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Abstract—In data communication networks, packets that ar- When the late packets finally arrive, all queued packets
rive at the receiving host may be disordered for reasons such are suddenly eligible for processing.
as retransmission of dropped packets or multi-path routing. | The gut-of-order packets that have arrived at the receiver
Reliable protocols such as TCP require packets to be accepted, . . .
i.e., delivered to the receiving application, in the order they must wait at the transport layer, consuming pre_C|ous
are transmitted at the sender. In order to do so, the receiveg system resources such as memory and computation cy-
transport layer is responsible to temporarily buffer out-of-order cles. Since they are shared resources, an unusually large
packets and to resequence them as more packets arrive. In this amount of out-of-order packets can negatively affect all

paper, we ana_lyze a model where the disorderi_ng is caus_ed by applications in the same system.
multi-path routing. Packets are generated according to a Poisson ] . .
process. Then, they arrive at a disordering network modelled by ~ In our earlier paper [2], we model packet disordering by
two parallel M/M/1 queues, and are routed to each of the queues adding an IID random propagation delay to each packet
according to an independent Bernoulli process. A resequencing and derive simple expressions for the required buffer size
bUffErthHOWS the_dls%ro:erln_g Eetwork.HIn such %mo_del, tfhfh and the resequencing delay. We demonstrate that these two
P;Cesuerﬁgigugﬂgwg iseu?\{nlgwnﬁo\\;vvg' de?iv\\,’:\ltiré pl%bsalléﬁit)? forequantities can be significant and _show that Fhe resequencing
the large deviations of the queue size. problem becomes worse as the link speed increases. In this
paper, we analyze a model with correlated delays where
the disordering is caused by multi-path routing. Packets ar
generated according to a Poisson process. Then, they atrive
a disordering network modelled by two parallel M/M/1 queues
|. INTRODUCTION and are routed to each of the queues according to an inde-
Data packets can be disordered by the communication ngéndent Bernoulli process. A resequencing buffer folloes t
works for various reasons [1]. For instance, with the helthef disordering network. In such a model, the packet reseqognci
destination address contained in every packet, the neteatk delay is known. However, the size of the resequencing queue
deliberately route packets via different paths to the dasitn, js unknown. We derive the probability for the large deviasio
possibly for load balancing or for reducing transfer delayf the queue size.
Some packets may be dropped when the network is congestetthis paper is organized as follows. In Section Il, we describ
or when the paCket is Corrupted. For reliable Communicatiothe resequencing model and give the main theorem of the
the sender must retransmit the dropped packet, possibb cayaper. We also discuss the relation of this study with previo
ing it to arrive out-of-order at the receiver. studies. Sections Ill, IV and V constitute the bulk of the
Most applications can only accept packets (which contafinper, which is a proof for the main theorem. We show some
application-level data) in the same order they are trarsmifplications of the theorem in the concluding section, VI.
ted at the sender. They typically rely on reliable transport
protocols, such as the Transmission Control Protocol (TCP)
to temporarily buffer out-of-order packets and to resegaen . . .
them as new packets arrive. The study of packet disordering’ne detailed network and resequencing model is shown

and resequencing is important because of the following péd?- Figure 1. Sequentially-numbered customers (or packets)
formance implications. arrive at the disordering network (DN) according to a Paisso

« Insufficient buffer size causes packet losses and redud8gcess with ratex. Each customer either enters queue 1

throughput with probability p, or enters queue 2 with probability— p,

« Even when the application can consume the packets i E_dependent. of[r?thglr\lcustqm ders. Tgent, ;he. arrival prosdsse ith
nitely fast, the packets may still suffer resequencing)delé € queues in the are independent FoISSon processes wi

which increases the response time of the application. rate A;, @ € {1,2}, where
« The large number of queued packet_s create bursty load to A = pA, Ao =(1—p)A.
the processor. Long queue length is typically the result . .
of one or a few very late packets. During the time of The service times for the customers at queuare IID

queue build up, the processor stays idle most of the tinfeXponentially distributed with meab/y;, i = 1,2. Hence,
we have two M/M/1 queues in the DN. Due to the multi-
Ye Xia is with Computer and Information Science and Engineebepart- path routing customers may be disordered after the DN. They
ment, University of Florida, Gainesville, FL 30611-6120. ’ .
David Tse is with Department of Electrical Engineering andmpater are resequenced at Fhe resgquencmg queue (RSQ) thatdollow
Science, University of California, Berkeley, CA 94720-077 the DN. Customers immediately leave the RSQ after they are
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Il. THE MODEL AND THE MAIN RESULT



not be easily combined into a generic model. Their detaitk an
analytical techniques involved differ greatly. Their sigéh lies

in that they typically can model the feedback from the reseiv
to the sender.

Many previous studies on ARQ models focused on the
throughput of the ARQ protocol, or the delay and queue size
at the sender side. For instance, Miller and Lin [15] analyze
the throughput for certain Selective-Repeat ARQ schemes.
Towsley and Wolf analyzed the queue size and delay at the
sender side for the Stop-and-Wait ARQ and the Go-Back-N
o 1 Network and _ del ARQ in [13], and mean queue length for the Stutter-Go-Back-

9. 4. Network and resequencing mode N ARQ in [20]. Konheim [14] analyzed a Go-Back-N ARQ
and a Selective-Repeat ARQ. Anagnostou and Protonotarios
properly resequenced. That is, custonideaves the RSQ as [17] analyzed the queue size and delay at the sender side in a

J ' Selective-Repeat ARQ model. There are also several studies

soon as all customers< j have arrived at the RSQ. Note that . . o
on the resequencing delay and queue size at the receives in th

the server of the RSQ is assumed to have infinite processi . -
capacity. We are interested in computing the stationaryuqueRgQ literature. Rosberg and Shacham [18] analyzed a specific

) . : . Selective-Repeat ARQ protocol over a noisy forward channel
fr;zienorfetgflti?%isl_eg gfi;hﬁlztg;%:z;y i'ﬁ:oﬁgxe&i%r{] %rom the sender to the receiver and a perfect feedback channe
loss of generalit [I)etpus assume — \ g< ) ' Then The distributions of the buffer occupancy and the resequgnc

9 Y. WG — AL = fz — A2 ' delay at the receiver were derived. Rosberg and Sidi [19]

Disordering Network

Theorem 1. extended the above model to allow non-greedy source. In
lim 1 log P{q" (t) > n} several other s_tudies, Shacham and prsley [21] _considered
n—oo N the resequencing problem for a multicast Selective-Repeat

— max{log A2 log 4 2}_ 1) ARQ. Shacham anq Shin [22] analyz_ed the resequencing

Ao+ pr — A (A1 + 1+ p2 — A2) problem of a Selective-Repeat-ARQ with parallel channels,

The studies that deal with packet disordering due to mul 54] considered optimal control problems in a queue with
path routing (also including parallel processing or load b b P q

ancing, etc.) typically analyze an open queueing netwoik, 3 o servers of different service rates. The question is how

which the model in Figure 1 is a special case. In some modetf%,ass'gn the customers to the servers so as to minimize the
end-to-end delay [23] or the long-run average holding costs

a FIFO queue follows the resequencing buffer. The DN I :
also modelled as a queueing system, whose type typicaﬁf the customers [24]. Packets get disordered at the server-
signment stage and are required to be resequenced after

distinguishes different studies. For instance, the DN is ? T
M/M/co queue in [3], an M/Glo queue in [4], a Gl/Glo eaving the two-server queue.
queue in [5], an M/M/2 queue in [6], an M/M/K queue in [7], Inthe remaining part of the paper, we will prove Theorem 1.
an M/H»/K queue in [8], an M/M/2 queue with a threshold-The basic argument of the proof is as follows. Suppose the
type server assignment policy in [9], two parallel M/M/loldest customer in the DN i§, and is being serviced at queue
queues with additional fixed propagation delays in [10], ardin the DN. We wish to find out the probability that the RSQ
K parallel M/GI/1 queues in [11]. A survey is given in [12].has at least customers. The customers in the RSQ must have
Most of these studies are concerned mostly with finding tlzdl arrived at the DN aftet”,, and all gone through queue 2
distribution and/or mean of the resequencing delay or end-the DN during the timeC, spent in queue 1, which is
to-end delay. Several also give results about the number (smdughly) an exponential random variable, independenhef t
packets in the resequencing queue. Among the previousestudjueue 2 process. Therefore, the probability that the RSQ has
reviewed here, the most relevant one is [11], where the Di leastn customers is the same as the probability that at least
consists of K parallel M/GI/1 queues. In [11], Jean-Marien customers arrive at queue 2, an M/M/1 queue, and at least
and Gun derive the distribution of the resequencing delay. + of those customers depart the queue during an exponential
contrast, our results are (i) for the resequencing queee 8iy random timeT that is independent of the queue 2 process.
of the large-deviations type, and (iii) for the 2-M/M/1-quiee There is also the symmetric case where the oldest customer
case. is in queue 2 and all customers in the RSQ come from queue
Packet disordering caused by the retransmissions of ddopgde In Section Ill, we set up the two different cases and write
packets is studied within the context of automatic repetite quantities to be computed. In Section IV, we compute the
request (ARQ) protocols [13] [14] [15] [16] [17] [18] [19]. key quantity,P{M (T') > n}, where the functionV/(¢) is the
In these studies, ARQ is typically considered as a linlaumber of those customers who arrived at the M/M/1 queue
layer protocol running between a sender-receiver pair aveon the interval0,¢] and who departed by timg andT is an
noisy link with constant propagation delay. The sender mustponential random variable independent of the M/M/1 queue
retransmit corrupted or dropped packets based on the feledbl Section V, we combine results of the previous two sections
information it gets from the receiver. Models in this familgn and give the proof for Theroem 1.

af;ing a discrete-time model. Varma [23], Ayoun and Rosberg



Ill. THE SETUP Let Mi(t, s) be the number of those customers who arrived

At time ¢, let V(¢) be the even{the DN is empty at time &t queue on the interval(t — s,t] and who departed by time
t}. If V(¢), let C.(t) be the oldest customer in the DN, let- Note that forn >0,

W, (t) be the timeC\ (t) has spent in the DN, and I€f(¢) be P{My(t, W.(t)) > n | Wi(t) = Wa(t) = 0}
the queue in the DN whicld’, (¢) goes through. Fon > 0, N o
or (g g — P{NL(t,0) > n | Wi(t) = Wa(t) = 0} = 0.
E(t,s,n) = {at leastn customers arrived at the DN Also, PUWA(t) = Wa(t) £ 0} = 0
on the interval(t — s, ¢], out of which ' 2 '
at leastn have left the DN byt}. Therefore, R
Let the size of the resequencing queue (RSQ) at tinte P{M, (8, Wi (1) 2 n | Wa(t) = Wa(t)}
¢"(t), and letq;(t) be the size of queué at time ¢, where P{W1(t) = Wa(t)} = 0.
i=1or2. Then, forn >0, Then, forn > 0,
P{q"(t) = n} = P{V(t) and E(t, W.(t),n)}.  (2) P{q"(t) > n}
Next, we will explain equality (2). When the RSQ size is = P{E(t,W.(t),n)}

greater than or equal ta, wheren > 0, it must be waiting = P{NL(t,Wu(t)) > n | Wi(t) > Wa(t)}
for some customer still in the DN. In particular, the next -

packet gap the RSQ is trying to fill i€, (¢). The customers 'P{W} (t) > Wa(t)}

in the RSQ are exactly those who arrived at the DN later + P{M,(t,W,(t)) > n | Wa(t) > Wi(t)}

than C.(¢), but who have left the DN by time. We are - P{Wy(t) > W1 (t)}. (6)

interested in computintim;_.., P{q" (t) > n}. Alternatively, ) )

let us assume all relevant processes are stationary. This can be explained as follows. ¥ () > W2(¢), then the
Let us extend the definition dW. (), W, (t) = 0 if V(2). oldest customei(’, (¢), in the DN must be in service at queue
Then, whenn = 0, 1. Hence W, (t) = W, (¢). All customers Who'came to the DN

after C.(¢) and who have left the DN by timé must have

P{q"(t) = n} = 1. been routed to the RSQ via queue 2.
_ g Forn > 0,

P nd E L (1), N
V() and B(t, W.(2), n)} P{NL(t, W.a(8) > n | Wi(t) > Wa(t)}

= P{E(t,W.(t),n)[V()}P{V(t)} = P{V (1)}

:/OO P{NMs(t,s) >n | Wi(t) = s, Wi (t) > Wa(t)}
P{V(t) and E(t, W, (t),n)} ot
= PLE(L WL,V (OIPIV()} = PV ()}, Fun i (5)ds
Hence, forn = 0, :/o+ P{Ms(t,s) > n | Wi(t) = s, Wa(t) < s}
P{q"(t) > n} = P{E(t,W.(t),n)}. 3) < fonwyswe (8)ds
Forn > 0, (3) is still true because :/OO P{My(t,s) >n | Wa(t) < s}
PAV(#) and B(t, W (), n)} -(};mw»wz (s)ds. @)

= P{E(t,0,n)[V (1)} P{V (t)} = 0. . .
. In the above,fw,|w,>w,(s) denotes the conditional density
Note that, because customers are served on first-come-figgti1/, (1) given {W,(¢) > Wa(t)}. In the last step, we used
serve basis in each of the queues, the oldest customers intfiefact that the two queue processes are independent. Note
non-empty DN must be in service at one of the queues. tHat, in the integral, the (conditional) probability mass a= 0
queuei is not empty,i € {0,1}, let W;(¢) be the duration does not contribute to the probability on the left hand side.
for which the customer in service at queulas stayed in the  we will compute the conditional density by starting with
queue. If queué is empty, let;(¢) = 0. By using a simple the joint probability. Forz > 0,
reversibility argumentl¥;(¢) has the same distribution as the
waiting time in queud (not including the service time) by an P{W1 > 2, Wy > W2}
arbitrary customer. This distribution and the density gr@gé _ ple—(m—mm — p1p2 H1— A1
213 in [25]), forz > 0, H1— AL+ po — Ao

o= (pr—=A14pe—Ao)x
Fy, () = P{Wi(t) < 2} = 1 - pe” 207 (a) e ®)
fiw(2) = (1= p)3(x) + Xi(1 = p)e e (5)  From (B), we have
where p; = \;/u;, and §(x) is the Dirac delta function, P{W1 > Wa} = P{Wy; >0, W > Wa}
representing the point probability mass at= 0. We will ! ©)

. . . = P1 — P1P2 .
occasionally omit the dependency oifor brevity. M1 — A1+ p2 — Az




From (8) and (9), we get the conditional density foe> 0, Fact 3:
oo —atik 1
le‘W1>W2(x) / € t dt = (7)16-&-1. (16)
— Kle*(#lf)\l)x _ KQB*(#1*>\1+#2*)\2)00’ (10) 0 k! a
where K, and K are constants, given by,
- A
K, = i)\ ) (11) A. Case of 1 — A1 > o — Ao
1- P2%
H1—A1tp2— A2
o — p2(p1 — A1) (12) 1) The Upper Bound:
2= 1— H1=A1 :

P2 p1—=A1+p2—A2

Note that the second term in (10) decays much faster than the

first term. If we ignore it, the conditional probability détys

P{M(T) > n}

< P{the number of customer arrivals on the

decays exponentially. interval [0, T is at leastn} 17)
Next, we will bound (7) from above and below. 0 oo it &
o R — Z/ ﬂ(#z —>\2)67(#27)\2)tdt
X P{Ms(t,s) >n | Wa(t) < s} foywy>w,(s)ds 0 k!
0
oo i 00 o= (Artpz—A2)t( ) t)k
. fwwisw, (8) - (2 — X / ¢ (M d
= P{Ms(t,s) > t CALULEL LAY = f2 — A2) t
| Pln(es) = n W) < 5) s kZ 0 g
< [T i) > n}le‘Wl—%”d Z Ha = o Mk by (16))
0+ P{WQ()_O} )\1+/L2—)\2 )\1+M2 Ao
1 o -
S /+ P{Ms(t,s) > n} fw,jw,>ws (s)ds.  (13) fa — Ao (ﬁ)"
O =
A ) VS S VI
For a lower bound, tha = e S
. ek
/ P{My(t,s) >n | Wa(t) < st fw, wy>w, (s)ds A1+ p2 — Az
0+
> ~ fW1|W1>W2(S) .
= P{M>(t,s) > t S VR AT g .
/O+ {Ms(t,s) > n,Wa(t) < s} PIW(1) < s} s 2) The Lower Bound: For a function that grows as

oo exp(an + o(n)) whenn increasesq is the rate of growth.
Z/ P{NMs(t,s) > n, Wa(t) = O} fiw, wi > w, (8)ds The method that estimates the rate of growth of an integral by
ot that of the maximum of the integrand is known as the Laplace
:/ P{Mg(t, $) > n,qa(t) = O} fwyjwr s ws (5)ds. (14) principle (See page 12 of [26].). In our case, we will conside
o+ - e the following integral, as: gets large,
In the next section, we will prepare to compute the upper
and lower bound. 0 oAt () )7
/ . 7»E| u (2 — Ap)e~ 222t gy,
0 .

IV. COMPUTATION OF P{M(T) > n}

In this section, we consider a stationary M/M/1 queue whoskecan be shown easily that the integrand is maximized at,
arrival rate isA\; and whose departure rate is. We assume
A1 < pp so that the queue is stable. LBtbe an exponential
random variable independent of the queue process with mean
1/(u2—A2), whereds < po. Let M(t) be the number of those
customers who arrived on the intervyél t] and who departed This information will be useful in the proof for the lower
by time t. We wish to computeP{M(T) > n} for largen. bound.
The main result of this section is Theorem 2. A similar result Let ¢(¢) be the queue size at tinteLet D(t) be the number

to =n/(A1 + p2 — A2). (18)

is Lemma 4. of departures on the interv@), t].
Theorem 2:
1
lim —log P{M(T) > n} P{M(t) = k}
n—oo N o0
_ log ﬁ ifpn— A > o — Ao (15) = Z P{M(t) = k|q(0) = m} P{q(0) = m}
log Miﬁ% |f M1 — )\1 < Ho — )\2 m=0
: _ > P{M(t) = k|q(0) = 0}P{q(0) = 0}
In the next two subsections, we will prove Theorem 2. We — (1= p1)P{D(t) = k|g(0) = 0}
will frequently use the following fact. Foz > 0 and integer B p1L = At =
k>0, > (1= p1)P{D(t) = k,q(t) = 0|q(0) = 0}.  (19)



From [27] (page 199),
P{D(t) = k,q(t) = 0lq(0) = 0}

_ — (1 +i):0]f ( t)2k+ie—()\1+u1)t
Rl (k+i+1)!
_ ke~ M & L+ ki —pit
t Lo H1
R Grirmmte
1 (Alt)kei/\lt e ]. ( t)k‘kiefult
Tkl K kg
1 (Alt)ke_klt
=531 PWun =k (20)

where Y{,,,;) is a Poisson random variable with megant.

Now, with the definition oft, as in (18),
P{M(T) > n}
> P{M(T) > n,T > t,}
> P{M(t,) >n,T >to}
(to)

= P{M(t,) > n}P{T > t,} 1)
— i P{M(t,) = KYP{T > t,}. 22)
k=n

The equality in (21) is because of independence between the
gueue process and the random varigblérhen, by (22), (19)

and (20),
P{M(T) = n}

— 1 (Aitp)re Mt
k=n ’

) P{Yv(ltlto) 2 ]{7}67(“2*>\2)t0

L (Mto)me Mo
1—
= (1=p) n+1 n!

P{Y(mt ) > n}e” (n2=A2)to (23)

We will show P{Y{,,:,) > n} is greater than a constant as
tends to infinity. By the definition of, and by the assumption

— A1 > 2 — Ag,

Mk
AL+ 2 — A2
Let n, = |p1to]. Then,n, > n. Let X5, Xo, ...,
Poisson random variables with mean 1. Then,

Mlto = n > n.

Yoy = ) > P Kot X, n
2P{X1+X2:;'“+X"~ 1)
_ pl +X2\}L;-\/J%Xno “Mo L
- ppat *\/ann “no gy,

By the central limit theorem,
X1+ Xo+ ...+ X, —
lim p{ot TRzt F A T T
Ne—00 1/’[’LO
1
2

> 1 22
:/ e 2dr =
0 27T

X,., be IID.

Therefore, for any > 0, there exists some integéy > 0
such that for alln > N,

PV 20} > 5 — e (24)
Continuing from (23), for allh > N,
P{M(T) > n}
1 1 (Alto)nei)\lto —(p2—X
> (1 — - n2=A2)to
> (L= p)(G =)y e (25)

By Stirling’s approximation,
= V2rnn"e (14 O(1/n)).
For sufficiently largen,
n! < 2v2mnn"e™"

Therefore, for large enough, using the definition fort, in
(18), we have

P{M(T) = n}
A1
> — _ n
74(1 pl)(l 26)n+1(/\1+u2—/\2)
. nm exp(—ﬁn) (7 o — >\2 n
V2mnnte—" AL+ 2 — A2
(1 —p1)(1 —2¢) A1
= " 26
4V/27mn(n + 1) ()\1 +M2—/\2) (26)
B. Caseoful—)\l <,LL2_>\2
1) The Lower Bound: By (19) and (20),
P{M(T) > n}
> [ 0= sP(DO) = katt) = 0la(0) = 0}
0 k=n
+(p2 — Ag)e” 2= )ty (27)
1

2 (=P =)

A t n —)\1t

=(1-— - A
(1= p1)(p2 2)n+ 1
,/Oo (/\175)"'6”” (.ult)neiﬂlte*(llzfAz)tdt
O n

n!
1 (2n)! n
= (1= p1)(p2 — A2) +1W()\1M1)
00 42n o —(Artp1tuz—A2)t
. / dt
— 1 2n)!
_ (1 _ pl) H2 )\2 ( n)
>\1+ILL1+‘LL27>\2TL+1 nln!
1
~(Aipa)”

(M + p1 + pr2 — Ag)?

In deriving the last step, (16) has been used. By Stirling’s
approximation, for large enough,

(2n)! _ VAmn(2n)*me " (1+ O(1/n)) _ G,
nln! (V2rn(n)re=n(14+0(1/n)))2 — V/n



for some constant’; > 0. Therefore,

Let t = 7 + u. The above becomes,

P{M(T) > n} P{M(T) =z n}
-
>Ci(1 - <
= Ol pl)A1+u1+u2*)\2 iz = Ro) kz;/ /
1 4Ny _
. n 28 —(A1tp2—A2)(T+u) A niT n—1
Vvn(n+1) " (A + +M2*/\2)2) (28) - ( T ¢ (75/1_171))1 dr
2) The Upper Bound: The computation for the upper bound .
in the previous case does not apply here. To see the reason;” p(p2 — A2) Z Al / /
consider the integral in the lower bound calculation. Siggpo ,
asn becomes large, e~ Matua— *2)“ ZZ 0 T T ’d
U
e’} n,—At n,—pit k!
/ (Alt) 'e (,U/lt) '6 e—(,u,Q—)\Q)tdt 67()\1+'u,1+'u,27)\2)7'(1u17_)n71d
0 n: nt (n — 1) T
n,—\ n,—
~ max 211 ‘ () ¢ M (et
t>0 n! n! 1(p2 — A2) Z)\kz )'
It can be shown easily the above maximum is achieved at =0
>\1+IL2 >\2)
2 du
_ i : (29) / /
A1+ g1+ e — Ao —(A14p1+po— )\Z)T k— Z(,UlT) n—1
Note that whenu; — A1 < p2 — Ao, (n—1)! ar
2,LL177, n = k
to = <n. = (2 — Ao)p A
H1to Mt s — e n (2 2)1;1
Therefore,{Y(,,;,y > n} is a large deviations type of event k 1 1
instead of an event with constant probability, adecomes Z (k— i)l (AL + po — Ao)it?
large. It is not tight enough to boun&{M(t) > n} from = bt pa— )T i
above by only looking at the arrival processes, as was done in / e T dr
(17). 0 (n—1)!
We will next carry out the analysis on the upper bound. 0 k 14k — )
— (i _AQMZA;@Zu
~ (b —4)l(n —1)!
P{M(t) > n} k=n =0
< P{at leastn customers arrived on the interv@, ¢], and X 1 JWTEERoY 1 gy
at leastn customers are served on the same intérval (M + “2)\_ 2) :”1 a2 =)
— A2 1 n
o0 7)\ =
72 1t )\1t P{ZX<t} (30) AL+ e — Ao AL+ g+ e — g
P —
where {X1, X»,..., X,,} are IID service times. The sum Pt e
> i1 X; has the Gamma distribution with density, zk: n— 1 + k—i)! ()\1 o e — )\2)1' 1)
f(t) = e P (n=D!" Mtpe—d 7
a (n—1)! Fori = 0,1, ..., k, define
Hence, —14+k—=3)
alk, i) = " s ) -
PM(T) > n} 2k(k —i)l(n —1)!
Let
Z/ e~ Mt )\1t 6:)\1+M1+M2—/\2
AM+pe—Ay
/ e ;A]T('ulT)n 1d ( )\2) (e Az)tdt Note that forul -\ < Mo — Ao, 0 < 2.
0 (n—1)! alk+1,9)  n+k—i 1+
— 1tz — Aa) Z/ / “Outre i o)) 2ktrl-9 2
Then, for each fixed € {0, 1, ..., k},
.%dﬁ alk+1,0) [ >1 ifk<n+i—2
(n—1)! a(k,i) <1 ifk>n+i—2"



Therefore,a(k, i) is maximized atc = n 47 — 1 for eachi 1.
Then,

(2n — 2)!
(n—1)I(n —1)12nti-1"

Then, the sum in (31) index biybecomes,

a(n+1i—1,i) =

k

Z n—l—f—k—z) AL+ 1+ pe — )\2)7;
=0 77,71) >\1+‘LL27>\2
k

ok g 22n—2)! B,
< 9k—n My
= ;(n—l)!(n—l)!(Q)

oh—n 2(2n —2
- (n—1)I n—l'
_ gien_ 2(2n—2)! B

(n—1)(n—-1)12-p4"
The infinite sum above is finite becaus¢2 < 1. Going back
to (31), we get,
P{M(T) = n}
4(p2 — A2) (2n —2)!
T (2=8) (M +p2 —A2) 2M(n — 1)(n —1)!

H1 n 2>\1 k
32
()\1+H1+ﬂ2—)\2 g(A1+u1+u2—>\z) (32)
e ) (2n — 2)
—)\2—(/“—)\1)2"(n—1)!(n—1)!
M1 n
AL+ 1+ g — Ag
2 2
N n )

AL g — Ao YRR

The sum in (32) is finite because, fog
A1 < p,

—)\1<,u2—/\2 and

2\
AL+ pr 4 p2 = Az
By Stirling’s approximation,

<1 (34)

(2n)!  VAmn(2n)* e 2"(1+0(1/n) _ C3 ,,
nin! (\/%(n)ne—n<1+0(1/n)))2 < \/54 , (39)

Combining (33) and (35), we have, for some constant> 0,

C 4)\1,&1
Vi (4 i — Ao)?
This completes the analysis on the upper bound.

n

P{M(T) > n} <

C. A Related Lemma to Theorem 2

Lemma 4:
1
lim —log P{M(T) > n,q(T) = 0}
n—oo N
logm if g — A > po— Ao
T log Ry — A PV
08 iFmtme—ra2 T 1< 2 — A2

Proof: Since
P{M(T) > n,q(T) = 0} < P{M(T) > n},

The upper bound is immediate from Theorem 2. We only need
to show the left hand side of (36) is no less than the right hand
side.

Let us first consider the case whetg — Ay > s — As.
Conditional onT’, which is independent of the queue process,
we have

P{M(T) = n,q(T) = 0}

:/00 PIM(t) > n,q(t) = 0}(pug — Ag)e~ 222ty

0

= 200 / P{M(t) = k,q(t) = 0} (pa — Ag)e~H2722)tqy
k=n"0

k,q(t) = 0lq(0) = 0}P{q(0)

—(n2=A2)t gy

=3 | o - — 0}

: (MZ - )\2)6
- Z/ (1—p1)P{D(1)
k=n"0
g — Ag)e 2Rt gy
00 0o 1 (Alt)kef)\lt
ZZ/o (17[)1)1@4—1 %! P{Y (1) 2 k}
(pg — Ag)e~ (222t gy
oo [e’¢] 1 (Alt)ke_)\lt
& 1= P{Y .. >
_kz_;/t ( pl)k+1 k! Yiuary 2 k}
(p2 — A2)e
Do 1 (Alt)ne—/\lt
= 1= P{Y(1) =
_/f ( pl)n+1 n! { (p1t) n}

Lo

. (,LLQ — )\2)67(;127)\2)15(#.

= k,q(t) = 0]q(0) = 0}

(37)

(38)

—(Mz—kz)tdt

(39)

To obtain (38), we have used (20). In the last two steps above,
t, is as given in (18). Note that, for all> ¢,
P{}/(,U«lt) 2 n} 2 P{}/(lilto) Z n} (40)

By (40) and (24), we obtain that, for ary> 0, there exists
some integeN > 0 such that for alh > N and for allt > ¢,,

1
P{i/(/lflt) 2 n} 2 5 — €.

Continuing from (39), we get

The following lemma is also used in the proof of Theorem 1.

Its proof is directly related to that of Theorem 2. The natasi

will be the same as those used in the proof of the lower bound

in Theorem 1.

lWe assume that is large enough when necessary. In this casg; 1.

(p2 — A2)
n—+1

t
e~ (2=A2)t gy

P{M(T) > n,q(T) = 0}
/  (Art)me ™
t, n!

>(1- )3~ )
(a1)



As noted in (18), the above integrand achieves the maximumwWe will first consider the first term in (6). We wish to show

value att,. Furthermore, it is easy to show that, for> t,, 1 .
the integrand is a decreasing functiontofe must have, Jim —log P{My (¢, Wi(t)) 2 n | Wa(t) > Wa(t)}
o0 ne—Ait log s if o — Ao >y — N\
/ M(e—(’”"\”tdt = 1 )\2+N14/\;\;1Lz if Y IV (46)
to Tl' Og ()\2+AL2+,LL1—A1)2 ! MQ 2 < ‘ul 1
- fotl (\yt)re— M1t )t gy For the lower bound, we combine (7), (14) and (10), and
L n! ¢ get
- (Al(to 4 1))7167)\1(t0+1) e*(#2*>‘2)(t°+1) P{Mg(t, W*(t)) >n | Wl(t) > Wz(t)}
- n! o -
> (Alto)ne_klto e_(/1r2—)\2)toe_(>\1+lt2—)\2). (42) - o+ P{MZ(t7 S) Zn | WQ(t) < s}le‘W1>W2 (S)ds
- n! o0 )
. - > P{Ms5(t,s) > n,q2(t) =0 L(s)d
Combining (41) and (42), for sufficiently large we get, = Jo+ {Ma(t ) 2, 2(8) = O} fuvs jwaswa (5)ds
P{M(T) > n,q(T) = 0} = [ POD() 2 1,02(5) = 0} fws s sow, (5)ds
1 (2 —A2) _ _ oo
> (1- Pl)(§ - f)ni_’_le (Aatpa=2e) = Kl/ P{My(s) > n,qa(s) = 0}~ (m1=2)sqs —
(Aato)"e ™Mt oo
e (H2—X2)to (43) KQ/ P{M;(s) > n, qa(s) = O}e—(m—/\lwz—xz)sd&
) 0
Following the steps in (25) to (26), for sufficiently large (47)
we get the lower bound where K; > 0 and K5 > 0 are constants given in (11) and
(12). In the above, we have used the conditional density of
P{M(T) > n} W1 given {W; > W,} from (10). By Lemma 4 with suitable
(1 —p1)(1 —2¢) (o — /\z)e,wﬂlrh) A1 B substitution of variables, and since
- Vi A - A
4 27rn(n+1) 1+M2 2(44) ILLQ_A2</"[’1_A1 +/J'2_)\25

the second term in (47) has the following asymptotic exptnen
Next, let us consider the case where — Ay < s — Ag.

1 oo
From (37), we have lim ﬁlog/ P{Ms(s) > n,qz2(s) =0}
n—oo O
P{M(T) > n,q(T) = 0} cem (= Artaa=X2)s g
© oo Ao fio
_ — _ =1
=3 | a=mPID®) = kalt) = 0la(0) = 0} S e v W
- 4z 1o
. _ —(p2—A2)t =lo . 48
(N’Q )\2)6 dt. g (2,[,&2 +,LL1 _ )\1)2 ( )
The rest of the steps are identical to the lower bound proof By Lemma 4 with suitable substitution of variables, the first
Theorem 2 from (27) to (28). m termin (47) has the following asymptotic exponent,
1 [ee]
lim flog/ P{M>(s) > n,qa(s) = 0}e~ =2
V. PROOF OFTHEOREM 1 nmeen Jo
log 2 if pio — Ao >y — A\
We will combine the results of the previous two sectionSZ{ At i 1 Ny < b y, - (49
and prove the main theorem. We wish to show that, without (Aatpatpr—Ar)? H2 2s M !
the loss of generality, whep; — A; < s — Ag, Now,
. 1 )\2 _ 4/\2,11,2
nhfolo n log Pq"(t) = n} Ao+ pr =N Adopn +Apapg — A’
A2 41
- 1 1 . A\ AN
max{log U og Ou 0+ = M) 2442 2442

@5)  Quatp—M)? Apd + dppe = Ahpz + (= M)P
Hence, we have
Proof: We need to find the asymptotic exponent for Ao Ao jis
the two terms in (6), as approaches infinity. The factors N — A > 2+ 1 — )2
P{W.(t) > Wy(t)} and P{Ws(t) > W, (t)} are constants on 2T HLT A H2 = A
(0,1), not dependent on. For instance P{W (t) > Wy(t)} AlSO, because\, < jiz, we have
is given by (9). We will not carry these factors around in the Aot 4ot

subsequent analysis. Ao+ po+pu—A1)?2 7 (2pe+p1 — )2




Therefore, we can ignore the contribution from (48) whelm the first term abovewiﬁ ~ 1if g — A < Xa. Inthe

considering the lower bound of the left hand side in (46%econd term abov T 4/\+1u1 o~ Lif pio— Ao < A1+
. 1T 1 T2 — A2
Then, (49) gives the lower bound. and A, ~ .. This implies that, for the second term to decay

For the upper bound of the left hand side in (46), wglowly, we need to have
combine (7) and (13), and get

. 1 — A1 < po — A K 2p1 & 2.
P{Ms(t,W.(t)) > n | Wi(t) > Wa(t)}

1 0o A An interesting observation is that it can be large even when
< 1 / P{Ms(t,s) > n} fw,jw,>w,(s)ds.  (50) the queue sizes in the DN are both small. This occurs when

P2 Jor the two disordering queues are “mismatched”, that is, when
Using a similar argument as in the derivation of the lowesne of the disordering queues is much faster than the other in
bound, but with Theorem 2 substituting the role of Lemma 4erms of both the arrival rate and the service rate. For el@mp

we get supposeu; = 2X; for i = 1 and 2. Hencep; = po = 1/2,
1 o0 . and fori =1 and 2,
Jim S log [ PUa(t,9) 2 1w, (s : )
n ot lim —log P{q;(t) > n} =log -.
log ﬁ if po — Ao > pn — M nmee 2
= log M o — Xo < jp— Ay (51)  suppose, in the DN, queue 2 is ten times faster than queue 1,
(Gatptpn=A1)® i.e., A2 = 10A; and iz = 10p,. Then,
Since the upper and lower bound agree with each other, we
1 . 10
get (46). nlLrI;O - log P{q"(t) > n} = log e

To determineP{q"(t) > n} for large n, we also need
to consider the second term in (6R{M; (¢, W.(t))
n | Wa(t) > Wi(t)}. By symmetry,

Intuitively, the queue size of the RSQ can be large because
many later packets can go through queue 2 in the DN and end
up waiting in the RSQ, while some earlier packets are waiting

1 N .
lim — log P{My(t,W.(t)) > n | Wa(t) > W1(t)} in queue 1.
n—oo N,
)\ .
_ log W%;\)\Z |f H1 — >\1 Z M2 — )\2 ) (52) 1.0e+00 Analysis ‘ e
log ez T — A <p2— Ao 1.0e-01 | simulation
Whenpu; — A1 < s — A9, combining (6), (46) and (52), we 1.0e-02 |-
get (45). u _ 1.0e03
1l .
VI. CONCLUSION g 1o
To conclude, we discuss the implications of Theorem 1. 10605
When,>\1 = Ao and H1 = U2, 1.0e-06
1 1 1 Pl 1 1.0e-07
im — t) > = .
Jim —log P{¢"(t) = n} = log p, Loeca | : L )
5 1 15l
When py — Ay = piz — Az, Resequencing Queue Size, n
1
lim —log P{q"(t) = n} = max{log p1,log p2}. @
nomeen 1.0e+00 b AnalyEis J—
Like all GI/GI/1 queues, the resequencing queue size de- 10e-01 [ Simulation -
pends on the arrival and departure rates through a dimension Loeiop i
less parameter. This implies that the resequencing queee si e
does not change with the link speed of the network, if all ~_ 1.0e03
links involved scale their bandwidth by the same factor and !  1.0e-04
if the traffic characteristics are not altered by the tecbgyl [ 100.05
change. This is in contrast with the models from our previous
paper [2], where the improvement of network speed worsens 1.0e-06
the packet resequencing problem in terms of both the queue 1.0e-07
size and the delay. In the current model, there can be many 1.00-08
ways to produce the large resequencing queue size, which, in 0 5 0 15 20 25 30
general, depends on parameters for both queues in the DN. Resequencing Queue Size, n
According to Theorem 1, for; — A1 < puy — Ao and for large (b)
n, Fig. 2. P{q" = n}: Simulation results. (a\1 = 1, p1 = 2, A2 = 10,
P{qT(t) > n} H2 = 20; (b) A1 = 10, Hp1 = 20, A2 =1, M2 = 12
~ max{( Az n A "y, In Figure 2, we show the simulation results B{q" = n}

A2+ = A7 T (N e = A2)? and compare them with the analytical results in Theorem 1.
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In Figure 2 (a), the parameters are chosen so that Lemma 5:

i+j —(A+pr)t N2+ 2 (G141 Y
10 900 Hy(t) =2 () Z(Z.Jr hi )(“1),.
Ao+ 1 — A 11 ’ ! = (j +’L+l+1).(55)
i = 8 — 0.0473 Therefore,
5 . :
Pt = )09 PLM(®) = jla(0) = 0}
In Figure 2 (b), the parameters are chosen so that o0
s 1 = 2_Hi(®)
ﬁ == i == 00476, 1=0
2+ 1 — A1 pjl’e—(A1+u1) (1t)? o0 (( Z 00 (i +1+1 Mlt)l
il _ 800 4750, - gt ;pl JE% G+i+ l Dt
()\1 + p1 + po — )\2)2 1681 n (56)
Loosely speaking, Theorem 1 says, for — A1 < pz — Ao Proof: We will start with the integral transform df;; (t).
and for largen, Define
r —dn+o(n
P{q"(t) > n} = 7ot B3 H'(ags): ZZp ¢ / “THyj(r/m)dr,  (57)

where o(n) is a function that grows more slowly tham, =0=0

i.e., o(n)/n — 0 asn tends to infinity. The large deviationswhere[p| < 1, [¢| < 1 and Res > 0. It is shown in [27]
analysis of this paper is able to give an expression for tfi@age 198),

parametew, N q—p)x2(q) — (¢ —x2(q))p

5 maxdl Ao , AN ) (¢ = 22(9)(p1p? = (L + p1+8)p+q)
= — max{log Ao+ 1 — At & (AL + g1+ po — Xo)2?7 wherexs(g) is one solution to the equation

but cannot capture the nature @ffn). In each plot of Figure pip* = (1+p1+5)p+q=0.

2, the gap between the two curves shows the “imprecisionhe two solutions fop are
of the large deviations result. That is, it shows how much the

large deviations result misses the actual tail probabiftyhe 21(q) _ltptst V4o ts)?— 4/’1‘17
queue size. 2p

From the modelling point of view, compared with those in (0) _L1tpts— VL +p1+8)2 —4pig
[2], the model in this paper allows non-1ID packet delays in 2p1 '

the DN and it specifically models packet disordering causgdcan be shown that for Re > 0 and|q| < 1,
by routing on different paths. As for generalization, our
preliminary work shows that there are similar large deuiadi z1(a)] > 1, |z2(g)] < 1.
results for more complex arrival and service processes fafe will use the fact that, fon = 1,2, ...,
the queues in the DN, even for the case of non-IID arrival n

processes. However, in order to generalize, we must rely 2(9)

on more generalizable arguments than many probabilistic — (1+p1+s)77 I,(27/p1q)dr

arguments used in this paper, which specifically depend on o T(p1q)?

the undgrly?ng probability dis_tribution_s. In ar)other ditien of. Z - “(4pits)r ot L2mgn—1
generalization, we can consider a disordering network with q m!(m +n)! :
parallel M/M/1 queues, where > 3. Preliminary investigation m=0 (59)

seems to show that there are no conceptual hurdle in that N ) ] _
direction but careful book-keeping is required. Finallpeo Wherel,(z) is the modified Bessel function of the first kind
weakness of these models is that they do not allow situatiof§h series expansion

that yield heavy-tailed distributions for the RSQ. 2 (Lx)ntm

— 2 —
In(x) = Z m, n = 071,...

m=0

APPENDIX
ALTERNATIVE PROOFS FOR THEUPPERBOUND IN THE
PROOF OFTHEOREM2: CASE OF i1 — A1 < g2 — A2

To find an expression foH,;(¢), we will expandH*(p, ¢, s)
into power series op. Starting with (58),

We will work directly with the departure process. Following ~ H"(p.¢;s) = a(w2(q) ~ p)
the approach in [27] (chapter 2, section 4), let pila— :E?(q_)zl(p —21(9))(p — 22(q))
Hij(t) = P{q(t) =i, D(t) = jlq(0) = 0},  (54)  pi(g — x2(q) (0 — 1(q))
. . 1 o P )
where D(t) is the number of departures on the interjlt]. = ‘. (60)
We will s(h)ow P Al p1(g — x2(q)) x1(q) Z;(xl(q))



In the above, the series expansion is valid when< |z1(q)],
which is satisfied whetp| is small enough. By (60) and by
the definition of H*(p, ¢, s) in (57), the coefficient fop® in
the power series expansion 8f(p, ¢, s) with respect to is

N q 1
¢ [ ey i - 1
]Z:;) 0 ’ p1(a —22(q)) =7 (q)
(61)
Next, we use the fact
q
r1(q)w2(q) = —,
P1
and we express—L— in power series ofM. We get,
g—2z2(q)
> o z+l+1
S0 [ eyt i =Y Pl 62
j=0 70

The above series expansion is true whes(q)| < |g|, which

11

By (56),

P{M(T) = n}

</ pire —(A1tpa)t (pat) 2n
~Jo

3

=0

oo

Zm (uat)’

(p2 —

(i +1+1)(put)!

LD T e,

Becausen +i+1+1>4i+1+1foralln >0,

P{M(T) = n}
e ()\1+p,1)t t 2n °°
< /0 Pi (i Zpl pit)
> t
x mfilw e

=0

oo oo

= (p2 = A2) Y

prt (2n 40+ 1))

can be satisfied ifs| is large enough. By (59), S nl(n+i+10)!
S [y i T e
7=0 . 0 (27’L + 7 + l)'
. j W
—(14p1+s)T (i+1+Dp 5 j+i+1 = a
_plzzq / pree) JG+i+i+1) ! dr. AL+ p1 4 pe — A
=0 0 n %
= (63) i — A (2n+i+ 1) ( H1 2ntitl
‘ n! n+i+0D! A+ p e — A
Matching both sides term-by-term, we get =0 1=0 ( ) LT A
1) In deriving the last step, (16) has been used. Note that
Hij(t/p1) = Z %l—fll) —(tp1)7p2j i @n+i+1)!  (20)! 2n+1)(2n+2)...(2n+i +1)
Y Ga  MOFiHDlT all o D 2)(n i)
Replacingr /., by t, we get (55). [ < (2'n)' it
We will now show the upper bound. First, we notice that nene
for all integeri > 0, Hence
. P{M(T) =
P{M(t) = jla(0) = i} < P{M(t) = jla(0) = 0}. W ,
.. 2 T A2 ton 1 2n
This is because S W r— (>\1 FT—
P{M(t) = j|q(0) = i} iQi z( H1 )1
= P{At least;j customers arrived of0, ¢], the i customers pard P AL+ e — Az
in the queue at time 0 and the firstcustomers who o0 /| l
arrived on[0, t] are served by time}, gt )\1 + + Lo — )\2)
and this probability should be monotonically decreasing.in _ Mo — Ao (2n)! A1pi1 "
Hence, )\1 + p1 + p2 — Az nin! (>\1 + p1 + p2 = A2)?
P{M(T) = n} Z 2\ )i Z 211 !
o0 (o A1+ pn + g2 — Az A1+ pn + g2 — Ag
_ / P{M(t) = n}(uz — Ao)e~ 2= 2t =0 )
. . Sincep; — A1 < pe — A and Ay < g, it follows that
P{M(t) = 0) =i} P{q(0) =
/ Z {M(t) = nla(0) = i} P{q(0) = i} S -
)\2) (h2=X2)t gy A1+ p1 4 2 — A ’
2/ <1 (67)

5/ Z P{M(t) = n|q(0) = 0} P{q(0) =i}
0 =0

“(p2 = Az)e
| PO = ala(0) = 0} = e =

—(n2=A2)t gy

A+ pr+pe — A

Hence, the two infinite sums in (65) are both finite. Further-
more, by Stirling’s approximation,

(20)! _ VAzn(2n)e (1 +0(1/n) _ Ca
nlnl ~ (V2rn(n)re-n(1+ O(1/n)))? < f4 , (68)



for some constant’; > 0. Therefore,

Gy
Ve (A4 4 e — Ae)?

for some constant’s > 0. We are done with the proof for the
upper bound. (9]

Another perhaps shorter proof for the upper bound starts
with (30). By writing

(7]

P{M(T) = n} < (69)

(8]

[10]
P> xi< =S W
{Z Z ’ [11]
we have 121
P{M(T) = n}
N e M (M) o= et (ugt)! [13]
(po — )\2) —(n2=A2)t gy [14]
_ / S O S )
B (n+i) &=  (n+l) [15]
s Az) e (16
= ot 2n i+ 1)
= (2 AZ);M:” (n+)ln+ 1)
s} e—()q+u1+1L2—)\2)t(ult)2ﬂ,+i,+l [17]
' /0 (2n+i+1)! dt -
_ p2 — A2
A + o — A
103— lu;’ 'ff—ig-z 2 [19]
Z (20 +i+1)! H1 2ntitl
i (n + i) (n+ 1) A+ g+ e — Ao
(70) 1201
Next, [21]
@n+i+0)!  2n)! @n+1)2n+2)...(2n+i+1)
(n+i)ln+0)!  nn! (n+1)..(n+i)(n+1)..(n+1) 2]
I
< (2n).27’+l. 71)

~ nln!
. 23]
The rest steps are exactly the same as those starting at (6['5).

[24]
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