then be used to compute shape
descriptors dependent on probabilistic features of a shape—
such as moment based features. Other interesting applications
of this aspect of ψ include maximum likelihood shape match-
ing, wherein the negative log likelihood resulting from the
probability density can be used as an objective function to
choose an optimal shape correspondence without establishing
point to point correspondences.

C. ψ for Oriented Multi-curve Shapes

As discussed above, ψ has unique properties (relative to
distance functions) stemming from additivity of the representa-
tion, leading to a high level additivity or “superimposability”.
Depending on the choices of the free parameters τ and λ,
modifying a shape with new position and orientation data can
be very easy. We briefly justify the viability of this attractive
property, and its limitations, below.

When

d̃(x) = λ arctan

(
Im[ψ(x;C)]

Re[ψ(x;C)]

)
(8)

= λ arctan


N∑
k=1

sin(
νT
k (x−µk)

λ ) exp{−‖x−µk‖2
τ }

N∑
k=1

cos(
νT
k (x−µk)

λ ) exp{−‖x−µk‖2
τ }


(9)

is evaluated, the contribution of each of the cluster centers
to the sum decays exponentially; the slow growth of the
arctangent yields stability to small contributions. To see what
this means for superposition, consider an oriented point-set C1

and let C2 be a new oriented point-set to be superimposed.
Let q1 be the zero level set of the unwrapped d̃(x;C1)
and q2 be the zero level set of the unwrapped d̃(x;C2).
Provided that p(x;C2)� p(x;C1), ∀x ∈ q1 and p(x;C1)�
p(x;C2), ∀x ∈ q2, the superposition of C1 and C2 is stable:
the resulting zero level sets approximately match q1 ∪ q2.

The takeaway from this is that multiple curves can often be
“added” easily: if one has multiple CWRs, then provided that
the properties detailed above hold, one can compute the field
by simply adding their fields together. Under this operation, the
stability of the level sets depends on the distance to the initial
set and the free parameters. When fields interact with each
other and the above fails, then point discontinuities can arise
in the phase field of ψ. However, provided that the abutting
shapes have agreeing normal information (as in Fig. 1), the
resulting superposition can maintain the desirable features of
each of the underlying sets.

In high curvature areas the frequency of the oscillatory
part and spatial accuracy of the density play a key role in
the level sets of d̃. If the sampling of the curve location
or normal data is insufficient, the superposition limitation
mentioned above kicks in and the curve may be grouped
incorrectly. On the other hand, as superimposed shape bound-
aries abut, the phase-driven orientation plays a more and
more significant role in the perceptual qualities of the field
and the level sets as outlined above. The parameters τ and
λ act as intrinsic uncertainty parameters between the multi-
curve and high curvature paradigms of shapes—a first order
extension of their interpretation of uncertainty in spatial and
normal information. A route to mitigating the abutment issue
(a universal phenomenon in multi-curve representations) is
allowing non-uniform frequency and spatial parameters to
control the degree of precision of d̃.

IV. EXPERIMENTS

A. Maximum Likelihood Alignment with |ψ|2 as a Density

The probabilistic interpretation of ψ naturally has the flavor
of a mixture of Gaussians. However, ψ has curve normal
information and the squared magnitude of ψ is not actually a



mixture of Gaussians. The latter indeed has eigenvector infor-
mation in the covariance matrix but this cannot be interpreted
as the normal to a curve: eigenvectors have direction but not
orientation since ek and −ek are the same eigenvector. In
the complex wave ψ, the normal is directly encoded into the
representation, and we can solve for it in a number of ways.
Our preliminary results for curve normal parameter estimation
using maximum likelihood suggest that the interesting (com-
putationally hard) problem of orienting the normals will be an
exciting new route to the signed distance function problem. We
must emphasize here that the CWR lends itself to multiple
avenues of the parameter estimation process: probabilistic,
geometric, and data driven (see below).

The unnormalized function |ψ(x)|2 is

|ψ(x)|2 ∝
N,N∑

j=1,k≥j

cos

(
νj(x− µj)− νk(x− µk)

λ

)
exp

{
−‖x− µj‖

2

τ
− ‖x− µk‖

2

τ

}
.

(10)

Note that this is not the L2 norm but the squared magnitude
of ψ at location x. It is not obvious from the expression
above, but as |ψ(x)|2 is the magnitude squared of a complex
number, it is nonnegative everywhere. When suitably normal-
ized, |ψ(x)|2 can be treated as a probability density function
which immediately connects it to the plethora of shape density
functions used in the literature.

Here we consider the shape registration problem under
a maximum likelihood formulation. C = {µk, νk}N1

k=1 is
given as a template and the task is to find a mapping from
P = {xj}N2

j=1 to C within a class of admissible maps H. The
maximum likelihood optimization problem

max
f∈H

N2∏
j=1

|ψ(f(xj);C)|2, (11)

is robust to Gaussian noise on C (see Fig. 2). Here H consists
of a rotation followed by a shear. Note that this is not the
same as maximizing the likelihood of a Gaussian mixture
on a test point-set since the cross terms of |ψ|2 interact.
Instead, it is uniquely suited to situations in which an oriented
template is registered to an unoriented point-set. Note that
once an alignment is achieved, the problem of signed distance
function estimation can be expressed as an extension: extend
the organization of the template set to the unorganized set.

B. ψ for kPCA on Curves

In kernel PCA (kPCA) [20], the goal is to build a linear
basis of functions, B = {ei}N−1i=1 , out of the features observed
during a training phase. The optimum basis minimizes the
error of the original feature set {ψ(x;Ci)}Ni=1. The centered
Gram Matrix Kij = 〈ψ(x;Ci), ψ(x;Cj)〉 corresponding to
oriented point-sets i and j is then eigendecomposed following
the equation

λiNei = Kei (12)

σerr/σdata |θ∗ − θ| |s∗1 − s1| |s∗2 − s2|
.045 0.006 0.076 0.046
.06 0.038 0.057 0.094

.075 0.008 0.088 0.027
.09 0.008 0.052 0.052

.105 0.006 0.029 0.042

Fig. 2. Maximum likelihood alignment using |ψ(x)|2 as a density. The blue
circles (◦) are a noiseless template with accurate normal data while the red
points (×) are points sampled from the template with Gaussian noise added.
For a range of noise parameters, an alignment of the noisy data to the template
was found by maximizing the likelihood in (11). The unknown transformation
parameters were drawn uniformly with θ ∈ [0, 2π) and s1, s2 ∈ [.5, 2]. θ is
the total rotation angle of the template, s1, s2 scale in the respective directions
of the rotated basis. σdata is the spatial standard deviation of the points in the
template, and σerr is the standard deviation of the added Gaussian noise to
the test point-set. Root mean squared relative error is reported over 25 trials
at each noise threshold.

resulting in {ei}N−1i=1 containing the kernel principal compo-
nents. Then the collection of ei corresponding to nonzero λi
are normalized and used as a basis for test patterns.

The first problem we propose to solve with kPCA is to
estimate the underlying density function model for a shape,
through the magnitude squared of its expansion on a linear
space of basis functions provided as training data. As an
added and surprising benefit, we show that the expansion
itself contains closed curves. The perceptual gains of the CWR
are conserved under kPCA encoding. The CWR is therefore
uniquely suited to PCA-based compression unlike probability
densities which are positive and integrate to one. In summary,
we can start with a set of oriented point-sets, go to our feature
basis and build a linear subspace, and accurately approximate
a closed curve and a probability density corresponding to
an unseen, test, oriented point-set in terms of a few basis
coefficients. See Fig. 3, where the closed curve estimated
by the kernel is shown on the left of the figure. This is a
novel aspect of the CWR directly leveraging the properties of
linearity and superposition to construct a basis representation.
We show that the absolute error of this representation serves
as a discriminative measure for classifying oriented point-sets.
An additional novel aspect is a framework that also yields a
generative approximation corresponding to the classification—
the wave function that emerges from the approximation of the



data in the kPCA basis.

Closed Curves Probability Density

Class 1 err1 err2
1 1.7 2.4
2 0.73 2.0
3 0.67 2.9
4 0.42 2.7
5 0.54 2.7

Class 2 err1 err2
1 2.4 0.72
2 2.2 0.74
3 2.0 1.55
4 2.1 0.34
5 2.3 1.59

Fig. 3. kPCA Results: Closed curves from linear combinations of closed
curves. Linear bases B1 = {e1i }25i=1, B2 = {e2i }25i=1, each consisting of
linear combinations of 25 patterns were used to predict the features for 5
unseen patterns. The first 24 principal components were used as a basis for
the point-sets shown. Note that through kPCA, we simultaneously estimated
a density function and a closed curve from the span of 24 training patterns
with coefficients derived from ≈ 100 elements of the oriented point-set. The
data sets used were Mirage and F-14 (wings open) [21].

V. CONCLUSIONS AND FUTURE WORK

The barrier to entry for any potential new member of
the shape zoo is high. By integrating two popular shape
representations—the signed distance transform and the prob-
ability density function—we arrived at a complex wave rep-
resentation (CWR) for shape, with Huygens’ principle acting
as a regularizer for point-set organization. With the squared
magnitude of the wave related to a probability density and the
phase related to a modular signed distance function, we have
taken the first steps toward integration.

Our work also suggests that research involving the CWR
can proceed on multiple fronts: deformable template matching,
dictionary construction, classification and indexing. Deeper
understanding of the mathematical properties of the CWR on
both a local and global level will elevate the state of the art for
dealing with some of the issues that plague the signed distance
function estimation community: since the field has geometric
and probabilistic aspects, control or regularization of signed
distance function estimation can bifurcate. In our opinion,
the most exciting aspect of the CWR lies in its potential for
advances in perceptual grouping and the computation of signed
distance functions from unorganized point-sets.
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