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Abstract—This paper proposes a framework to maximize
the lifetime the wireless sensor network (WSN) by using a
mobile sink when the underlying applications tolerate delayed
information delivery to the sink. Within a prescribed delay
tolerance level, each node does not need to send the data
immediately as they become available. Instead, the node can
store the data temporarily and transmit them when the mobile
sink is at the most favorable location for achieving the longest
WSN lifetime. To find the best solution within the proposed
framework, we formulate optimization problems that maximize
the lifetime of the WSN subject to the delay bound constraints,
node energy constraints and flow conservation constraints.We
conduct extensive computational experiments on the optimization
problems and find that the lifetime can be increased significantly
as compared to not only the stationary sink model but also more
traditional mobile sink models. We also show that the delay
tolerance level does not affect the maximum lifetime of the WSN.

I. I NTRODUCTION

A wireless sensor network (WSN) consists of sensor nodes
capable of collecting information from the environment and
communicating with each other via wireless transceivers. The
collected data will be delivered to one or moresinks, generally
via multi-hop communication. The sensor nodes are typically
expected to operate with batteries and are often deployed
to not-easily-accessible or hostile environment, sometimes in
large quantities. It can be difficult or impossible to replace
the batteries of the sensor nodes. On the other hand, the sink
is typically rich in energy. Since the sensor energy is the
most precious resource in the WSN, efficient utilization of
the energy to prolong the network lifetime has been the focus
of much of the research on the WSN.

Although the lifetime of the WSN can be defined in many
ways, we adopt the definition that it is the time until the first
node exhausts its energy, which is a widely used. Much work
has been done during recent years to increase the lifetime
of the WSN. Among them, in spite of the difficulties in
realization, taking advantage of the mobility in the WSN has
attracted much interests from researchers [1], [2], [3], [4], [5],
[6], [7], [8], [9]. We can take the mobile sink as an example
of mobility in the WSN. The communications in the WSN has
the many-to-one property in that data from a large number of
sensor nodes tend to be concentrated into a few sinks. Since

multi-hop routing is generally needed for distant sensor nodes
from the sinks to save energy, the nodes near a sink can be
burdened with relaying a large amount of traffic from other
nodes. This phenomenon is sometimes called the “crowded
center effect” [10] or the “energy hole problem” [11], [12],
[13]. It results in energy depletion at the nodes near the sink
too soon, leading to the separation of the sink from the rest of
nodes that still have plenty of energy. However, by moving the
sink in the sensor field, one can avoid or mitigate the energy
hole problem and expect an increased network lifetime.

This paper proposes a framework to maximize the lifetime
of the WSN by taking advantage of the mobile sink. Compared
with other mobile-sink proposals, the main novelty is that we
consider the case where the underlying applications tolerate
delayed information delivery to the sink. In our proposal,
within a prescribed delay tolerance level, each node does not
need to send the data immediately as they become available.
Instead, the node can store the data temporarily and transmit
them when the mobile sink is at the stop most favorable
for achieving the longest network lifetime. To find the best
solution within the proposed framework, we formulate opti-
mization problems that maximize the lifetime of the WSN
subject to the delay bound constraints, node energy constraints
and flow conservation constraints. Another one of our contri-
butions is that we compare our proposal with several other
lifetime-maximization proposals and quantify the performance
differences among them. Our computational experiments have
shown that our proposal increases the lifetime significantly
when compared to not only the stationary sink model but also
more traditional mobile sink models. We also show that the
delay tolerance level does not affect the maximum lifetime of
the WSN.

Our proposal is more sophisticated than most previous
lifetime-improvement proposals that we know of. It integrates
the following energy-saving techniques, multipath routing, a
mobile sink, delayed data delivery and active region control,
into a single optimization problem. Such sophistication comes
at a cost. Whether the proposal should be adopted in practice
will depend on the tradeoff between the lifetime gain and the
actual system cost. Even if the decision is not to adopt it
due to a high cost or high complexity, the framework in the



paper is still useful because it can supply the practitioners
with a performance benchmark, e.g., how much lifetime
improvement opportunity there is. By also formulating the
optimization problems related to other proposals and providing
cross comparison, the paper provides extra convenience for
comparing and understanding different proposals.

We now briefly review the most relevant work on how to
exploit mobility to increase the network lifetime. In [4], the
authors introduced the mobile agents called MULEs, which
move around and collect data from nearby sensor nodes on
behalf of the immobile sink. When the mobile agents move to
the vicinity of the sink, they forward the collected data to the
sink. The mobile agents are assumed to have plenty of energy.
The movement of each mobile agent is modeled as a random
walk. It was shown that the queues in the mobile agents and
the sensor nodes are finite and the delay of the collected data
is bounded. However, the authors did not show the quantitative
improvement of the network lifetime by using mobile agents.

In [1], the authors formulated a linear programming problem
to maximize the lifetime of a WSN where the sensor nodes
are deployed in a grid pattern and the sink can move to a
subset of the grid points. When the location of the mobile
sink is known to the sensor nodes, each node can identify the
minimum hop-count paths to the sink. The nodes distribute
the data evenly onto these paths.

The authors of [3] showed that the network lifetime can
be extended significantly if the mobile sink moves around
the periphery of the WSN. They assumed that, if the mobile
sink can balance the traffic load of the nodes, the lifetime
of the network can increase. Therefore, they proposed an
optimization problem for choosing a mobility strategy that
minimizes the maximum traffic load of the nodes. However,
they assumed the shortest path routing, which, in general, does
not produce the best lifetime.

The problem of finding the sink movement path to optimize
the lifetime of the WSN, as in [5], is hard to solve. This type of
problems generally belong to thetraveling salesman problem.
In [9], the authors studied how to find the optimal sink stops
and the schedule of visit to the each of the stops. If the can-
didate locations for the stops are unconstrained, this problem
is also NP-hard. However, if the stops are constrained to be
selected from a finite set of known locations, the problem can
be easily formulated into linear programming. They proposed
an approximation algorithms to the unconstrained problem by
properly dividing the whole sensor field into a finite number
of disjoint small areas, and then, converted the unconstrained
problem into a constraint problem. However, to obtain a good
approximation ratio, the number of small areas can potentially
be very large, making the linear programming computation
time-consuming. Therefore, in this paper, we restrict the set
of potential sink stops to be from a small number of given
locations rather than from arbitrary locations.

The WSN model proposed in [7] is close to ours. The
authors studied the maximum lifetime problem of the WSN
where the mobile sink can visit only small number of loca-
tions. They showed that the lifetime can be further increased

by optimizing not only the schedule of sink visits but also rout-
ing of the traffic. However, they did not consider applications
where delayed information delivery is allowed.

The rest of the paper is organized as follow. Section II
describes various related lifetime maximization problemsthat
we will compare against. The mathematical formulations of the
models are provided for the purpose of comparison. In section
III, we propose two novel models with a mobile sink and
delayed information delivery. We show some nice properties
that our models possess. In section IV, we compare our models
with others by simulation and numerical experiments. The
conclusions are given in Section V.

II. RELATED L IFETIME MAXIMIZATION PROBLEMS

In this section, we discuss related lifetime maximization
problems that have been published in the literature. We will
later compare their performance with our new proposal.

First, we will describe the general assumptions about the
WSN models. Let the set of sensor nodes be denoted byN .
For experimental convenience, we suppose they are uniformly
randomly deployed into a circular area with radiusR. Let the
center of the disk be the origin. Each nodei is assumed to
generate data at a constant rate ofdi during its life span and
the initial energy ofi is denoted byEi. Furthermore, the nodes
have the ability of adjusting their transmission power level to
match the transmission distance. Similar to [14], the energy
required per unit of time to transmit data at the rate ofxij

from nodei to j can be determined as follows.

Et
ij = Ct

ij · xij , (1)

whereCt
ij is the required energy for transmitting one unit of

data from nodei to j and it can be modeled as follows [15].

Ct
ij = α + β · d(i, j)e, (2)

whered(i, j) is the Euclidean distance between nodei and
j, α and β are nonnegative constants, ande is the path loss
exponent. Typically,e is in the range of 2 to 6, depending on
the environment. Here, the energy cost per unit of data does
not depend on the link rate, and this is valid for the low rate
regime. Hence, we need to assume that the traffic ratexij

is sufficiently small compared to the capacity of the wireless
link.

The energy consumed at nodei per unit of time for receiving
data from nodek is given by [14]

Er
ki = γ · xki, (3)

whereγ is a given constant. Hence the total energy consump-
tion per unit time at nodei is

∑

j∈N

Et
ij +

∑

k∈N

Er
ki =

∑

j∈N

Ct
ij · xij +

∑

k∈N

γ · xki. (4)

We assume that each sensor node has the same transmission
range. We define the neighbors of nodei as N(i) = {j ∈
N|d(i, j) ≤ d̄}, when the transmission range is̄d.



A. Static Sink Model

In the static sink model(SSM), the sink is located at the
origin and remains stationary during the operation of the WSN.
Data originated from the sensor nodes flow into the sink in a
multi-hop fashion. As soon as the data becomes available at a
node, it gets transmitted toward the sink. Typically, the rate at
which each sensor nodei harvests data from the outside world
is a constant. We denote it bydi. The problem of maximizing
the lifetime in this model is formulated as follows [16], [17].

Problem : Staic Sink Model (SSM)

max T

s. t.
∑

j∈N(i)

xij −
∑

k:i∈N(k)

xki = di, i, j, k ∈ N (5)





∑

j∈N(i)

Ct
ij · xij +

∑

k:i∈N(k)

γ · xki



 · T ≤ Ei,

i, j, k ∈ N (6)

xij ≥ 0, i, j ∈ N (7)

T ≥ 0, (8)

The constraint (5) is the “flow conservation constraint”, which
states that, at a nodei, the sum of all outgoing flows is equal
to the sum of all incoming flows plus flows generated at node
i itself, or di. The inequality (6) is the energy constraint and
it means that the total energy consumed by a node during
the lifetime (T ) cannot exceed the initial energy of the node.
With this formulation, the routing is dynamic and allows
multipath communications. There is no assumption on fixed-
path routing, such as the shortest path routing. The above
optimization problem can be easily converted into a linear
programming (LP) problem.

B. Mobile Sink Model

In the mobile sink model(MSM), we assume that the sink
can move around within the sensor field and stop at certain
locations to gather the data from the sensor nodes. We ignore
the traveling time of the sink between locations. LetL be the
set of possible locations where the sink can stop. The sink
does not necessarily stop at (i.e., stays for a positive duration)
all locations inL in the interest of maximizing the network
lifetime [1], [9]. In this model, the order of visit to the stops
has no effect on the network lifetime and can be arbitrary. The
sink sojourn timeat a locationl ∈ L is denoted byzl; it is the
time that the sink spends atl to collect data from the sensor
nodes. The overall network lifetimeT =

∑

l∈L zl. To find the
optimal network lifetime, we need to consider the routing of
the traffic as well as the duration of stay by the sink at each
stop [9], [2], [1], [7]. Letx(l)

ij be the flow rate from nodei to
j while the sink is at stopl. Let N̂ = N ∪ L. The lifetime
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Fig. 1. Examples of the static sink model (SSM), mobile sink model (MSM),
and delay tolerant mobile sink model (DT-MSM)

maximization problem can be formulated as follows.

Problem : Mobile Sink Model (MSM)

max T = z1 + z2 + · · · + z|L|

s. t.
∑

j∈N(i)

x
(l)
ij −

∑

k:i∈N(k)

x
(l)
ki = di,

i, k ∈ N , j ∈ N̂ , l ∈ L (9)
|L|
∑

l=1

zl





∑

j∈N(i)

C
(l)
ij · x

(l)
ij +

∑

k:i∈N(k)

γ · x
(l)
ki



 ≤ Ei,

i, k ∈ N , j ∈ N̂ , l ∈ L (10)

x
(l)
ij ≥ 0, i ∈ N , j ∈ N̂ , l ∈ L (11)

zl ≥ 0, l ∈ L (12)

The energy required for transmitting one unit of data when
the sink is atl can be expressed as,

C
(l)
ij =











Ct
ij if j /∈ L

∞ if j ∈ L andj 6= l

Ct
il = α + β · d(i, l)e if j ∈ L andj = l,

(13)

whereCt
ij is the same as in the SSM.

Constraint (9) denotes the flow conservation for all nodes
when the sink is atl. Constraint (10) says that the total energy
consumed at the nodei can not exceed the initial energy
Ei. By multiplying (9) with zl and substitutingx(l)

ij · zl with

new variabley(l)
ij , we have replace (9) with the following new

constraint.
∑

j∈N(i)

y
(l)
ij −

∑

k:i∈N(k)

y
(l)
ki = zl ·di, l ∈ L, i ∈ N , j ∈ N̂ . (14)

Similarly, constraint (10) can be changed into

|L|
∑

l=1





∑

j∈N(i)

C
t(l)
ij · y

(l)
ij +

∑

k:i∈N(k)

γ · y
(l)
ki



 ≤ Ei,

i ∈ N , j ∈ N̂ , l ∈ L. (15)

With constraints (14), (15),(12), and non-negativity constraints
of y

(l)
ij , the above optimization problem is converted into an

LP problem. Here,y(l)
ij is interpreted as the total traffic volume

for nodei to send to nodej while the sink stays atl.



III. L IFETIME MAXIMIZATION IN DELAY TOLERANT

MOBILE SINK MODEL

In this section , we consider how to maximize the network
lifetime in applications that can tolerate a certain amount
of delay. We call the resulting WSN modeldelay tolerant
mobile sink model(DT-MSM). In this setting, each nodes can
postpone the transmission of data until the sink is at the stop
most favorable for extending the network lifetime. This way,
the nodes can collectively achieve a longer network lifetime.
In contrast, the SSM and MSM do not exploit this possibility.

Let D be the maximum tolerable delay, or the delay
tolerance level. We assume that the sink finishes one round
of visit to all the stops (where the sink stays for a positive
duration to collect data) inD time units, and then, repeats
with another round again and again. Note that two consecutive
visits to the same stop takes a timeD.

Let’s take an example to show how our framework can
outperform other ones. Consider the two-node example shown
in Figure 1.N1 andN2 are two sensor nodes andL1 andL2

are the candidate stops of the mobile sink. Suppose we ignore
the receiving energy requirement and suppose the transmission
energy per unit of data is equal to the square of the distance
between the sender and the receiver. Both nodesN1 andN2

generate data at 1 bps and have 100 units of energy initially.
If the sink is located atO in the SSM, both nodes spend 4
units of energy for sending a bit of data. It is obvious that the
optimal lifetime is 25 seconds. In the MSM with sink locations
{L1, L2}, due to the symmetry of the structure, the sink stays
at bothL1 andL2 for the same amount of time to achieve the
maximum lifetime. Each node spends1 or 9 units of energy
for sending 1 bit of data depending whether the sink is at
L1 or L2. The average energy consumption per bit is 5 units.
Thus, the lifetime is 20 seconds. In the DT-MSM, we assume
that the sink alternates between the two stops and stays for
1 second at each stop in each cycle. Hence,D = 2 seconds.
When the sink stays atL1, only N1 sends 2 bits of data to
the sink; when the sink moves toL2, only N2 transmits 2
bits of data. Both nodes spend 1 unit of energy per second
on average. Thus, the lifetime is 100 seconds, a significant
increase compared to the SSM and MSM. This is because,
in the DT-MSM, the nodes do not always participate in the
communication for all the sink stops; they each wait until the
sink’s location is most favorable for energy saving, and then
send data at the higher rate. Recall that we have assumed that
the traffic rate is sufficiently small compared to the capacity of
the wireless link, and hence, sending data a higher rate does
not alter the per-bit energy consumption.

Unlike the MSM or SSM, the sink in the DT-MSM can
collect data from only a subset of the set of all sensor nodes,
N , at each stop. LetRl be the subset ofN such that only
nodes inRl can participate in the communication when the
sink is atl ∈ L. We callRl the coverageof the sink location
l. Note that the union ofRl over l ∈ L must be the set of
all sensor nodes,N . In other words, any sensor node should
be covered by at least one sink location. When the nodei is
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Fig. 2. Comparison of lifetimes of MSM and DT-MSM under the various
radii of coverage

in Rl, nodei is said to beactiveat l ∈ L. Although we can
constructRl in many ways depending on the application of
interest, in this paper, a very simple method of constructing
Rl is considered. Fix a positive numberr. We callr the radius
of coverage of the sink. For eachl ∈ L, if d(i, l) ≤ r, where
i ∈ N , then i ∈ Rl. Here, the radius of coverage of the sink
(r) should be large enough so that every sensor node belongs
to at least oneRl.

In both SSM and MSM, the sink collects data from each
node i at the same rate at which nodei generates the data.
However, in the DT-MSM, the data transmission rate at nodei
during the collection time is no longer the same as the constant
data generation ratedi. When nodei is not active (i.e., not
covered by the current sink location), it continues to gather
data and should store the newly generated data. Hence, data
buffering is required by our framework. Within a cycle ofD
time units, the total stored data at each nodei is at most
D · di. For ease of presentation, we assume the sink visits all
locations inL in the order of1 → 2 → · · · |L| → 1 · · · . The
sink may stay at some location for zero time. With slight abuse
of terminology, we re-define the network lifetimeT to be the
number of cycles made by the sink until the first node dies
due to energy exhaustion. The actual lifetime isT ·D. We next
describe two variants of the model: thesub-flow-based model
and thequeue-based model.

A. Sub-Flow-Based Model

In thesub-flow-based model, the nodes in the current cover-
ageRl are not allowed to buffer the relayed traffic from other
nodes; as soon as a node inRl receives the data from other
nodes, it immediately forwards the data to its neighboring
nodes. To model this constraint at each nodei, we need to
differentiate the data generated by nodei itself and the data
originally generated by other nodes but forwarded to nodei.
The data generated by the same source is sometimes called
a commodityor a sub-flow[18], [19]. Let x

(m,l)
ij be the rate

assignment from nodei to the nodej, while the sink is atl,
for the traffic generated by nodem (commoditym). Let x

(l)
ij

be the aggregated rate of traffic that needs to be forwarded to
nodej from nodei when the sink is atl. That is,

x
(l)
ij =

∑

m∈Rl

x
(m,l)
ij , i ∈ Rl, j ∈ Rl ∪ {l}, l ∈ L. (16)



Since at nodei, the commodity or sub-flow of other nodes
m ∈ Rl, m 6= i must be forwarded as soon as it has been
received, we must have

∑

k:i∈Nl(k)

x
(m,l)
ki =

∑

j∈Nl(i)

x
(m,l)
ij ,

i, m 6= i, k ∈ Rl, j ∈ Rl ∪ {l}, (17)

whereNl(i) = Rl ∩ N(i). The flow conservation at nodei
can be expressed as follows, which is the same as in the MSM
except that the net amounts of traffic originated from nodei

itself, (w
(l)
i , l ∈ L, i ∈ N ), are now decision variables.

zl





∑

j∈Nl(i)

x
(l)
ij −

∑

k:i∈Nl(k)

x
(l)
ki



 = w
(l)
i . (18)

The data buffered during the previous sink-movement cycle
must be cleared in the current cycle. This requirement can be
written as

∑

l:i∈Rl

w
(l)
i = D · di. (19)

The following is the lifetime maximization problem in sub-
flow-based DT-MSM.

Problem : Sub-Flow-Based DT-MSM

max T (20)

s. t.
∑

m∈Rl

x
(m,l)
ij = x

(l)
ij , i ∈ Rl, j ∈ Rl ∪ {l}, l ∈ L (21)

∑

k:i∈Nl(k)

x
(m,l)
ki =

∑

j∈Nl(i)

x
(m,l)
ij ,

m 6= i; m, i, k ∈ Rl; j ∈ Rl ∪ {l}; l ∈ L (22)

zl





∑

j∈Nl(i)

x
(l)
ij −

∑

k:i∈Nl(k)

x
(l)
ki



 = w
(l)
i ,

i, k ∈ Rl; j ∈ Rl ∪ {l}; l ∈ L (23)






|L|
∑

l=1

zl





∑

k:i∈Nl(k)

γ · x
(l)
ki +

∑

j∈Nl(i)

C
(l)
ij · x

(l)
ij











· T ≤ Ei

i, k ∈ N ; j ∈ N̂ ; l ∈ L (24)
∑

l:i∈Rl

w
(l)
i = D · di, i ∈ N (25)

x
(m,l)
ij ≥ 0, i, m ∈ Rl; j ∈ Rl ∪ {l}; l ∈ L (26)

w
(l)
i ≥ 0, i ∈ Rl, l ∈ L (27)

zl ≥ 0, l ∈ L (28)

T ≥ 0. (29)

In the sub-flow-based model, each node requires onlyD ·di

amount of buffer because there is no need to store other nodes’
sub-flows.

B. Queue-Based Model

In the queue-based model, the sensor node can buffer the
commodities or sub-flows of all nodes. Letq

(l)
i be the queue

length at nodei just before the sink moves from locationl
to l + 1. Assume that each nodei has D · di amount of
data at the beginning of a cycle, which is denoted byq

(0)
i .

When the sink finishes a cycle of visit, the queue at nodei

must be cleared. Thus we haveq
(|L|)
i = 0. In this model, the

flow conservation constraint has to do with the queue length,
expressed as follows.

zl

∑

k:i∈Nl(k)

x
(l)
ij + q

(l−1)
i − zl

∑

j∈Nl(i)

x
(l)
ij = q

(l)
i ,

i, k ∈ N ; j ∈ N̂ ; l ∈ L. (30)

The energy constraints can be expressed in the same way
as in the MSM or sub-flow based MSM. From the above
discussion, we have the following optimization problem for
maximizing the lifetime.

Problem : Queue-Based DT-MSM

max T (31)

s. t. zl

∑

k:i∈Nl(k)

x
(l)
ki + q

(l−1)
i − zl

∑

j∈Nl(i)

x
(l)
ij = q

(l)
i ,

i, k ∈ N ; j ∈ N̂ ; l ∈ L (32)






|L|
∑

l=1

zl





∑

k:i∈Nl(k)

γ · x
(l)
ki +

+
∑

j∈Nl(i)

C
(l)
ij · x

(l)
ij











· T ≤ Ei

i, k ∈ N ; j ∈ N̂ ; l ∈ L (33)

x
(l)
ij ≥ 0, i ∈ N , j ∈ N̂ , l ∈ L (34)

q
(l)
i ≥ 0, l ∈ L, i ∈ N (35)

q
(0)
i = D · di, i ∈ N (36)

q
(|L|)
i = 0, i ∈ N (37)

zl ≥ 0, l ∈ L (38)

T ≥ 0. (39)

The problem shown above can be converted into an LP
problem by substitutingy(l)

ij for zl · x
(l)
ij and introducing the

new variableu = 1/T . This linearization method can also be
applied to the MSM.

C. Properties of Delay-Tolerant Mobile Sink Model

To facilitate later expositions, we define theinclusion re-
lationship between different optimization problems with the
same decision variablesx and the same objective function
f(x) but different constraint sets. Without loss of generality,
we consider the minimization problem.

Definition 1 (Inclusion). Consider two minimization problems
P1 and P2 that have the same decision variablesx and



the same objective functionf of variables x, but different
constraints setF1 and F2, respectively. IfF1 ⊆ F2, we say
that P1 is said to be included inP2 and denoteP1 ⊆ P2.

If P1 ⊆ P2, we can always obtain better optimal solution
from P2 thanP1. In general, we say thatinclusion holds for
a sequence of optimization problems{Pi}, where i is from
some linearly ordered index set,I, that is,Pa ⊆ Pb whenever
a < b, a, b ∈ I.

In both sub-flow-based model and queue-based model, the
coverage of the sink location is a very important factor for
the lifetime of the WSN. Consider the optimization problem
formulated for the sub-flow-based model. Depending on the
radius of coverage, we may obtain different instances of the
optimization problem. This observation is also valid in the
queue-based model. Thus, we can parameterize the optimiza-
tion problems according to the radius of the coverage. Let
P (N ,L, r) be the optimization problem when the radius of
coverage of the sinks isr, the set of sensor nodes isN , and the
set of sink locations isL. The valuer must be large enough
so that all sensor nodes can be covered by at least one sink
location and we denote this minimum radius of coverage for
connectivity byr0. Under the same configuration withN and
L, differentr values only affectsNl(i) andC

(l)
ij . We will use

the notationNl(i, r) andC
(l)
ij (r) if it is necessary to specify

the radius of coverage. In the next theorem, we prove that the
bigger the radius of coverage,the longer the optimal lifetime is.
For the proof of this theorem, we need the following lemma.

Lemma 2. The sequence{P (N ,L, r)}, r ∈ R, satisfies
inclusion. That is,P (N ,L, r1) ⊆ P (N ,L, r2) for any pair
of r1, r2 such thatr1 < r2.

Proof: Let G = {N ∪ L, E} be a graph whereE =
{(i, j)|i ∈ N , j ∈ N ∪ L, d(i, j) ≤ c}, where c is the
transmission range of the sensor nodes. The neighbor set of
nodei is defined asN(i) = {j ∈ N ∪L|(i, j) ∈ E}. Let G(r)
be the graph for the DT-MSM model with the radiusr and
G(r) = {N ∪ L,∪

|L|
l=1E

(l)(r)}, whereE(l)(r) = {(i, j)|i ∈
Rl, j ∈ Rl ∪ {l}, d(i, j) ≤ c}, andRl = {i ∈ N|d(i, l) ≤ r}.
The neighbor set of nodei when the sink is atl, Nl(i) is
{j ∈ Rl ∪ {l}|(i, j) ∈ E(l)(r)}.

Consider the two optimization problemsP (N ,L, r1) and
P (N ,L, r2) with r1 < r2. It is obvious thatNl(i, r1) ∈
Nl(i, r2) for all i ∈ N , l ∈ L by the definition of neighbor
set Nl(i, r). Therefore, we can split the larger setNl(i, r2)
into two setsA and Ā, where A = Nl(i, r1), and Ā =
Nl(i, r2)−A. In a similar way, we can also split the incoming
neighbor set for the nodei into B = {k ∈ N|(k, i) ∈
E(l)(r1) and (k, i) ∈ E(l)(r2)} and B̄ = {k ∈ N|(k, i) ∈
E(l)(r2)} − B. In other words,Ā and B̄ are the extended
outgoing and incoming neighbor sets for nodei, respectively,
as the radius of coverage increases fromr1 to r2.

Suppose that(x̂, ŵ, ẑ, T̂ ) is a feasible solution to the
problem P (N ,L, r1). Now, consider equation (23) for the

optimization problemP (N ,L, r2).

zl





∑

j∈Nl(i,r2)

x
(l)
ij −

∑

k:i∈Nl(k,r2)

x
(l)
ki



 = w
(l)
i . (40)

We have the following by separating the neighbor sets into
A, Ā, B, and B̄.

zl





∑

j∈A

x
(l)
ij +

∑

j∈Ā

x
(l)
ij −

∑

k∈B

x
(l)
ki −

∑

k∈B̄

x
(l)
ki



 = w
(l)
i ,

(41)
for i, k ∈ N , j ∈ N ∪ {l}, l ∈ L. We set the variable
x

(l)
ij = x̂

(l)
ij whenj ∈ A, andx

(l)
ij = 0 whenj ∈ Ā. In addition,

we setx(l)
ki = x̂

(l)
ki whenk ∈ B andx

(l)
ki = 0 whenk ∈ B̄. For

the variablesw andz , let w(l)(i) = ŵ(l)(i) andzl = ẑl. Then,
equation (41) is equivalent to the constraint (23) of the problem
P (N ,L, r1). Therefore,(x̂, ŵ, ẑ, T̂ ) satisfies the constraint
(23) for the problemP (N ,L, r2). For the energy constraint
(24), we can also apply the similar procedures. Hence, we can
conclude that any feasible solution of the problemP (N ,L, r1)
is also a feasible solution for the problemP (N ,L, r2). Hence,
P (N ,L, r1) ⊆ P (N ,L, r2).

As a consequence, we have the following theorem.

Theorem 3. Consider the set of maximization problem
{P (N ,L, r)}, r ∈ R. If r1 < r2, then optimal objective
value for the problemP (N ,L, r2) is greater than that for
the problemP (N ,L, r1).

In general, the queue-based model is less constraining than
the sub-flow-based model. Naturally, this results in lifetime
gains in the former model. The following theorem formalizes
the fact that the queue-based model always outperforms the
sub-flow-based model.

Theorem 4. Let T̂ be the optimal objective value to problem
(20), andT ∗ be the optimal objective value to problem (31)
with the same configuration(N ,L) and the same radius of
coverager. ThenT̂ ≤ T ∗.

Proof: Let (x̂
(m,l)
ij , ŵ

(l)
i , ẑk, T̂ ) be the optimal solution to

problem (20). We will prove this theorem by constructing a
feasible solution to problem (31) with(x̂(m,l)

ij , ŵ
(l)
i , Ẑk, T̂ ),

and showing that under this feasible solution, the objec-
tive value of problem (31) is the same. By (21),x

(l)
ij =

∑

m∈Rl
x̂

(m,l)
ij . In addition, let setq(l)

i = q
(l−1)
i − w

(l)
i for

all i ∈ N . Sinceq
(0)
i = D · di by (36), we have the following

sequence of assignments for theq(·)i.

q
(1)
i = q

(0)
i − w

(1)
i = D · di − w

(1)
i

q
(2)
i = q

(1)
i − w

(2)
i

...
. . .

q
(|L|)
i = q

(|L|−1)
i − w

(|L|)
i .

If we sum up above assignment for alll ∈ L, we have
q
(|L|)
i = D · di −

∑|L|
l w

(l)
i = D · di − D · di = 0 by (25)



and it exactly coincides with (37). Since the configuration
and radius of coverager for problem (20) are the same as
problem (31),Nl(i), i ∈ N , l ∈ L for (20) does not change
in (31). If we put w(l)

i = q
(l−1)
i − q

(l)
i into (23), we have

exactly the same constraint as (32). Energy constraint (24)is
equivalent to the (33). From the above arguments, we conclude
that for the optimal solution to problem (20), there exists a
corresponding feasible solution to problem (31) with the same
objective value. Hence,T ∗ ≥ T̂ .

In the following theorem, we show that the maximum
lifetime of the system is the same for all values ofD. Here, the
maximum lifetime of the system is expressed as the product of
the D and the corresponding optimal objective valueT ∗(D).

Theorem 5. DefineP (D) as the lifetime optimization problem
parameterized by the valueD, for some fixed network con-
figuration. LetT ∗(D) and T ∗(D′) be the optimal objective
values for the problemP (D) and P (D′), respectively. Then,
T ∗(D) · D = T ∗(D′) · D′.

Proof: Consider the queue-based model. Let
(x∗(D), q∗(D), z∗(D), T ∗(D)) be the optimal solution to the
problemP (D), and let(x∗(D′), q∗(D′), z∗(D′), T ∗(D′)) be
the optimal solution to the problemP (D′).

First, supposeT ∗(D) · D < T ∗(D′) · D′. We will show
this contradicts the definition of the optimal value,T ∗(D)
by constructing a feasible solution whose objective value is
greater thanT ∗(D) for the problemP (D).

Let x = ( D
D′

)x∗(D′), q = ( D
D′

)q∗(D′), z = z∗(D′),
T = (D′

D
)T ∗(D′). We want to show that(x, q, z, T ) satisfies

the constraints (32)-(39). Since it is obvious that the solution
(x, q, z, T ) satisfies the constraints (34), (35), (37), (38), and
(39), we focus here on constraints (32), (33), and (36) only.
Since the optimal solution(x∗(D′), q∗(D′), z∗(D′), T ∗(D′))
is feasible to the problemP (D′), it must satisfy constraint
(32). Next, let us plug(D′

D
)x, z, and(D′

D
)q into constraint (32)

in the places forx∗(D′), z∗(D′), and q∗(D′), respectively.
Then, we have

zl

∑

k:i∈Nl(k)

x
(l)
ki + q

(l−1)
i − zl

∑

j∈Nl(i)

x
(l)
ij = q

(l)
i . (42)

If we put (D′

D
)x, z, and ( D

D′
)T in the places forx∗(D′),

z∗(D′) and T ∗(D′) on the left hand side of constraint (33),
we have







|L|
∑

l=1

zl





∑

k:i∈Nl(k)

γ · x
(l)
ki

(

D′

D

)

+

∑

j∈Nl(i)

C
(l)
ij · x

(l)
ij

(

D′

D

)











· T

(

D

D′

)

(43)

After cancelingD andD′, it is easy to see that the new solu-
tion (x, q, z, T ) satisfies the energy constraint of the problem
P (D).

From the constraint (36) for the problemP (D′) , we have
q
∗(0)
i (D′) = D′di. Since q = ( D

D′
)q∗(D′), q

∗(0)
i (D′) =

TABLE I
EXPERIMENTAL PARAMETERS AND THEIR VALUES

the number of sensor nodes {100, 200}
the number of possible sink locations {5, 6, 7, 8, 9, 10, 15, 20, 30, 40}
path loss exponent (e) {2.0, 3.0}
transmission range {5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}
α 10 pJ/bit/m2

β 0.0013 pJ/bit/m4

Initial Energy (Ei) 500 J
Data generation rate (di) 500 bps

q(D′

D
) = D′di. Therefore we have

q = Ddi. (44)

From above argument, we have shown that new solution
(x, q, z, T ) is feasible to the problemP (D). According to the
assumption, we knowT ∗(D′) > ( D

D′
)T ∗(D). Therefore, we

have

T =

(

D′

D

)

T ∗(D′) >

(

D′

D

) (

D

D′

)

T ∗(D) = T ∗(D) (45)

However, this is contradictory to the fact thatT ∗(D) is the
optimal value for the problemP (D). Thus, it must be that
T ∗(D)D ≥ T ∗(D′)D′.
Similarly, we can also prove thatT ∗(D)D ≤ T ∗(D′)D′.
Hence,T ∗(D)D must equal toT ∗(D′)D′

IV. EXPERIMENTAL RESULTS

In this section, we will present the results from numerical
experiments. In particular we have compared the network
lifetimes of the following models.

• Static Sink Model (SSM): The stationary sink is located at
O. We take the performance of this model as the reference
for comparison.

• Mobile Sink Model (MSM): The sink can move to
several locations to collect data. When the sink is at each
location, all sensors participate in the communication,
sending and relaying traffic to the sink.

• Delay-Tolerant Mobile Sink Model (DT-MSM): When
the mobile sink is at a stop, a subset of the sensor nodes
can participate in the communication. We use queue-
based variant of this model to evaluate the performance.

We have experimented with different parameters exten-
sively, such as the number of nodes, the number of possible
sink locations and the parameters for the energy consumption
model. Only a small subset of the results are reported here
due to space limitation. In Table I, we provide the system
parameters and their values for the reported experiments in
this paper. We adopt the data for the last four parameters from
[20]. In all experiments, we use GLPK for solving the linear
programming problem.

First, we would like to mention the impact of the radius
of coverage of the sink on the performance of the DT-MSM.
For this experiment, pointf for 100 nodes and 20 mobile-sink
locations are randomly generated (|N | = 100, |L| = 20) in
a circular area with radius 25. We use a simple algorithm
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Fig. 3. Lifetime against the number of sink locations; maximum coverage;
e = 2.0
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Fig. 4. Lifetime against the number of sink locations; minimum coverage;
e = 3.0

to find the minimum radius of coverage (denoted byr0): At
each sink location, we increase the radius of coverage from
0 simultaneously until the union of all coverages contains all
sensor nodes. At that point, we have reached the minimum
radius of coverage required to cover all nodes. After that, we
increase the radius of coverage in 0.1 increments. The result of
the experiment is plotted in Figure 2. Note that, in the figure,
the lifetime is normalized to the optimal lifetime of the MSM.
As shown in the figure, the lifetime of the DT-MSM increases
as the radius of coverage increases, which is consistent with
Theorem 3. The increase is the sharpest when the radius just
exceeds the minimum radius required to cover all nodes. After
that, further increase of the radius has a negligible effect.
Recall that, when the mobile sink reaches one of the stops,
say l, only those sensor nodes in the coverage ofl (i.e., Rl)
can communicate. It is generally desirable forRl to have as
few nodes as possible, since this reduces the communication
and coordination complexity. The aforementioned behaviorof
lifetime increase is desirable.

Next, we compare the lifetimes of models under various
numbers of the sink locations. The number of nodes is set to
100 or 200, the path loss exponente is 2.0, and the coverage
is as large as possible. We ran the experiment 100 times for
each configuration. The lifetimes of the MSM and DT-MSM
are again normalized to the optimal lifetime of the SSM. As
shown in Figure 3, the lifetime of the MSM is about100% ∼
200% greater than that of the SSM. However, the DT-MSM
is 200% ∼ 1000% better than the SSM. Moreover, the curves
all look linear; the performance gap can grow even larger with
more sink locations.

Interestingly, the lifetime of the MSM increases very slowly
with the number of sink locations. As explained in [9], in the
optimal solution, only a few locations from the set of sink
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locations are chosen as the true stops for the sink. However,
in DT-MSM, the rate of lifetime increase is substantial as|L|
increases. This is because each node can have better and better
sink location as|L| increases, and it is not forced to participate
in the communication when the current coverage is not the
most favorable for energy saving, even if the node may belong
to that coverage. This is not possible in the MSM because no
matter where the sink stops, every node must participate in
the communication.

We conduct similar experiments with the same configuration
but minimum coverage. The result is shown in Figure 4.
Although the slope of lifetime increase of the DT-MSM is
lowered when compared to the maximum coverage case, the
increase pattern is similar. Although a larger set of sink
locations increases the network lifetime, it can be undesirable
if the sink travel time cannot be ignored. The longer traveling
time may exceed the delay tolerance levelD. Therefore, there
is a tradeoff between the gain from more sink locations and
the delay or other system costs.

We also conducted experiments with different values for the
delay tolerance levelD. With 100 nodes and 20 sink locations,
we computed the optimal lifetime of the queue-based model
as D varies from 1 to 10. In Figure 5, we plot the optimal
objective valuesT (number of cycles) and the actual optimal
lifetime of the system. Note that the actual lifetime of the
system isT × D. As claimed by Theorem 5, the optimal
lifetime is a constant regardless of the values ofD.

In Figure 6, we show the lifetimes of the three models under
various values for the transmission range. The transmission
range determines whether a link exists between a pair of nodes.
For the minimum radius of coverage of the sink (See Figure
6(a)), the effective transmission range limited by the dimension
of the coverage of the sink. In other words, a node cannot



use a link to another node if they are not in the common
coverage. Both the MSM and the DT-MSM exhibit a sharp
lifetime increase when the transmission range is small but
increasing. However, the transmission range becomes large,
the lifetime increase comes to a stop for all 3 models.
The result implies that long-distance wireless links are not
beneficial for improving the system lifetime.

V. CONCLUSION

In this paper, we proposed a new framework for using the
mobile sink to improve the network lifetime. It is expected to
be useful in applications that can tolerate a certain amountof
delay in data delivery. We presented the mathematical formu-
lation for optimizing the network lifetime under the proposed
framework. We identified several properties that our model
possesses. In particular, we showed the delay tolerance level
does not affect the optimal system lifetime. To validate the
proposed framework, we conducted extensive experiments and
found that the proposed framework is superior to the models
published previously. The lifetime gain of the proposed model
is significant when compared to other models. Furthermore, as
the number of sink locations increases, the optimal network
lifetime increases substantially. The results of the papercan
be both applied to practical situations and can be used as
benchmarks for studying energy-efficient network design.
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