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On the Large Deviations of Resequencing Queue
Size: 2-M/M/1 Case

Ye Xia and David Tse

Abstract—In data communication networks, packets that ar-
rive at the receiving host may be disordered for reasons such
as retransmission of dropped packets or multi-path routing.
Reliable protocols such as TCP require packets to be accepted,
i.e., delivered to the receiving application, in the order they
are transmitted at the sender. In order to do so, the receiver’s
transport layer is responsible to temporarily buffer out-of-order
packets and to resequence them as more packets arrive. In this
paper, we analyze a model where the disordering is caused by
multi-path routing. Packets are generated according to a Poisson
process. Then, they arrive at a disordering network modelled by
two parallel M/M/1 queues, and are routed to each of the queues
according to an independent Bernoulli process. A resequencing
buffer follows the disordering network. In such a model, the
packet resequencing delay is known. However, the size of the
resequencing queue is unknown. We derive the probability for
the large deviations of the queue size.

Index Terms—Resequencing queue, large deviations, transport
protocol

I. I NTRODUCTION

Data packets can be disordered by the communication net-
works for various reasons [1]. For instance, with the help ofthe
destination address contained in every packet, the networkcan
deliberately route packets via different paths to the destination,
possibly for load balancing or for reducing transfer delay.
Some packets may be dropped when the network is congested
or when the packet is corrupted. For reliable communication,
the sender must retransmit the dropped packet, possibly caus-
ing it to arrive out-of-order at the receiver.

Most applications can only accept packets (which contain
application-level data) in the same order they are transmit-
ted at the sender. They typically rely on reliable transport
protocols, such as the Transmission Control Protocol (TCP),
to temporarily buffer out-of-order packets and to resequence
them as new packets arrive. The study of packet disordering
and resequencing is important because of the following per-
formance implications.

• Insufficient buffer size causes packet losses and reduced
throughput.

• Even when the application can consume the packets infi-
nitely fast, the packets may still suffer resequencing delay,
which increases the response time of the application.

• The large number of queued packets create bursty load to
the processor. Long queue length is typically the result
of one or a few very late packets. During the time of
queue build up, the processor stays idle most of the time.
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When the late packets finally arrive, all queued packets
are suddenly eligible for processing.

• The out-of-order packets that have arrived at the receiver
must wait at the transport layer, consuming precious
system resources such as memory and computation cy-
cles. Since they are shared resources, an unusually large
amount of out-of-order packets can negatively affect all
applications in the same system.

In our earlier paper [2], we model packet disordering by
adding an IID random propagation delay to each packet
and derive simple expressions for the required buffer size
and the resequencing delay. We demonstrate that these two
quantities can be significant and show that the resequencing
problem becomes worse as the link speed increases. In this
paper, we analyze a model with correlated delays where
the disordering is caused by multi-path routing. Packets are
generated according to a Poisson process. Then, they arriveat
a disordering network modelled by two parallel M/M/1 queues,
and are routed to each of the queues according to an inde-
pendent Bernoulli process. A resequencing buffer follows the
disordering network. In such a model, the packet resequencing
delay is known. However, the size of the resequencing queue
is unknown. We derive the probability for the large deviations
of the queue size.

This paper is organized as follows. In Section II, we describe
the resequencing model and give the main theorem of the
paper. We also discuss the relation of this study with previous
studies. Sections III, IV and V constitute the bulk of the
paper, which is a proof for the main theorem. We show some
implications of the theorem in the concluding section, VI.

II. T HE MODEL AND THE MAIN RESULT

The detailed network and resequencing model is shown
in Figure 1. Sequentially-numbered customers (or packets)
arrive at the disordering network (DN) according to a Poisson
process with rateλ. Each customer either enters queue 1
with probability p, or enters queue 2 with probability1 − p,
independent of other customers. Then, the arrival processes to
the queues in the DN are independent Poisson processes with
rateλi, i ∈ {1, 2}, where

λ1 = pλ, λ2 = (1 − p)λ.

The service times for the customers at queuei are IID
exponentially distributed with mean1/µi, i = 1, 2. Hence,
we have two M/M/1 queues in the DN. Due to the multi-
path routing, customers may be disordered after the DN. They
are resequenced at the resequencing queue (RSQ) that follows
the DN. Customers immediately leave the RSQ after they are
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Fig. 1. Network and resequencing model

properly resequenced. That is, customerj leaves the RSQ as
soon as all customersi < j have arrived at the RSQ. Note that
the server of the RSQ is assumed to have infinite processing
capacity. We are interested in computing the stationary queue
size of the RSQ. Letqr be the stationary size of the RSQ. The
main result of this paper is the following theorem. Without the
loss of generality, let us assumeµ1 − λ1 ≤ µ2 − λ2. Then,

Theorem 1:

lim
n→∞

1

n
log P{qr(t) ≥ n}

= max{log
λ2

λ2 + µ1 − λ1
, log

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
}. (1)

The studies that deal with packet disordering due to multi-
path routing (also including parallel processing or load bal-
ancing, etc.) typically analyze an open queueing network, of
which the model in Figure 1 is a special case. In some models,
a FIFO queue follows the resequencing buffer. The DN is
also modelled as a queueing system, whose type typically
distinguishes different studies. For instance, the DN is an
M/M/∞ queue in [3], an M/GI/∞ queue in [4], a GI/GI/∞
queue in [5], an M/M/2 queue in [6], an M/M/K queue in [7],
an M/H2/K queue in [8], an M/M/2 queue with a threshold-
type server assignment policy in [9], two parallel M/M/1
queues with additional fixed propagation delays in [10], and
K parallel M/GI/1 queues in [11]. A survey is given in [12].
Most of these studies are concerned mostly with finding the
distribution and/or mean of the resequencing delay or end-
to-end delay. Several also give results about the number of
packets in the resequencing queue. Among the previous studies
reviewed here, the most relevant one is [11], where the DN
consists ofK parallel M/GI/1 queues. In [11], Jean-Marie
and Gun derive the distribution of the resequencing delay. In
contrast, our results are (i) for the resequencing queue size, (ii)
of the large-deviations type, and (iii) for the 2-M/M/1-queue
case.

Packet disordering caused by the retransmissions of dropped
packets is studied within the context of automatic repeat
request (ARQ) protocols [13] [14] [15] [16] [17] [18] [19].
In these studies, ARQ is typically considered as a link-
layer protocol running between a sender-receiver pair overa
noisy link with constant propagation delay. The sender must
retransmit corrupted or dropped packets based on the feedback
information it gets from the receiver. Models in this familycan

not be easily combined into a generic model. Their details and
analytical techniques involved differ greatly. Their strength lies
in that they typically can model the feedback from the receiver
to the sender.

Many previous studies on ARQ models focused on the
throughput of the ARQ protocol, or the delay and queue size
at the sender side. For instance, Miller and Lin [15] analyzed
the throughput for certain Selective-Repeat ARQ schemes.
Towsley and Wolf analyzed the queue size and delay at the
sender side for the Stop-and-Wait ARQ and the Go-Back-N
ARQ in [13], and mean queue length for the Stutter-Go-Back-
N ARQ in [20]. Konheim [14] analyzed a Go-Back-N ARQ
and a Selective-Repeat ARQ. Anagnostou and Protonotarios
[17] analyzed the queue size and delay at the sender side in a
Selective-Repeat ARQ model. There are also several studies
on the resequencing delay and queue size at the receiver in the
ARQ literature. Rosberg and Shacham [18] analyzed a specific
Selective-Repeat ARQ protocol over a noisy forward channel
from the sender to the receiver and a perfect feedback channel.
The distributions of the buffer occupancy and the resequencing
delay at the receiver were derived. Rosberg and Sidi [19]
extended the above model to allow non-greedy source. In
several other studies, Shacham and Towsley [21] considered
the resequencing problem for a multicast Selective-Repeat
ARQ. Shacham and Shin [22] analyzed the resequencing
problem of a Selective-Repeat-ARQ with parallel channels,
using a discrete-time model. Varma [23], Ayoun and Rosberg
[24] considered optimal control problems in a queue with
two servers of different service rates. The question is how
to assign the customers to the servers so as to minimize the
end-to-end delay [23] or the long-run average holding costs
of the customers [24]. Packets get disordered at the server-
assignment stage and are required to be resequenced after
leaving the two-server queue.

In the remaining part of the paper, we will prove Theorem 1.
The basic argument of the proof is as follows. Suppose the
oldest customer in the DN isC∗ and is being serviced at queue
1 in the DN. We wish to find out the probability that the RSQ
has at leastn customers. The customers in the RSQ must have
all arrived at the DN afterC∗, and all gone through queue 2
in the DN during the timeC∗ spent in queue 1, which is
(roughly) an exponential random variable, independent of the
queue 2 process. Therefore, the probability that the RSQ has
at leastn customers is the same as the probability that at least
n customers arrive at queue 2, an M/M/1 queue, and at least
n of those customers depart the queue during an exponential
random timeT that is independent of the queue 2 process.
There is also the symmetric case where the oldest customer
is in queue 2 and all customers in the RSQ come from queue
1. In Section III, we set up the two different cases and write
the quantities to be computed. In Section IV, we compute the
key quantity,P{M(T ) ≥ n}, where the functionM(t) is the
number of those customers who arrived at the M/M/1 queue
on the interval[0, t] and who departed by timet, andT is an
exponential random variable independent of the M/M/1 queue.
In Section V, we combine results of the previous two sections
and give the proof for Theroem 1.
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III. T HE SETUP

At time t, let V (t) be the event{the DN is empty at time
t}. If V̄ (t), let C∗(t) be the oldest customer in the DN, let
W∗(t) be the timeC∗(t) has spent in the DN, and letI∗(t) be
the queue in the DN whichC∗(t) goes through. Forn ≥ 0,
let

E(t, s, n) = {at leastn customers arrived at the DN

on the interval(t − s, t], out of which

at leastn have left the DN byt}.
Let the size of the resequencing queue (RSQ) at timet be
qr(t), and letqi(t) be the size of queuei at time t, where
i = 1 or 2. Then, forn > 0,

P{qr(t) ≥ n} = P{V̄ (t) andE(t,W∗(t), n)}. (2)

Next, we will explain equality (2). When the RSQ size is
greater than or equal ton, wheren > 0, it must be waiting
for some customer still in the DN. In particular, the next
packet gap the RSQ is trying to fill isC∗(t). The customers
in the RSQ are exactly those who arrived at the DN later
than C∗(t), but who have left the DN by timet. We are
interested in computinglimt→∞ P{qr(t) ≥ n}. Alternatively,
let us assume all relevant processes are stationary.

Let us extend the definition ofW∗(t), W∗(t) = 0 if V (t).
Then, whenn = 0,

P{qr(t) ≥ n} = 1.

P{V̄ (t) andE(t,W∗(t), n)}
= P{E(t,W∗(t), n)|V̄ (t)}P{V̄ (t)} = P{V̄ (t)}.

P{V (t) andE(t,W∗(t), n)}
= P{E(t,W∗(t), n)|V (t)}P{V (t)} = P{V (t)}.

Hence, forn = 0,

P{qr(t) ≥ n} = P{E(t,W∗(t), n)}. (3)

For n > 0, (3) is still true because

P{V (t) andE(t,W∗(t), n)}
= P{E(t, 0, n)|V (t)}P{V (t)} = 0.

Note that, because customers are served on first-come-first-
serve basis in each of the queues, the oldest customers in the
non-empty DN must be in service at one of the queues. If
queuei is not empty,i ∈ {0, 1}, let Wi(t) be the duration
for which the customer in service at queuei has stayed in the
queue. If queuei is empty, letWi(t) = 0. By using a simple
reversibility argument,Wi(t) has the same distribution as the
waiting time in queuei (not including the service time) by an
arbitrary customer. This distribution and the density are (page
213 in [25]), forx ≥ 0,

FWi
(x) = P{Wi(t) ≤ x} = 1 − ρie

−(µi−λi)x, (4)

fWi
(x) = (1 − ρi)δ(x) + λi(1 − ρi)e

−(µi−λi)x, (5)

where ρi = λi/µi, and δ(x) is the Dirac delta function,
representing the point probability mass atx = 0. We will
occasionally omit the dependency ont for brevity.

Let M̂i(t, s) be the number of those customers who arrived
at queuei on the interval(t− s, t] and who departed by time
t. Note that forn > 0,

P{M̂1(t,W∗(t)) ≥ n | W1(t) = W2(t) = 0}
= P{M̂1(t, 0) ≥ n | W1(t) = W2(t) = 0} = 0.

Also,
P{W1(t) = W2(t) 6= 0} = 0.

Therefore,

P{M̂1(t,W∗(t)) ≥ n | W1(t) = W2(t)}
·P{W1(t) = W2(t)} = 0.

Then, forn > 0,

P{qr(t) ≥ n}
= P{E(t,W∗(t), n)}
= P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

· P{W1(t) > W2(t)}
+ P{M̂1(t,W∗(t)) ≥ n | W2(t) > W1(t)}
· P{W2(t) > W1(t)}. (6)

This can be explained as follows. IfW1(t) > W2(t), then the
oldest customer,C∗(t), in the DN must be in service at queue
1. Hence,W1(t) = W∗(t). All customers who came to the DN
after C∗(t) and who have left the DN by timet must have
been routed to the RSQ via queue 2.

For n > 0,

P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W1(t) = s,W1(t) > W2(t)}

· fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W1(t) = s,W2(t) < s}

· fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}

· fW1|W1>W2
(s)ds. (7)

In the above,fW1|W1>W2
(s) denotes the conditional density

of W1(t) given {W1(t) > W2(t)}. In the last step, we used
the fact that the two queue processes are independent. Note
that, in the integral, the (conditional) probability mass at s = 0
does not contribute to the probability on the left hand side.

We will compute the conditional density by starting with
the joint probability. Forx ≥ 0,

P{W1 > x,W1 > W2}

= ρ1e
−(µ1−λ1)x − ρ1ρ2

µ1 − λ1

µ1 − λ1 + µ2 − λ2

· e−(µ1−λ1+µ2−λ2)x. (8)

From (8), we have

P{W1 > W2} = P{W1 > 0,W1 > W2}

= ρ1 − ρ1ρ2
µ1 − λ1

µ1 − λ1 + µ2 − λ2
. (9)
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From (8) and (9), we get the conditional density forx ≥ 0,

fW1|W1>W2
(x)

= K1e
−(µ1−λ1)x − K2e

−(µ1−λ1+µ2−λ2)x, (10)

whereK1 andK2 are constants, given by,

K1 =
µ1 − λ1

1 − ρ2
µ1−λ1

µ1−λ1+µ2−λ2

, (11)

K2 =
ρ2(µ1 − λ1)

1 − ρ2
µ1−λ1

µ1−λ1+µ2−λ2

. (12)

Note that the second term in (10) decays much faster than the
first term. If we ignore it, the conditional probability density
decays exponentially.

Next, we will bound (7) from above and below.
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) < s}fW1|W1>W2
(s)

P{W2(t) < s}ds

≤
∫ ∞

0+

P{M̂2(t, s) ≥ n} fW1|W1>W2
(s)

P{W2(t) = 0}ds

≤ 1

1 − ρ2

∫ ∞

0+

P{M̂2(t, s) ≥ n}fW1|W1>W2
(s)ds. (13)

For a lower bound,
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) < s}fW1|W1>W2
(s)

P{W2(t) < s}ds

≥
∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) = 0}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n, q2(t) = 0}fW1|W1>W2
(s)ds. (14)

In the next section, we will prepare to compute the upper
and lower bound.

IV. COMPUTATION OFP{M(T ) ≥ n}
In this section, we consider a stationary M/M/1 queue whose

arrival rate isλ1 and whose departure rate isµ1. We assume
λ1 < µ1 so that the queue is stable. LetT be an exponential
random variable independent of the queue process with mean
1/(µ2−λ2), whereλ2 < µ2. Let M(t) be the number of those
customers who arrived on the interval[0, t] and who departed
by time t. We wish to computeP{M(T ) ≥ n} for large n.
The main result of this section is Theorem 2. A similar result
is Lemma 4.

Theorem 2:

lim
n→∞

1

n
log P{M(T ) ≥ n}

=

{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

. (15)

In the next two subsections, we will prove Theorem 2. We
will frequently use the following fact. Fora > 0 and integer
k ≥ 0,

Fact 3:
∫ ∞

0

e−attk

k!
dt = (

1

a
)k+1. (16)

A. Case of µ1 − λ1 ≥ µ2 − λ2

1) The Upper Bound:

P{M(T ) ≥ n}
≤ P{the number of customer arrivals on the

interval [0, T ] is at leastn} (17)

=
∞
∑

k=n

∫ ∞

0

e−λ1t(λ1t)
k

k!
(µ2 − λ2)e

−(µ2−λ2)tdt

=
∞
∑

k=n

(µ2 − λ2)

∫ ∞

0

e−(λ1+µ2−λ2)t(λ1t)
k

k!
dt

=

∞
∑

k=n

µ2 − λ2

λ1 + µ2 − λ2
(

λ1

λ1 + µ2 − λ2
)k (by (16))

=
µ2 − λ2

λ1 + µ2 − λ2

( λ1

λ1+µ2−λ2
)n

1 − λ1

λ1+µ2−λ2

= (
λ1

λ1 + µ2 − λ2
)n.

2) The Lower Bound: For a function that grows as
exp(αn + o(n)) when n increases,α is the rate of growth.
The method that estimates the rate of growth of an integral by
that of the maximum of the integrand is known as the Laplace
principle (See page 12 of [26].). In our case, we will consider
the following integral, asn gets large,

∫ ∞

0

e−λ1t(λ1t)
n

n!
(µ2 − λ2)e

−(µ2−λ2)tdt.

It can be shown easily that the integrand is maximized at,

to = n/(λ1 + µ2 − λ2). (18)

This information will be useful in the proof for the lower
bound.

Let q(t) be the queue size at timet. Let D(t) be the number
of departures on the interval[0, t].

P{M(t) = k}

=

∞
∑

m=0

P{M(t) = k|q(0) = m}P{q(0) = m}

≥ P{M(t) = k|q(0) = 0}P{q(0) = 0}
= (1 − ρ1)P{D(t) = k|q(0) = 0}
≥ (1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0}. (19)
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From [27] (page 199),

P{D(t) = k, q(t) = 0|q(0) = 0}

=
∞
∑

i=0

(1 + i)ρk
1

k!(k + i + 1)!
(µ1t)

2k+ie−(λ1+µ1)t

=
(λ1t)

ke−λ1t

k!

∞
∑

i=0

1 + i

(k + i + 1)!
(µ1t)

k+ie−µ1t

≥ 1

k + 1

(λ1t)
ke−λ1t

k!

∞
∑

i=0

1

(k + i)!
(µ1t)

k+ie−µ1t

=
1

k + 1

(λ1t)
ke−λ1t

k!
P{Y(µ1t) ≥ k}, (20)

where Y(µ1t) is a Poisson random variable with meanµ1t.
Now, with the definition ofto as in (18),

P{M(T ) ≥ n}
≥ P{M(T ) ≥ n, T ≥ to}
≥ P{M(to) ≥ n, T ≥ to}
= P{M(to) ≥ n}P{T ≥ to} (21)

=

∞
∑

k=n

P{M(to) = k}P{T ≥ to}. (22)

The equality in (21) is because of independence between the
queue process and the random variableT . Then, by (22), (19)
and (20),

P{M(T ) ≥ n}

≥ (1 − ρ1)

∞
∑

k=n

1

k + 1

(λ1to)
ke−λ1to

k!

· P{Y(µ1to) ≥ k}e−(µ2−λ2)to

≥ (1 − ρ1)
1

n + 1

(λ1to)
ne−λ1to

n!

· P{Y(µ1to) ≥ n}e−(µ2−λ2)to . (23)

We will show P{Y(µ1to) ≥ n} is greater than a constant asn
tends to infinity. By the definition ofto and by the assumption
µ1 − λ1 ≥ µ2 − λ2,

µ1to =
µ1

λ1 + µ2 − λ2
n ≥ n.

Let no = ⌊µ1to⌋. Then,no ≥ n. Let X1,X2, ...,Xno
be IID.

Poisson random variables with mean 1. Then,

P{Y(µ1to) ≥ n} ≥ P{X1 + X2 + ... + Xno

no

≥ n

no

}

≥ P{X1 + X2 + ... + Xno

no

≥ 1}

= P{X1 + X2 + ... + Xno
− no√

no
√

no

≥ 0}

= P{X1 + X2 + ... + Xno
− no√

no

≥ 0}.

By the central limit theorem,

lim
no→∞

P{X1 + X2 + ... + Xno
− no√

no

≥ 0}

=

∫ ∞

0

1√
2π

e−
x
2

2 dx =
1

2
.

Therefore, for anyǫ > 0, there exists some integerN > 0
such that for alln > N ,

P{Y(µ1to) ≥ n} ≥ 1

2
− ǫ. (24)

Continuing from (23), for alln > N ,

P{M(T ) ≥ n}

≥ (1 − ρ1)(
1

2
− ǫ)

1

n + 1

(λ1to)
ne−λ1to

n!
e−(µ2−λ2)to . (25)

By Stirling’s approximation,

n! =
√

2πnnne−n(1 + O(1/n)).

For sufficiently largen,

n! ≤ 2
√

2πnnne−n.

Therefore, for large enoughn, using the definition forto in
(18), we have

P{M(T ) ≥ n}

≥ 1

4
(1 − ρ1)(1 − 2ǫ)

1

n + 1
(

λ1

λ1 + µ2 − λ2
)n

·
nn exp(− λ1

λ1+µ2−λ2
n)

√
2πnnne−n

exp(− µ2 − λ2

λ1 + µ2 − λ2
n)

=
(1 − ρ1)(1 − 2ǫ)

4
√

2πn(n + 1)
(

λ1

λ1 + µ2 − λ2
)n. (26)

B. Case of µ1 − λ1 < µ2 − λ2

1) The Lower Bound: By (19) and (20),

P{M(T ) ≥ n}

≥
∫ ∞

0

∞
∑

k=n

(1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0}

· (µ2 − λ2)e
−(µ2−λ2)tdt (27)

≥ (1 − ρ1)(µ2 − λ2)
1

n + 1

·
∫ ∞

0

(λ1t)
ne−λ1t

n!
P{Y(µ1t) = n}e−(µ2−λ2)tdt

= (1 − ρ1)(µ2 − λ2)
1

n + 1

·
∫ ∞

0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)tdt

= (1 − ρ1)(µ2 − λ2)
1

n + 1

(2n)!

n!n!
(λ1µ1)

n

·
∫ ∞

0

t2ne−(λ1+µ1+µ2−λ2)t

(2n)!
dt

= (1 − ρ1)
µ2 − λ2

λ1 + µ1 + µ2 − λ2

1

n + 1

(2n)!

n!n!

· (λ1µ1)
n 1

(λ1 + µ1 + µ2 − λ2)2n
.

In deriving the last step, (16) has been used. By Stirling’s
approximation, for large enoughn,

(2n)!

n!n!
=

√
4πn(2n)2ne−2n(1 + O(1/n))

(
√

2πn(n)ne−n(1 + O(1/n)))2
≥ C1√

n
4n,
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for some constantC1 > 0. Therefore,

P{M(T ) ≥ n}

≥ C1(1 − ρ1)
µ2 − λ2

λ1 + µ1 + µ2 − λ2

· 1√
n(n + 1)

(
4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n. (28)

2) The Upper Bound: The computation for the upper bound
in the previous case does not apply here. To see the reason,
consider the integral in the lower bound calculation. Suppose,
asn becomes large,

∫ ∞

0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)tdt

≈ max
t≥0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)t.

It can be shown easily the above maximum is achieved at

to =
2n

λ1 + µ1 + µ2 − λ2
. (29)

Note that whenµ1 − λ1 < µ2 − λ2,

µ1t0 =
2µ1n

λ1 + µ1 + µ2 − λ2
< n.

Therefore,{Y(µ1to) ≥ n} is a large deviations type of event
instead of an event with constant probability, asn becomes
large. It is not tight enough to boundP{M(t) ≥ n} from
above by only looking at the arrival processes, as was done in
(17).

We will next carry out the analysis on the upper bound.

P{M(t) ≥ n}
≤ P{at leastn customers arrived on the interval[0, t], and

at leastn customers are served on the same interval}

≤
∞
∑

k=n

e−λ1t(λ1t)
k

k!
P{

n
∑

i=1

Xi ≤ t}, (30)

where {X1,X2, ...,Xn} are IID service times. The sum
∑n

i=1 Xi has the Gamma distribution with density,

f(t) =
µ1e

−µ1t(µ1t)
n−1

(n − 1)!
.

Hence,

P{M(T ) ≥ n}

≤
∞
∑

k=n

∫ ∞

0

e−λ1t(λ1t)
k

k!
∫ t

0

µ1e
−µ1τ (µ1τ)n−1

(n − 1)!
dτ(µ2 − λ2)e

−(µ2−λ2)tdt

= µ1(µ2 − λ2)
∞
∑

k=n

∫ ∞

0

∫ ∞

τ

e−(λ1+µ2−λ2)t(λ1t)
k

k!
dt

· e−µ1τ (µ1τ)n−1

(n − 1)!
dτ.

Let t = τ + u. The above becomes,

P{M(T ) ≥ n}

≤ µ1(µ2 − λ2)

∞
∑

k=n

∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)(τ+u)(λ1(τ + u))k

k!
du

eµ1τ (µ1τ)n−1

(n − 1)!
dτ

= µ1(µ2 − λ2)

∞
∑

k=n

λk
1

∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)u
∑k

i=0
k!

i!(k−i)!u
iτk−i

k!
du

e−(λ1+µ1+µ2−λ2)τ (µ1τ)n−1

(n − 1)!
dτ

= µ1(µ2 − λ2)

∞
∑

k=n

λk
1

k
∑

i=0

1

(k − i)!
∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)uui

i!
du

e−(λ1+µ1+µ2−λ2)ττk−i(µ1τ)n−1

(n − 1)!
dτ

= (µ2 − λ2)µ
n
1

∞
∑

k=n

λk
1

k
∑

i=0

1

(k − i)!

1

(λ1 + µ2 − λ2)i+1

∫ ∞

0

e−(λ1+µ1+µ2−λ2)ττn−1+k−i

(n − 1)!
dτ

= (µ2 − λ2)µ
n
1

∞
∑

k=n

λk
1

k
∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!

1

(λ1 + µ2 − λ2)i+1

1

(λ1 + µ1 + µ2 − λ2)n+k−i

=
µ2 − λ2

λ1 + µ2 − λ2
(

µ1

λ1 + µ1 + µ2 − λ2
)n

∞
∑

k=n

(
λ1

λ1 + µ1 + µ2 − λ2
)k

·
k

∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!
(
λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2
)i. (31)

For i = 0, 1, ..., k, define

a(k, i) =
(n − 1 + k − i)!

2k(k − i)!(n − 1)!
.

Let
β =

λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2
.

Note that forµ1 − λ1 < µ2 − λ2, β < 2.

a(k + 1, i)

a(k, i)
=

n + k − i

2(k + 1 − i)
=

1 + n−1
k+1−i

2
.

Then, for each fixedi ∈ {0, 1, ..., k},

a(k + 1, i)

a(k, i)

{

≥ 1 if k ≤ n + i − 2
< 1 if k > n + i − 2

.
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Therefore,a(k, i) is maximized atk = n + i− 1 for eachi 1.
Then,

a(n + i − 1, i) =
(2n − 2)!

(n − 1)!(n − 1)!2n+i−1
.

Then, the sum in (31) index byi becomes,

k
∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!
(
λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2
)i

= 2k

k
∑

i=0

a(k, i)βi

≤ 2k−n

k
∑

i=0

2(2n − 2)!

(n − 1)!(n − 1)!
(
β

2
)i

≤ 2k−n 2(2n − 2)!

(n − 1)!(n − 1)!

∞
∑

i=0

(
β

2
)i

= 2k−n 2(2n − 2)!

(n − 1)!(n − 1)!

2

2 − β
.

The infinite sum above is finite becauseβ/2 < 1. Going back
to (31), we get,

P{M(T ) ≥ n}

≤ 4(µ2 − λ2)

(2 − β)(λ1 + µ2 − λ2)

(2n − 2)!

2n(n − 1)!(n − 1)!

(
µ1

λ1 + µ1 + µ2 − λ2
)n

∞
∑

k=n

(
2λ1

λ1 + µ1 + µ2 − λ2
)k (32)

=
4(µ2 − λ2)

µ2 − λ2 − (µ1 − λ1)

(2n − 2)!

2n(n − 1)!(n − 1)!

(
µ1

λ1 + µ1 + µ2 − λ2
)n

· ( 2λ1

λ1 + µ1 + µ2 − λ2
)n/(1 − 2λ1

λ1 + µ1 + µ2 − λ2
). (33)

The sum in (32) is finite because, forµ1 − λ1 < µ2 − λ2 and
λ1 < µ1,

2λ1

λ1 + µ1 + µ2 − λ2
< 1. (34)

By Stirling’s approximation,

(2n)!

n!n!
=

√
4πn(2n)2ne−2n(1 + O(1/n))

(
√

2πn(n)ne−n(1 + O(1/n)))2
≤ C2√

n
4n, (35)

Combining (33) and (35), we have, for some constantC4 > 0,

P{M(T ) ≥ n} ≤ C4√
n

(
4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n.

This completes the analysis on the upper bound.

C. A Related Lemma to Theorem 2

The following lemma is also used in the proof of Theorem 1.
Its proof is directly related to that of Theorem 2. The notations
will be the same as those used in the proof of the lower bound
in Theorem 1.

1We assume thatn is large enough when necessary. In this case,n ≥ 1.

Lemma 4:

lim
n→∞

1

n
log P{M(T ) ≥ n, q(T ) = 0}

=

{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

. (36)

Proof: Since

P{M(T ) ≥ n, q(T ) = 0} ≤ P{M(T ) ≥ n},

The upper bound is immediate from Theorem 2. We only need
to show the left hand side of (36) is no less than the right hand
side.

Let us first consider the case whereµ1 − λ1 ≥ µ2 − λ2.
Conditional onT , which is independent of the queue process,
we have

P{M(T ) ≥ n, q(T ) = 0}

=

∫ ∞

0

P{M(t) ≥ n, q(t) = 0}(µ2 − λ2)e
−(µ2−λ2)tdt

=

∞
∑

k=n

∫ ∞

0

P{M(t) = k, q(t) = 0}(µ2 − λ2)e
−(µ2−λ2)tdt

≥
∞
∑

k=n

∫ ∞

0

P{M(t) = k, q(t) = 0|q(0) = 0}P{q(0) = 0}

· (µ2 − λ2)e
−(µ2−λ2)tdt

=
∞
∑

k=n

∫ ∞

0

(1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0}

· (µ2 − λ2)e
−(µ2−λ2)tdt (37)

≥
∞
∑

k=n

∫ ∞

0

(1 − ρ1)
1

k + 1

(λ1t)
ke−λ1t

k!
P{Y(µ1t) ≥ k}

· (µ2 − λ2)e
−(µ2−λ2)tdt (38)

≥
∞
∑

k=n

∫ ∞

to

(1 − ρ1)
1

k + 1

(λ1t)
ke−λ1t

k!
P{Y(µ1t) ≥ k}

· (µ2 − λ2)e
−(µ2−λ2)tdt

≥
∫ ∞

to

(1 − ρ1)
1

n + 1

(λ1t)
ne−λ1t

n!
P{Y(µ1t) ≥ n}

· (µ2 − λ2)e
−(µ2−λ2)tdt. (39)

To obtain (38), we have used (20). In the last two steps above,
to is as given in (18). Note that, for allt ≥ to,

P{Y(µ1t) ≥ n} ≥ P{Y(µ1to) ≥ n}. (40)

By (40) and (24), we obtain that, for anyǫ > 0, there exists
some integerN > 0 such that for alln ≥ N and for allt ≥ to,

P{Y(µ1t) ≥ n} ≥ 1

2
− ǫ.

Continuing from (39), we get

P{M(T ) ≥ n, q(T ) = 0}

≥(1 − ρ1)(
1

2
− ǫ)

(µ2 − λ2)

n + 1

∫ ∞

to

(λ1t)
ne−λ1t

n!
e−(µ2−λ2)tdt.

(41)
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As noted in (18), the above integrand achieves the maximum
value atto. Furthermore, it is easy to show that, fort ≥ to,
the integrand is a decreasing function oft. We must have,

∫ ∞

to

(λ1t)
ne−λ1t

n!
e−(µ2−λ2)tdt

≥
∫ to+1

to

(λ1t)
ne−λ1t

n!
e−(µ2−λ2)tdt

≥ (λ1(to + 1))ne−λ1(to+1)

n!
e−(µ2−λ2)(to+1)

≥ (λ1to)
ne−λ1to

n!
e−(µ2−λ2)toe−(λ1+µ2−λ2). (42)

Combining (41) and (42), for sufficiently largen, we get,

P{M(T ) ≥ n, q(T ) = 0}

≥ (1 − ρ1)(
1

2
− ǫ)

(µ2 − λ2)

n + 1
e−(λ1+µ2−λ2)

· (λ1to)
ne−λ1to

n!
e−(µ2−λ2)to . (43)

Following the steps in (25) to (26), for sufficiently largen,
we get the lower bound

P{M(T ) ≥ n}

≥ (1 − ρ1)(1 − 2ǫ)(µ2 − λ2)

4
√

2πn(n + 1)
e−(λ1+µ2−λ2)(

λ1

λ1 + µ2 − λ2
)n.

(44)

Next, let us consider the case whereµ1 − λ1 < µ2 − λ2.
From (37), we have

P{M(T ) ≥ n, q(T ) = 0}

≥
∞
∑

k=n

∫ ∞

0

(1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0}

· (µ2 − λ2)e
−(µ2−λ2)tdt.

The rest of the steps are identical to the lower bound proof in
Theorem 2 from (27) to (28).

V. PROOF OFTHEOREM 1

We will combine the results of the previous two sections
and prove the main theorem. We wish to show that, without
the loss of generality, whenµ1 − λ1 ≤ µ2 − λ2,

lim
n→∞

1

n
log P{qr(t) ≥ n}

= max{log
λ2

λ2 + µ1 − λ1
, log

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
}.

(45)

Proof: We need to find the asymptotic exponent for
the two terms in (6), asn approaches infinity. The factors
P{W1(t) > W2(t)} andP{W2(t) > W1(t)} are constants on
(0, 1), not dependent onn. For instance,P{W1(t) > W2(t)}
is given by (9). We will not carry these factors around in the
subsequent analysis.

We will first consider the first term in (6). We wish to show

lim
n→∞

1

n
log P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

=

{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

. (46)

For the lower bound, we combine (7), (14) and (10), and
get

P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

≥
∫ ∞

0+

P{M̂2(t, s) ≥ n, q2(t) = 0}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M2(s) ≥ n, q2(s) = 0}fW1|W1>W2
(s)ds

= K1

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}e−(µ1−λ1)sds −

K2

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}e−(µ1−λ1+µ2−λ2)sds,

(47)

whereK1 > 0 and K2 > 0 are constants given in (11) and
(12). In the above, we have used the conditional density of
W1 given {W1 > W2} from (10). By Lemma 4 with suitable
substitution of variables, and since

µ2 − λ2 < µ1 − λ1 + µ2 − λ2,

the second term in (47) has the following asymptotic exponent,

lim
n→∞

1

n
log

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}

· e−(µ1−λ1+µ2−λ2)sds

= log
4λ2µ2

(λ2 + µ2 + µ1 − λ1 + µ2 − λ2)2

= log
4λ2µ2

(2µ2 + µ1 − λ1)2
. (48)

By Lemma 4 with suitable substitution of variables, the first
term in (47) has the following asymptotic exponent,

lim
n→∞

1

n
log

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}e−(µ1−λ1)sds

=

{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

. (49)

Now,

λ2

λ2 + µ1 − λ1
=

4λ2µ2

4λ2µ2 + 4µ1µ2 − 4λ1µ2
,

4λ2µ2

(2µ2 + µ1 − λ1)2
=

4λ2µ2

4µ2
2 + 4µ1µ2 − 4λ1µ2 + (µ1 − λ1)2

.

Hence, we have

λ2

λ2 + µ1 − λ1
>

4λ2µ2

(2µ2 + µ1 − λ1)2
.

Also, becauseλ2 < µ2, we have

4λ2µ2

(λ2 + µ2 + µ1 − λ1)2
>

4λ2µ2

(2µ2 + µ1 − λ1)2
.
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Therefore, we can ignore the contribution from (48) when
considering the lower bound of the left hand side in (46).
Then, (49) gives the lower bound.

For the upper bound of the left hand side in (46), we
combine (7) and (13), and get

P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

≤ 1

1 − ρ2

∫ ∞

0+

P{M̂2(t, s) ≥ n}fW1|W1>W2
(s)ds. (50)

Using a similar argument as in the derivation of the lower
bound, but with Theorem 2 substituting the role of Lemma 4,
we get

lim
n→∞

1

n
log

∫ ∞

0+

P{M̂2(t, s) ≥ n}fW1|W1>W2
(s)ds

=

{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

. (51)

Since the upper and lower bound agree with each other, we
get (46).

To determineP{qr(t) ≥ n} for large n, we also need
to consider the second term in (6),P{M̂1(t,W∗(t)) ≥
n | W2(t) > W1(t)}. By symmetry,

lim
n→∞

1

n
log P{M̂1(t,W∗(t)) ≥ n | W2(t) > W1(t)}

=

{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

. (52)

Whenµ1−λ1 ≤ µ2−λ2, combining (6), (46) and (52), we
get (45).

VI. CONCLUSION

To conclude, we discuss the implications of Theorem 1.
When,λ1 = λ2 andµ1 = µ2,

lim
n→∞

1

n
log P{qr(t) ≥ n} = log ρ1.

Whenµ1 − λ1 = µ2 − λ2,

lim
n→∞

1

n
log P{qr(t) ≥ n} = max{log ρ1, log ρ2}.

Like all GI/GI/1 queues, the resequencing queue size de-
pends on the arrival and departure rates through a dimension-
less parameter. This implies that the resequencing queue size
does not change with the link speed of the network, if all
links involved scale their bandwidth by the same factor and
if the traffic characteristics are not altered by the technology
change. This is in contrast with the models from our previous
paper [2], where the improvement of network speed worsens
the packet resequencing problem in terms of both the queue
size and the delay. In the current model, there can be many
ways to produce the large resequencing queue size, which, in
general, depends on parameters for both queues in the DN.
According to Theorem 1, forµ1 −λ1 ≤ µ2 −λ2 and for large
n,

P{qr(t) ≥ n}

≈ max{( λ2

λ2 + µ1 − λ1
)n, (

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n}.

In the first term above, λ2

λ2+µ1−λ1
≈ 1 if µ1−λ1 ≪ λ2. In the

second term above, 4λ1µ1

(λ1+µ1+µ2−λ2)2
≈ 1 if µ2−λ2 ≪ λ1+µ1

andλ1 ≈ µ1. This implies that, for the second term to decay
slowly, we need to have

µ1 − λ1 ≤ µ2 − λ2 ≪ 2µ1 ≈ 2λ1.

An interesting observation is that it can be large even when
the queue sizes in the DN are both small. This occurs when
the two disordering queues are “mismatched”, that is, when
one of the disordering queues is much faster than the other in
terms of both the arrival rate and the service rate. For example,
supposeµi = 2λi for i = 1 and 2. Hence,ρ1 = ρ2 = 1/2,
and for i = 1 and 2,

lim
n→∞

1

n
log P{qi(t) ≥ n} = log

1

2
.

Suppose, in the DN, queue 2 is ten times faster than queue 1,
i.e., λ2 = 10λ1 andµ2 = 10µ1. Then,

lim
n→∞

1

n
log P{qr(t) ≥ n} = log

10

11
.

Intuitively, the queue size of the RSQ can be large because
many later packets can go through queue 2 in the DN and end
up waiting in the RSQ, while some earlier packets are waiting
in queue 1.
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Fig. 2. P{qr
= n}: Simulation results. (a)λ1 = 1, µ1 = 2, λ2 = 10,

µ2 = 20; (b) λ1 = 10, µ1 = 20, λ2 = 1, µ2 = 12

In Figure 2, we show the simulation results forP{qr = n}
and compare them with the analytical results in Theorem 1.
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In Figure 2 (a), the parameters are chosen so that

λ2

λ2 + µ1 − λ1
=

10

11
= 0.9091,

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
=

8

169
= 0.0473.

In Figure 2 (b), the parameters are chosen so that

λ2

λ2 + µ1 − λ1
=

1

21
= 0.0476,

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
=

800

1681
= 0.4759.

Loosely speaking, Theorem 1 says, forµ1 − λ1 ≤ µ2 − λ2

and for largen,

P{qr(t) ≥ n} = e−δn+o(n), (53)

where o(n) is a function that grows more slowly thann,
i.e., o(n)/n → 0 as n tends to infinity. The large deviations
analysis of this paper is able to give an expression for the
parameterδ,

δ = −max{log
λ2

λ2 + µ1 − λ1
, log

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
},

but cannot capture the nature ofo(n). In each plot of Figure
2, the gap between the two curves shows the “imprecision”
of the large deviations result. That is, it shows how much the
large deviations result misses the actual tail probabilityof the
queue size.

From the modelling point of view, compared with those in
[2], the model in this paper allows non-IID packet delays in
the DN and it specifically models packet disordering caused
by routing on different paths. As for generalization, our
preliminary work shows that there are similar large deviations
results for more complex arrival and service processes for
the queues in the DN, even for the case of non-IID arrival
processes. However, in order to generalize, we must rely
on more generalizable arguments than many probabilistic
arguments used in this paper, which specifically depend on
the underlying probability distributions. In another direction of
generalization, we can consider a disordering network withk
parallel M/M/1 queues, wherek ≥ 3. Preliminary investigation
seems to show that there are no conceptual hurdle in that
direction but careful book-keeping is required. Finally, one
weakness of these models is that they do not allow situations
that yield heavy-tailed distributions for the RSQ.

APPENDIX

ALTERNATIVE PROOFS FOR THEUPPERBOUND IN THE

PROOF OFTHEOREM 2: CASE OFµ1 − λ1 < µ2 − λ2

We will work directly with the departure process. Following
the approach in [27] (chapter 2, section 4), let

Hij(t) = P{q(t) = i,D(t) = j|q(0) = 0}, (54)

whereD(t) is the number of departures on the interval[0, t].
We will show

Lemma 5:

Hij(t) =
ρi+j
1 e−(λ1+µ1)t(µ1t)

2j+i

j!

∞
∑

l=0

(i + l + 1)(µ1t)
l

(j + i + l + 1)!
.

(55)
Therefore,

P{M(t) = j|q(0) = 0}

=
∞
∑

i=0

Hij(t)

=
ρj
1e

−(λ1+µ1)t(µ1t)
2j

j!

∞
∑

i=0

ρi
1(µ1t)

i

∞
∑

l=0

(i + l + 1)(µ1t)
l

(j + i + l + 1)!
.

(56)

Proof: We will start with the integral transform ofHij(t).
Define

H∗(p, q, s) :=

∞
∑

i=0

∞
∑

j=0

piqj

∫ ∞

0

e−sτHij(τ/µ1)dτ, (57)

where |p| < 1, |q| < 1 and Res > 0. It is shown in [27]
(page 198),

H∗(p, q, s) =
(q − p)x2(q) − (q − x2(q))p

(q − x2(q))(ρ1p2 − (1 + ρ1 + s)p + q)
, (58)

wherex2(q) is one solution to the equation

ρ1p
2 − (1 + ρ1 + s)p + q = 0.

The two solutions forp are

x1(q) =
1 + ρ1 + s +

√

(1 + ρ1 + s)2 − 4ρ1q

2ρ1
,

x2(q) =
1 + ρ1 + s −

√

(1 + ρ1 + s)2 − 4ρ1q

2ρ1
.

It can be shown that for Res > 0 and |q| ≤ 1,

|x1(q)| > 1, |x2(q)| < 1.

We will use the fact that, forn = 1, 2, ...,

xn
2 (q)

=

∫ ∞

0

e−(1+ρ1+s)τ nqn

τ(ρ1q)
n

2

In(2τ
√

ρ1q)dτ

=
∞
∑

m=0

qn+m

∫ ∞

0

e−(1+ρ1+s)τ nρm
1

m!(m + n)!
τ2m+n−1dτ.

(59)

whereIn(x) is the modified Bessel function of the first kind
with series expansion

In(x) =
∞
∑

m=0

( 1
2x)n+2m

m!(m + n)!
, n = 0, 1, ...

To find an expression forHij(t), we will expandH∗(p, q, s)
into power series ofp. Starting with (58),

H∗(p, q, s) =
q(x2(q) − p)

ρ1(q − x2(q))(p − x1(q))(p − x2(q))

=
−q

ρ1(q − x2(q))(p − x1(q))

=
q

ρ1(q − x2(q))

1

x1(q)

∞
∑

i=0

(
p

x1(q)
)i. (60)
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In the above, the series expansion is valid when|p| < |x1(q)|,
which is satisfied when|p| is small enough. By (60) and by
the definition ofH∗(p, q, s) in (57), the coefficient forpi in
the power series expansion ofH∗(p, q, s) with respect top is

∞
∑

j=0

qj

∫ ∞

0

e−sτHij(τ/µ1)dτ =
q

ρ1(q − x2(q))

1

xi+1
1 (q)

.

(61)
Next, we use the fact

x1(q)x2(q) =
q

ρ1
,

and we express q
q−x2(q)

in power series ofx2(q)
q

. We get,

∞
∑

j=0

qj

∫ ∞

0

e−sτHij(τ/µ1)dτ = ρi
1

∞
∑

l=0

xi+l+1
2 (q)

qi+l+1
. (62)

The above series expansion is true when|x2(q)| < |q|, which
can be satisfied if|s| is large enough. By (59),

∞
∑

j=0

qj

∫ ∞

0

e−sτHij(τ/µ1)dτ

=ρi
1

∞
∑

l=0

∞
∑

j=0

qj

∫ ∞

0

e−(1+ρ1+s)τ (i + l + 1)ρj
1

j!(j + i + l + 1)!
τ2j+i+ldτ.

(63)

Matching both sides term-by-term, we get

Hij(τ/µ1) = ρi
1

∞
∑

l=0

(i + l + 1)ρj
1

j!(j + i + l + 1)!
e−(1+ρ1)ττ2j+i+l.

(64)
Replacingτ/µ1 by t, we get (55).

We will now show the upper bound. First, we notice that
for all integeri ≥ 0,

P{M(t) = j|q(0) = i} ≤ P{M(t) = j|q(0) = 0}.
This is because

P{M(t) = j|q(0) = i}
= P{At least j customers arrived on[0, t], the i customers

in the queue at time 0 and the firstj customers who

arrived on[0, t] are served by timet},
and this probability should be monotonically decreasing ini.
Hence,

P{M(T ) = n}

=

∫ ∞

0

P{M(t) = n}(µ2 − λ2)e
−(µ2−λ2)tdt

=

∫ ∞

0

∞
∑

i=0

P{M(t) = n|q(0) = i}P{q(0) = i}

· (µ2 − λ2)e
−(µ2−λ2)tdt

≤
∫ ∞

0

∞
∑

i=0

P{M(t) = n|q(0) = 0}P{q(0) = i}

· (µ2 − λ2)e
−(µ2−λ2)tdt

=

∫ ∞

0

P{M(t) = n|q(0) = 0}(µ2 − λ2)e
−(µ2−λ2)tdt.

By (56),

P{M(T ) = n}

≤
∫ ∞

0

ρn
1 e−(λ1+µ1)t(µ1t)

2n

n!

∞
∑

i=0

ρi
1(µ1t)

i

·
∞
∑

l=0

(i + l + 1)(µ1t)
l

(n + i + l + 1)!
(µ2 − λ2)e

−(µ2−λ2)tdt.

Becausen + i + l + 1 ≥ i + l + 1 for all n ≥ 0,

P{M(T ) = n}

≤
∫ ∞

0

ρn
1 e−(λ1+µ1)t(µ1t)

2n

n!

∞
∑

i=0

ρi
1(µ1t)

i

·
∞
∑

l=0

(µ1t)
l

(n + i + l)!
(µ2 − λ2)e

−(µ2−λ2)tdt

= (µ2 − λ2)
∞
∑

i=0

∞
∑

l=0

ρn+i
1 (2n + i + l)!

n!(n + i + l)!

·
∫ ∞

0

e−(λ1+µ1+µ2−λ2)t(µ1t)
2n+i+l

(2n + i + l)!
dt

=
µ2 − λ2

λ1 + µ1 + µ2 − λ2

·
∞
∑

i=0

∞
∑

l=0

ρn+i
1 (2n + i + l)!

n!(n + i + l)!
(

µ1

λ1 + µ1 + µ2 − λ2
)2n+i+l.

In deriving the last step, (16) has been used. Note that

(2n + i + l)!

n!(n + i + l)!
=

(2n)!

n!n!

(2n + 1)(2n + 2)...(2n + i + l)

(n + 1)(n + 2)...(n + i + l)

≤ (2n)!

n!n!
2i+l.

Hence

P{M(T ) = n}

≤ µ2 − λ2

λ1 + µ1 + µ2 − λ2

(2n)!

n!n!
ρn
1 (

µ1

λ1 + µ1 + µ2 − λ2
)2n

·
∞
∑

i=0

2iρi
1(

µ1

λ1 + µ1 + µ2 − λ2
)i

·
∞
∑

l=0

2l(
µ1

λ1 + µ1 + µ2 − λ2
)l

=
µ2 − λ2

λ1 + µ1 + µ2 − λ2

(2n)!

n!n!
(

λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n

·
∞
∑

i=0

(
2λ1

λ1 + µ1 + µ2 − λ2
)i

∞
∑

l=0

(
2µ1

λ1 + µ1 + µ2 − λ2
)l.

(65)

Sinceµ1 − λ1 < µ2 − λ2 andλ1 < µ1, it follows that
2λ1

λ1 + µ1 + µ2 − λ2
< 1, (66)

2µ1

λ1 + µ1 + µ2 − λ2
< 1. (67)

Hence, the two infinite sums in (65) are both finite. Further-
more, by Stirling’s approximation,

(2n)!

n!n!
=

√
4πn(2n)2ne−2n(1 + O(1/n))

(
√

2πn(n)ne−n(1 + O(1/n)))2
≤ C2√

n
4n, (68)
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for some constantC2 > 0. Therefore,

P{M(T ) = n} ≤ C3√
n

(
4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n, (69)

for some constantC3 > 0. We are done with the proof for the
upper bound.

Another perhaps shorter proof for the upper bound starts
with (30). By writing

P{
n

∑

i=1

Xi ≤ t} =
∞
∑

l=n

e−µ1t(µ1t)
l

l!
,

we have

P{M(T ) ≥ n}

≤
∫ ∞

0

∞
∑

i=n

e−λ1t(λ1t)
i

i!

∞
∑

l=n

e−µ1t(µ1t)
l

l!

· (µ2 − λ2)e
−(µ2−λ2)tdt

=

∫ ∞

0

∞
∑

i=0

e−λ1t(λ1t)
n+i

(n + i)!

∞
∑

l=0

e−µ1t(µ1t)
n+l

(n + l)!

· (µ2 − λ2)e
−(µ2−λ2)tdt

= (µ2 − λ2)

∞
∑

i=n

∞
∑

l=n

ρn+i
1 (2n + i + l)!

(n + i)!(n + l)!

·
∫ ∞

0

e−(λ1+µ1+µ2−λ2)t(µ1t)
2n+i+l

(2n + i + l)!
dt

=
µ2 − λ2

λ1 + µ1 + µ2 − λ2

·
∞
∑

i=n

∞
∑

l=n

ρn+i
1 (2n + i + l)!

(n + i)!(n + l)!
(

µ1

λ1 + µ1 + µ2 − λ2
)2n+i+l.

(70)

Next,

(2n + i + l)!

(n + i)!(n + l)!
=

(2n)!

n!n!

(2n + 1)(2n + 2)...(2n + i + l)

(n + 1)...(n + i)(n + 1)...(n + l)

≤ (2n)!

n!n!
2i+l. (71)

The rest steps are exactly the same as those starting at (65).
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