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Abstract—This paper proposes a framework to maximize multi-hop routing is generally needed for distant sensateso
the lifetime the wireless sensor network (WSN) by using a from the sinks to save energy, the nodes near a sink can be
mobile sink when the underlying applications tolerate delged burdened with relaying a large amount of traffic from other

information delivery to the sink. Within a prescribed delay d This bh - fi led the * ded
tolerance level, each node does not need to send the datd100€S. IS phenomenon 1S someumes calle e ‘crowae

immediately as they become available. Instead, the node cancenter effect” [10] or the “energy hole problem” [11], [12],
store the data temporarily and transmit them when the mobile [13]. It results in energy depletion at the nodes near thk sin

sink is _at _the most _favorable location .fOI’ ac_hi(_eving the longst too soon, |eading to the Separation of the sink from the rest o
WSN lifetime. To find the best solution within the proposed nodes that still have plenty of energy. However, by movirgy th

framework, we formulate optimization problems that maximize . | . . . .
the lifetime of the WSN subject to the delay bound constraird, sink in the sensor field, one can avoid or mitigate the energy

node energy constraints and flow conservation constraintswe hole _problem and expect an increased netvv_or_k Iifetim(_a. _
conduct extensive computational experiments on the optireation This paper proposes a framework to maximize the lifetime

problems and find that the lifetime can be increased significatly  of the WSN by taking advantage of the mobile sink. Compared
as compared to not only the stationary sink model but also ma ity other mobile-sink proposals, the main novelty is that w
traditional mobile sink models. We also show that the delay . . .
tolerance level does not affect the maximum lifetime of the V@N. consider .the Cas? Wher(_:" the underlynjg applications tielera
delayed information delivery to the sink. In our proposal,
within a prescribed delay tolerance level, each node doés no
. INTRODUCTION need to send the data immediately as they become available.
A wireless sensor network (WSN) consists of sensor nodesstead, the node can store the data temporarily and transmi
capable of collecting information from the environment anthem when the mobile sink is at the stop most favorable
communicating with each other via wireless transceiveng Tfor achieving the longest network lifetime. To find the best
collected data will be delivered to one or maiaks generally solution within the proposed framework, we formulate opti-
via multi-hop communication. The sensor nodes are typicalnization problems that maximize the lifetime of the WSN
expected to operate with batteries and are often deploys&bject to the delay bound constraints, node energy camistra
to not-easily-accessible or hostile environment, somegiim and flow conservation constraints. Another one of our centri
large quantities. It can be difficult or impossible to reglacbutions is that we compare our proposal with several other
the batteries of the sensor nodes. On the other hand, the difédtime-maximization proposals and quantify the perfarme
is typically rich in energy. Since the sensor energy is ttgifferences among them. Our computational experiments hav
most precious resource in the WSN, efficient utilization athown that our proposal increases the lifetime signifigantl
the energy to prolong the network lifetime has been the focughen compared to not only the stationary sink model but also
of much of the research on the WSN. more traditional mobile sink models. We also show that the
Although the lifetime of the WSN can be defined in mangelay tolerance level does not affect the maximum lifetirhe o
ways, we adopt the definition that it is the time until the firshe WSN.
node exhausts its energy, which is a widely used. Much workOur proposal is more sophisticated than most previous
has been done during recent years to increase the lifetififetime-improvement proposals that we know of. It integsa
of the WSN. Among them, in spite of the difficulties inthe following energy-saving techniques, multipath rogtia
realization, taking advantage of the mobility in the WSN hawmobile sink, delayed data delivery and active region contro
attracted much interests from researchers [1], [2], [3],[B], into a single optimization problem. Such sophisticatiomes
[6], [7], [8], [9]. We can take the mobile sink as an examplat a cost. Whether the proposal should be adopted in practice
of mobility in the WSN. The communications in the WSN haswvill depend on the tradeoff between the lifetime gain and the
the many-to-one property in that data from a large number aftual system cost. Even if the decision is not to adopt it
sensor nodes tend to be concentrated into a few sinks. Sidoe to a high cost or high complexity, the framework in the



paper is still useful because it can supply the practitisndoy optimizing not only the schedule of sink visits but alsatro
with a performance benchmark, e.g., how much lifetimeg of the traffic. However, they did not consider applicato
improvement opportunity there is. By also formulating thevhere delayed information delivery is allowed.
optimization problems related to other proposals and plingi The rest of the paper is organized as follow. Section I
cross comparison, the paper provides extra convenience describes various related lifetime maximization problehat
comparing and understanding different proposals. we will compare against. The mathematical formulationef t
We now briefly review the most relevant work on how tenodels are provided for the purpose of comparison. In sectio
exploit mobility to increase the network lifetime. In [4he Ill, we propose two novel models with a mobile sink and
authors introduced the mobile agents called MULEs, whidelayed information delivery. We show some nice properties
move around and collect data from nearby sensor nodes that our models possess. In section IV, we compare our models
behalf of the immobile sink. When the mobile agents move toith others by simulation and numerical experiments. The
the vicinity of the sink, they forward the collected datale t conclusions are given in Section V.
sink. The mobile agents are assumed to have plenty of energy.
The movement of each mobile agent is modeled as a random Il. RELATED LIFETIME MAXIMIZATION PROBLEMS

walk. It was shown that the queues in the mobile agents anqn this section, we discuss related lifetime maximization

_the sensor nodes are finite and the_ delay of the coIIecte_d dﬁ%‘blems that have been published in the literature. We will
is bounded. However, the authors did not show the quangtaty ., compare their performance with our new proposal.

improvement of the network lifetime by using mobile agents. First, we will describe the general assumptions about the

In [1].’ the autho.rs fprmulated alinear programming probley, g\ models. Let the set of sensor nodes be denoted/by
to maximize the lifetime of a WSN where the sensor nod%r experimental convenience, we suppose they are unijorml

are deployed in a grigl pattern and the Sif"‘ can move t(?lrz%\domly deployed into a circular area with radisLet the
subset of the grid points. When the location of the mobi enter of the disk be the origin. Each nodés assumed to
sink is known to the sensor nodes, each node can identify erate data at a constant ratelpfiuring its life span and

minimum hop-count paths to the sink. The nodes distribu e initial energy of is denoted by;. Furthermore, the nodes

tht::‘rr(]jata e\r/]enly c:cntg thﬁse pglthhs. h K lifeti have the ability of adjusting their transmission power lewee
e authors of [3] showed that the network lifetime cag, o1y the transmission distance. Similar to [14], the energ

be extgnded significantly if the mobile sink MOVES arounqired per unit of time to transmit data at the ratergf
the periphery of the WSN. They assumed that, if the mobi fom nodei to j can be determined as follows
sink can balance the traffic load of the nodes, the lifetime '

of the network can increase. Therefore, they proposed an Efj — ij - Tij, (1)
optimization problem for choosing a mobility strategy that
minimizes the maximum traffic load of the nodes. HowevewhereCy; is the required energy for transmitting one unit of
they assumed the shortest path routing, which, in genesak ddata from node to j and it can be modeled as follows [15].
not produce the best lifetime. e

The problem of finding the sink movement path to optimize Citj = o+ fB-d( 5)°, @)
the lifetime of the WSN, as in [5], is hard to solve. This tyge aynhere d(i, j) is the Euclidean distance between nadand
problems generally belong to tiaveling salesman problem ;. and 3 are nonnegative constants, ands the path loss
In [9], the authors studied how to find the optimal sink stopsyponent. Typicallye is in the range of 2 to 6, depending on
and the schedule of visit to the each of the stops. If the cafe environment. Here, the energy cost per unit of data does
didate locations for the stops are unconstrained, thisleneb not depend on the link rate, and this is valid for the low rate
is also NP-hard. However, if the stops are constrained to R&jime. Hence, we need to assume that the traffic rate
selected from a finite set of known locations, the problem c&g syfficiently small compared to the capacity of the wirgles
be easily formulated into linear programming. They progosgk.
an approximation algorithms to the unconstrained problgm b e energy consumed at nodeer unit of time for receiving
properly dividing the whole sensor field into a finite numbegjata from node: is given by [14]
of disjoint small areas, and then, converted the uncomstdai
problem into a constraint problem. However, to obtain a good Er, =7 xki, 3)
approximation ratio, the number of small areas can potigntia _ )
be very large, making the linear programming computatidﬁhereV is a given constant. Hence the total energy consump-
time-consuming. Therefore, in this paper, we restrict tae dion per unit time at node is
of potential sink stops to be from a small number of given " . +
locations rather than from arbitrary locations. Z B+ Z Eii = Z Cij - wij + Z vk (4)

The WSN model proposed in [7] is close to ours. The <V ReN eN heN
authors studied the maximum lifetime problem of the WSN We assume that each sensor node has the same transmission
where the mobile sink can visit only small number of locarange. We define the neighbors of nodas N(i) = {j €

tions. They showed that the lifetime can be further incrdasg/|d(i, j) < d}, when the transmission rangeds



A. Static Sink Model

In the static sink mode(SSM), the sink is located at the :‘ ;‘ g c"; :2
origin and remains stationary during the operation of theNWWS
Data originated from the sensor nodes flow into the sink in a e}
multi-hop fashion. As soon as the data becomes available at a
node, it gets transmitted toward the sink. Typically, thie rat
which each sensor nodéarvests data from the outside world
is a constant. We denote it bly. The problem of maximizing Fig. 1. Examples of the static sink model (SSM), mobile sirddel (MSM),
the lifetime in this model is formulated as follows [16], 17 and delay tolerant mobile sink model (DT-MSM)

Problem : Staic Sink Model (SSM) maximization problem can be formulated as follows.
me g bl bile Sink Model (MS
Problem : Mobile Sink Model (MSM
s. t. Tij — Z Thi = di, 1,7, keN (5) T_ ( )
JEN(D) k€N (k) maxi =z ‘Z)ZQ +oe Tt Z\Z\)
s. t. Z ;) — Z x,; = d;,
Z ij cxij + Z veaw | - T < E;, JEN() k:ieN (k) A
JEN(3) ki€ N (k) LwkeN,jeN/leLl 9)
ia j7 ke N (6) L]
Tij Z 0, i,j S N (7) Zzl Z CZ(JI) xfé) + Z v x](clz) S Ei7
T >0, 8) =1 JEN(3) k:ieNA(k)
ih,keN,jeN,leL (10)
The constraint (5) is the “flow conservation constraint” jeth :vg) >0, ieN,jeN,leL (11)
states that, at a nodethe sum of all outgoing flows is equal 2 >0, lel (12)

to the sum of all incoming flows plus flows generated at node

i itself, or d;. The inequality (6) is the energy constraint and’he energy required for transmitting one unit of data when
it means that the total energy consumed by a node duritigg sink is at/ can be expressed as,

the lifetime (') cannot exceed the initial energy of the node.

With this formulation, the routing is dynamic and allows Cyj ifj¢L

multipath communications. There is no assumption on fixed-C;;’ = { o0 if jeLandj#Al (13)
path routing, such as the shortest path routing. The above Ch=a+(-di,l) ifjeLandj=1,
optimization problem can be easily converted into a linear

programming (LP) problem. whereCy; is the same as in the SSM.

Constraint (9) denotes the flow conservation for all nodes
when the sink is at. Constraint (10) says that the total energy
B. Mobile Sink Model consumed at the nodé can not exceed the initial energy
E;. By multiplying (9) with z; and substitutingz:z(.;.) - z; with
In the mobile sink mode{MSM), we assume that the sinknew variableyg.), we have replace (9) with the following new
can move around within the sensor field and stop at certgianstraint.
locations to gather the data from the sensor nodes. We ignor 0 W , .
the traveling time of the sink between locations. [Zebe the QZ Yij — Z Ui = 2-disl€ Li e N jeN. (14)
set of possible locations where the sink can stop. The sinfEN(® kit€N (k)

does not necessarily stop at (i.e., stays for a positivetiduma Similarly, constraint (10) can be changed into
all locations inL in the interest of maximizing the network

lifetime [1], [9]. In this model, the order of visit to the gis |£] P o

has no effect on the network lifetime and can be arbitrarg Th Z Z Cii " vy + Z Y Y | < Eis

sink sojourn timeat a location € £ is denoted by; it is the =1 \jeN() ki€ Ny

time that the sink spends ato collect data from the sensor ieN,jeEN,leL. (15)

nodes. The overall network lifetimeé = 37, . z;. To find the

optimal network lifetime, we need to consider the routing dfVith constraints (14), (15),(12), and non-negativity domisits
the traffic as well as the duration of stay by the sink at eactf yfj) the above optimization problem is converted into an
stop [9], [2], [1], [7]. Letz_) be the flow rate from nodéto P problem. Hereyg) is interpreted as the total traffic volume
4 while the sink is at stog. Let N' = A" U L. The lifetime for nodei to send to nodg while the sink stays at



1. LIFETIME MAXIMIZATION IN DELAY TOLERANT 35
MOBILE SINK MODEL o 3
% 25 ¢
In this section , we consider how to maximize the network § 2
lifetime in applications that can tolerate a certain amount E L5y
of delay. We call the resulting WSN modeklay tolerant & 0_;: MSM ——
mobile sink mode{DT-MSM). In this setting, each nodes can 0 DT-MSM -
postpone the transmission of data until the sink is at thp sto 10 12 14 16 18 20 22 24 26

most favorable for extending the network lifetime. This way Radius of the Coverage of the Sink

the nodes can collectively achieve a longer network lifetimgig 2. comparison of lifetimes of MSM and DT-MSM under thaigas
In contrast, the SSM and MSM do not exploit this possibilityadii of coverage

Let D be the maximum tolerable delay, or the delay
tolerance level. We assume that the sink finishes one round
of visit to all the stops (where the sink stays for a positiv® %, nodei is said to beactiveat [ € £. Although we can
duration to collect data) inD time units, and then, repeatsconstructk; in many ways depending on the application of
with another round again and again. Note that two consesutifiterest, in this paper, a very simple method of constrgctin
visits to the same stop takes a tinfie Ry is considered. Fix a positive numberWe callr the radius

Let's take an example to show how our framework caf coverage of the sink. For eadte L, if d(i,l) < r, where
outperform other ones. Consider the two-node example shoivfi V. theni € R;. Here, the radius of coverage of the sink
in Figure 1.N; and N, are two sensor nodes add and L, () should be large enough so that every sensor node belongs
are the candidate stops of the mobile sink. Suppose we ignéfeit least one?;.
the receiving energy requirement and suppose the trarismiss In both SSM and MSM, the sink collects data from each
energy per unit of data is equal to the square of the distarfit@de: at the same rate at which nodegenerates the data.
between the sender and the receiver. Both nadesand N, However, in the DT-MSM, the data transmission rate at node
generate data at 1 bps and have 100 units of energy initiafring the collection time is no longer the same as the cahsta
If the sink is located a) in the SSM, both nodes spend 4data generation raté;. When node: is not active (i.e., not
units of energy for sending a bit of data. It is obvious that theovered by the current sink location), it continues to gathe
optimal lifetime is 25 seconds. In the MSM with sink locationdata and should store the newly generated data. Hence, data
{L1, Ly}, due to the symmetry of the structure, the sink stayiffering is required by our framework. Within a cycle bf
at bothZ; and L, for the same amount of time to achieve théme units, the total stored data at each nads at most
maximum lifetime. Each node spendsor 9 units of energy D - d;. For ease of presentation, we assume the sink visits all
for sending 1 bit of data depending whether the sink is cations inL in the order oftl — 2 — ---|£| — 1-.-. The
L, or Ly. The average energy Consumption per bhit is 5 un|t§|nk may stay at some location for zero time. With Sllght a&ous
Thus, the lifetime is 20 seconds. In the DT-MSM, we assun® terminology, we re-define the network lifetinieto be the
that the sink alternates between the two stops and stays fgmber of cycles made by the sink until the first node dies
1 second at each stop in each cycle. Herige= 2 seconds. due to energy exhaustion. The actual lifetim@’isD. We next
When the sink stays at, only N; sends 2 bits of data to describe two variants of the model: theb-flow-based model
the sink; when the sink moves tbs, only N, transmits 2 and thequeue-based model
bits of data. Both nodes spend 1 unit of energy per second
on average. Thus, the lifetime is 100 seconds, a significavt Sub-Flow-Based Model
increase compared to the SSM and MSM. This is because|, the sub-flow-based modehe nodes in the current cover-

in the DT-MSM, the nodes do not always participate in thgqe i, are not allowed to buffer the relayed traffic from other
communication for all the sink stops; they each wait unt th,gqes: as soon as a node Jip receives the data from other

sink’s location is most favorable for energy saving, anthth&,qqes; it immediately forwards the data to its neighboring
send data at the higher rate. Recall that we have assumed fales To model this constraint at each nédeve need to

the traffic rate is sufficiently small compared to the capecft giterentiate the data generated by nadiself and the data

the wireless link, and hence, sending data a higher rate d@ggjinally generated by other nodes but forwarded to node

not alter the per-bit energy consumption. The data generated by the same source is sometimes called
Unlike the MSM or SSM, the sink in the DT-MSM cang commodityor a sub-flow[18], [19]. Let ng"v“ be the rate

collect data from only a subset of the set of all sensor nodggsignment from nodéeto the nodej, while the sink is at,

N, at each stop. Lef, be the subset ol such that only o the traffic generated by node (commoditym). Let 2\

nodes inf; can participate in the communication when thge the aggregated rate of traffic that needs to be forwarded to
sink is atl € £. We call R; the coverageof the sink location nodej from nodei when the sink is at. That is,

. Note that the union of?; over! € £ must be the set of

all sensor nodesV'. In other words, any sensor node should ;) — Z 2™ ie R jeRU{YleL.  (16)

be covered by at least one sink location. When the noide ! meR, !



Since at node, the commodity or sub-flow of other nodesB. Queue-Based Model
m € Rj,m # i must be forwarded as soon as it has been | the queue-based modethe sensor node can buffer the

received, we must have commodities or sub-flows of all nodes. Lgf’ be the queue

Z LD Z L) length at node just before the sink moves from locatidn

. ki e W to [ + 1. Assume that each nodehas D - d; amount of
k:’LGNL(k) ]GNZ(’L)

data at the beginning of a cycle, which is denotedqtf)%).
(17) When the sink finishes a cycle of visit, the queue at nbde

. L) _ ;
where N;(i) = R, N N(i). The flow conservation at node Must be cleared. Thus we hayg“ = 0. In this model, the
can be expressed as follows, which is the same as in the MJRW conservation constraint has to do with the queue length,
except that the net amounts of traffic originated from nodeeXpressed as follows.

i,m#i,kERl,jERlU{l},

itself, (wgl),l € L,i € N), are now decision variables. P Z = 4 q(lfl) -z Z 20 = q(l)
1] 3 (%] 1 )
k€N, (k) JEN ()
al Y - > 2l ] =l (18) ikeN;jeN;leLl — (30)
JEN(4) k:ie Ny (k)

The energy constraints can be expressed in the same way

The data buffered during the previous sink-movement cyck in the MSM or sub-flow based MSM. From the above
must be cleared in the current cycle. This requirement can @i&cussion, we have the following optimization problem for

written as maximizing the lifetime.
S wl =D d,. (19)
LieR, Problem : Queue-Based DT-MSM
The following is the lifetime maximization problem in sub- maxT (31)
flow-based DT-MSM. -
W stz Z x;li) I qlgl D _ Z CCE? — qz(l)7
Problem : Sub-Flow-Based DT-MSM ki€ Ny (k) JENI(4)
max T (20) ihkeN;jeN;lelL (32
st Y al™ =2l ie R jeRU{l}leL (21) 1] ’

meR,; Y v Z 2l Z 5 - xkz)+
Z I(m,l) _ Z x(m,l) =1 k:ieN; (k)
ki - ij )

ke Ny (k) FEN(3) @ .0
o\ L g\ T < E;
m#i;m,ik € R;j e RRU{llsle L (22) * 2 Gy B

JENI(3)
Al 3 20— 3 20| = w®, \ z’,k.e J\/;j.e J\A/A;l eL (33
JEN, (4) ke Ny (k) x>0, teN,jeN,le L (34)
ik € Ri;je R U{l};le L (23) q" >0, leLieN  (35)
i 2y Z v II(Cli)—F qZEOZ)_ D d;, .Z' eN (36)
=1 k€N, (k) qg; =0, ieN (37)
7 >0, leL  (38)
>y | T T=o. (39)

JEN(3)

. The problem shown above can be converted into an LP
i,k e N;jeN;le L (24) problem by substituting/f? for z; - a:z(? and introducing the

3 w! =D d;, i e N (25) new variableu = 1/T. This linearization method can also be
LR, applied to the MSM.
:cl(;"’l) >0, i,m€ Ry;;j € RU{l};l € £ (26) C. Properties of Delay-Tolerant Mobile Sink Model
wl(l) >0, i€ R,lEL (27) To facilitate later expositions, we define thclusion re-

>0 ler (28) lationship between different optimization problems with the
A= < same decision variables and the same objective function
T=>0. (29) f(x) but different constraint sets. Without loss of generality,

In the sub-flow-based model, each node requires anly; we consider the minimization problem.

amount of buffer because there is no need to store other hodasfinition 1 (Inclusion) Consider two minimization problems
sub-flows. P, and P, that have the same decision variablesand



the same objective functiofi of variablesz, but different optimization problemP (N, L, rs).
constraints setF; and F, respectively. Iff} C Fy, we say
. . ! : <P
that P; is said to be included ii?, and denoteP;, C P, . Z ‘rz(i) _ Z :v,ﬁ? _ wgl). (40)
If P, C P, we can always obtain better optimal solution JEN (i,72) k€N (k,r2)

from P, than P;. In general, we say thanclusionholds for e have the following by separating the neighbor sets into
a sequence of optimization probleni®;}, wherei is from A A B, and B.

some linearly ordered index sdt, that is, P, C P, whenever
a < b, a, b S I 1 1 1 1 1
ngj) + ngj) - Z xl(ci) - Z xl(m') = w’L( )a

In both sub-flow-based model and queue-based model, the =\ 7= A Py P
coverage of the sink location is a very important factor for ' (41)
the lifetime of the WSN. Consider the optimization problerfor i,k ¢ N,j € N U {I},l € L. We set the variable
formulated for the sub-flow-based model. Depending on tg%) - Iz(é) whenj € A, and:cg) = 0 whenj € A. In addition,
rad_|us_ of.coverage, we may obtain c.in‘fer.ent mstan(_:eg of tW?e Setxl(cli) _ i.l(cli) whenk € B andx,(f.) — 0 whenk € B. For
optimization problem. This observation is also valid in th?ne vari

based model. Th e th . ablesy andz , letw® (i) = w¥ (i) andz, = 2. Then,
queue-based model. Thus, we can parameterize the thm'&&L’Jation (41) is equivalent to the constraint (23) of théoprm

tion problems according to the radius of the coverage. L (N, L, ). Therefore, (&, ), 2 T) satisfies the constraint
PN, L,r) be th? opt_imization problem when t_he radius OgB) ;‘or7 the probIemP(}\/’,,ﬁ,’rQS. For the energy constraint
coverage of the §|nks_vs the set of sensor nodes/s, and the (24), we can also apply the similar procedures. Hence, we can
set of sink locations iL. The valuer must be large enough%qgclude that any feasible solution of the problB(\, £, r, )

so that all sensor nodes can be covered by at least one Iso a feasible solution for the problePi\’, £, 7). Hence
location and we denote this minimum radius of coverage f%;(N L,r) C PN, L, ) e ’

connectivity byrq. Under the same configuration witki and

L, differentr values only affectsV; (i) and ijl.). We will use . o

the notationV, (4, ) and C(%)(T) if it is necessary to specify Theorem 3. Consider the set of maximization proplem
: “ (BN, L,r)},r € R.If rp < 1y, then optimal objective

the radius of coverage. In the next theorem, we prove that t 1= T8 1 21

bigger the radius of coverage the longer the optimal fifetis. value for the problemP(\, £, ;) is greater than that for

For the proof of this theorem, we need the following lemmdaD€ ProblemP (N, £, 7).

[ |
As a consequence, we have the following theorem.

In general, the queue-based model is less constraining than
the sub-flow-based model. Naturally, this results in lifedi
gains in the former model. The following theorem formalizes
the fact that the queue-based model always outperforms the
sub-flow-based model.

Lemma 2. The sequencg P(N,L,r)}, r € R, satisfies
inclusion. That is,P(N,L,r1) € PN, L,ry) for any pair
of r1, 9 such thatry < ro.

Proof: Let G = {N U L,E} be a graph whereZ =

{(,5)i € N,j € NUL,(i,j) < c}, wherec is the Theorem 4. LetT be the optimal objective value to problem
transmission range of the sensor nodes. The neighbor se{2§f), andT* be the optimal objective value to problem (31)
nodei is defined asV (i) = {j € NUL|(i,j) € E}. LetG(r) with the same configuratiogV, £) and the same radius of

be the graph for the DT-MSM model with the radiusand coverager. ThenT < T™*.

G(r) = (N U L,UE EO(r)}, where EO (r) = {(i, j)]i €
Ry, j € RRU{l},d(i,j) <c},andR; = {i € N|d(i,l) <r}
The neighbor set of nodé when the sink is at, N;(i) is feasible solution to problem (31) wit(til(;”’l),zby),Zk,T),

: ) e E®
e RlIU ey e B _(r_)}'_ and showing that under this feasible solution, the objec-
Consider the two optimization problen3(V, £,71) and tive value of problem (31) is the same. By (211)%) —
P(N,L,re) with r; < ro. It is obvious thatN;(i,r) € (m,l) " ) (1-1) (
7 e .. In addition, let setg,” = g, —w,’ for
N,(i,r2) for all i € N, € L by the definition of neighbor Z"?GRL Yij ©) " ; 4 Wi
set N(i,r). Therefore, we can split the larger s&%(i, rs) all i € . Sinceq; ” = D - d; by (36), we have the following

into two setsA and A, where A = N(i,r1), and A = Seduence of assignments for the); -

Proof: Let (;@<.;.”=l>,w§l>, ék,T) be the optimal solution to

,

problem (20). We will prove this theorem by constructing a

N;(i,72) — A. In a similar way, we can also split the incoming ® — ,O0_ 0 _p.g—®
) e . q; = g w; T =G — Wy

neighbor set for the node into B = {k € N|(k,i) € @) 1) @)

EW(ry) and (k,i) € ED(ry)} and B = {k € N|(k,i) € 4% = 4% T

EW(ry)} — B. In other words,A and B are the extended
outgoing and incoming neighbor sets for nadeespectively,

. ; a<h
as the radius of coverage increases fromnto rs. 4;

gUE1=1) _ (12D,
Suppose that(#, @, 2,7) is a feasible solution to the If we sum up above assignment for dlle £, we have
problem P(N, £,r1). Now, consider equation (23) for theq“') =D -d; — }“ w =D.dj—D-d; =0 by (25)

2 K2



TABLE |

and it e_xactly coincides with (37). Since the configuration EXPERIMENTAL PARAMETERS AND THEIR VALUES

and radius of coverage for problem (20) are the same as

problem (31),N,(i),i € N,l € L for (20) does not change| the number of sensor nodes | {100, 200}

. O (-1 a ; 23 h the number of possible sink locations {5, 6, 7, 8, 9, 10, 15, 20, 30, 40}

in (31). If we putw; =4 —q;  into (23), We Nave 5aih Toss exponene] {2.0,3.0}

exactly the same constraint as (32). Energy constrainti€24] transmission range {5,6,7,8,9,10, 15, 20, 30, 40, 50}
equivalent to the (33). From the above arguments, we coacludx 10 pJ/bitin* .

that for the optimal solution to problem (20), there exists n]ﬁnmal e ) 25%°§3 pJ/bith
corres_ponding feasible solution to problem (31) with th@&a [t generation ratei 500 bps

objective value. Hencel™ > T [ |

In the following theorem, we show that the maximum
lifetime of the system is the same for all values/afHere, the (D) — ;. Therefore we have

maximum lifetime of the system is expressed as the product of
the D and the corresponding optimal objective vallig(D). q= Dd;. (44)

S

Theorem 5. DefineP(D) as the lifetime optimization problemFrom above argument, we have shown that new solution
parameterized by the valuB, for some fixed network con-(z,q,z,T) is feasible to the problen?(D). According to the
figuration. LetT*(D) and T*(D’) be the optimal objective assumption, we knoW™(D’) > (£)T*(D). Therefore, we

values for the problen®(D) and P(D’), respectively. Then, have
T*(D)-D =T*D')- D / )
2) T*(D') > (%) (%) T*(D)=T*(D) (45)

T:
Proof: Consider the queue-based model. Let (D

(z*(D),q"(D), Z*(D)’T*(*D))/ be*theloptima! SO'S“OT t0 the o vever, this is contradictory to the fact that (D) is the
problem P(D), and let(z"(D"), ¢"(D"), 2*(D'), T*(D")) be optimal value for the problenP(D). Thus, it must be that

the optimal solution to the probled®(D’). T*(D)D > T*(D')D'.
.First, supposd“*(D) D< T*(D') - D’.. We will show Similarly,_we can also prove thaf*(D)D < T*(D')D'.
this contradicts the definition of the optimal valuéy(D) Heance T*(D)D must equal taI"* (D) D’ -
by constructing a feasible solution whose objective vakie i ’
greater tharl™ (D) for the problemP (D). IV. EXPERIMENTAL RESULTS
_ D * / _ D * / _ * /
Let z = (57)2" (D), ¢ = ()¢ (D), z = =2*(D), In this section, we will present the results from numerical

_ (D = iofi . .
T = (F)T*(D'). We want to show thatz, g, 2, T) satisfies experiments. In particular we have compared the network
the constraints (32)-(39). Since it is obvious that the SOfU |ifetimes of the following models.

(z,q,2,T) satisfies the constraints (34), (35), (37), (38), and
(39), we focus here on constraints (32), (33), and (36) only.
Since the optimal solutioiz* (D), ¢*(D’), z*(D’), T*(D"))

is feasible to the problenP(D’), it must satisfy constraint
(32). Next, let us plug2')z, 2, and(Z)q into constraint (32)

in the places forz*(D’), z*(D’), and ¢*(D’), respectively.
Then, we have

« Static Sink Model (SSM): The stationary sink is located at
O. We take the performance of this model as the reference
for comparison.

o Mobile Sink Model (MSM): The sink can move to
several locations to collect data. When the sink is at each
location, all sensors participate in the communication,
sending and relaying traffic to the sink.

z Z Il(cli) +4"7Y — 4 Z xg? =g, (42) « Delay-Tolerant Mobile Sink Model (DT-MSM): When
ke Ny (k) JEN() the mobile sink is at a stop, a subset of the sensor nodes
) can participate in the communication. We use queue-
If we put (2)z, z, and (£)T in the places forz*(D’), based variant of this model to evaluate the performance.

z*(D') andT*(D") on the left hand side of constraint (33), \we have experimented with different parameters exten-

we have sively, such as the number of nodes, the number of possible
|Z] D sink locations and the parameters for the energy consumptio

Zzl Z - Il(cli) <_) + model. Only a small subset of the results are reported here

=1 k€N, (k) D due to space limitation. In Table I, we provide the system

(43) parameters and their values for the reported experiments in
3 OO <2’> T (2) this paper. We adopt the data for the last four parametens fro
Yo"\ D D’ [20]. In all experiments, we use GLPK for solving the linear

programming problem.
After cancelingD and D', it is easy to see that the new solu- First, we would like to mention the impact of the radius
tion (z,q, 2, T') satisfies the energy constraint of the problemf coverage of the sink on the performance of the DT-MSM.
P(D). For this experiment, pointf for 100 nodes and 20 mobile-sink
From the constraint (36) for the problem(D’) , we have locations are randomly generatedv{ = 100, |£| = 20) in

q;‘(o)(D’) = D'd;. Sinceq = (&)q¢*(D'), qf(o)(D’) = a circular area with radius 25. We use a simple algorithm

JEN ()
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to find the minimum radius of coverage (denoted/y. At locations are chosen as the true stops for the sink. However,
each sink location, we increase the radius of coverage framDT-MSM, the rate of lifetime increase is substantial| 46

0 simultaneously until the union of all coverages contaihs ancreases. This is because each node can have better agd bett
sensor nodes. At that point, we have reached the minimwink location ag.| increases, and it is not forced to participate
radius of coverage required to cover all nodes. After that, vin the communication when the current coverage is not the
increase the radius of coverage in 0.1 increments. Thetr@sulmost favorable for energy saving, even if the node may belong
the experiment is plotted in Figure 2. Note that, in the figuréo that coverage. This is not possible in the MSM because no
the lifetime is normalized to the optimal lifetime of the MSM matter where the sink stops, every node must participate in
As shown in the figure, the lifetime of the DT-MSM increasethe communication.

as the radius of coverage increases, which is consisteht wit We conduct similar experiments with the same configuration
Theorem 3. The increase is the sharpest when the radius just minimum coverage. The result is shown in Figure 4.
exceeds the minimum radius required to cover all nodesrAft&lthough the slope of lifetime increase of the DT-MSM is
that, further increase of the radius has a negligible effetdwered when compared to the maximum coverage case, the
Recall that, when the mobile sink reaches one of the stojrssrease pattern is similar. Although a larger set of sink
say!, only those sensor nodes in the coveragé @fe., R;) locations increases the network lifetime, it can be undesr
can communicate. It is generally desirable #r to have as if the sink travel time cannot be ignored. The longer trangli
few nodes as possible, since this reduces the communicatiome may exceed the delay tolerance lefzel Therefore, there
and coordination complexity. The aforementioned behawfor is a tradeoff between the gain from more sink locations and
lifetime increase is desirable. the delay or other system costs.

Next, we compare the lifetimes of models under various We also conducted experiments with different values for the
numbers of the sink locations. The number of nodes is setdelay tolerance leveD. With 100 nodes and 20 sink locations,
100 or 200, the path loss exponenis 2.0, and the coveragewe computed the optimal lifetime of the queue-based model
is as large as possible. We ran the experiment 100 times & D varies from 1 to 10. In Figure 5, we plot the optimal
each configuration. The lifetimes of the MSM and DT-MSMobjective values’ (number of cycles) and the actual optimal
are again normalized to the optimal lifetime of the SSM. Alfetime of the system. Note that the actual lifetime of the
shown in Figure 3, the lifetime of the MSM is aboli0% ~ system isT x D. As claimed by Theorem 5, the optimal
200% greater than that of the SSM. However, the DT-MSNifetime is a constant regardless of the valuesof
is 200% ~ 1000% better than the SSM. Moreover, the curves In Figure 6, we show the lifetimes of the three models under
all look linear; the performance gap can grow even largen wivarious values for the transmission range. The transnmissio
more sink locations. range determines whether a link exists between a pair ofsaode

Interestingly, the lifetime of the MSM increases very shpwl For the minimum radius of coverage of the sink (See Figure
with the number of sink locations. As explained in [9], in th&(a)), the effective transmission range limited by the disien
optimal solution, only a few locations from the set of sinlof the coverage of the sink. In other words, a node cannot



use a link to another node if they are not in the comma@ms] S. K. D. Xiaobing Wu, Guihai Chen, “Avoiding energy hsli wireless

coverage. Both the MSM and the DT-MSM exhibit a sharp
lifetime increase when the transmission range is small by,
increasing. However, the transmission range becomes,large
the lifetime increase comes to a stop for all 3 models.
The result implies that long-distance wireless links aré NAs)

beneficial for improving the system lifetime.

In this paper, we proposed a new framework for using ther]

[16]

V. CONCLUSION

mobile sink to improve the network lifetime. It is expected t

be useful in applications that can tolerate a certain amofint;g
delay in data delivery. We presented the mathematical fermu
lation for optimizing the network lifetime under the propos 19
framework. We identified several properties that our model
possesses. In particular, we showed the delay toleraneé lev
does not affect the optimal system lifetime. To validate tH&o!
proposed framework, we conducted extensive experimeunts an
found that the proposed framework is superior to the models

published previously. The lifetime gain of the proposed eiod

is significant when compared to other models. Furthermare, a
the number of sink locations increases, the optimal network

lifetime increases substantially. The results of the payaer

be both applied to practical situations and can be used as

benchmarks for studying energy-efficient network design.
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