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Abstract

We show it is possible to tile three-dimensional space using only tetrahedra with acute
dihedral angles. We present several constructions to achieve this, including one in which all
dihedral angles are less than 74.21◦, and another which tiles a slab in space.

1 Problem definition

Triangulations of two and three-dimensional domains find numerous applications in scientific
computing, computer graphics, solid modeling and medical imaging. Most of these applications
impose a quality constraint on the elements of the triangulation. Among the most popular quality
criteria for elements [5] are the aspect ratio (circumradius over inradius), the minimum dihedral
angle, and the radius-edge ratio (circumradius over shortest edge). However, many other quality
criteria have been considered, including maximum dihedral angle. Bern et al. for instance, studied
nonobtuse triangulations [3, 6], where domains are meshed with simplices having no obtuse angles.
In this paper, we consider a slightly stronger quality constraint: all the dihedral angles in the mesh
are forced to be acute (strictly less than 90◦). Although acuteness seems only slightly stronger than
nonobtuseness, this problem turns out to be considerably harder than the nonobtuse triangulation
problem, as we observe below in Section 3.

Definition. An angle is acute if it is strictly less than a right angle (π2 = 90◦). A simplex is acute
if all its (interior) dihedral angles are acute. A triangulation is acute if all of its simplices are acute.

Problem 1. Given a domain Ω, compute an acute triangulation of Ω.

There has been extensive work on the two-dimensional version of this problem, for the special
cases where the domain Ω is a triangle, square, quadrilateral, or a finite point set [6, 11, 26, 33,
34, 36]. We review those results in Section 3. In three-dimensional space, however, although the
problem was posed as early as 1991 [40] almost nothing has been known about acute triangulations
before now. To the best of our knowledge, even the following relaxed form of the problem, where
the the input domain is the entire space, had not been addressed in the literature.
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Problem 2. Is it possible to tile three-dimensional Euclidean space using acute tetrahedra?

We present an affirmative answer to this question, by several different constructions. The two-
dimensional analog of this problem has a trivial positive answer: congruent copies of any single
triangle will tile the plane. However, this idea does not extend to three dimensions, as the regular
tetrahedron (for instance) cannot tile space. All tetrahedra known to tile space have right angles,
as further discussed in Section 3.

We started this research on acute triangulations because of a method developed for space-time
meshing which required an acute base mesh. This and our other motivations are discussed in
Section 2. Section 3 surveys previous research in acute triangulations. Section 4 investigates what
acuteness means for a three-dimensional simplex and gives a comparison of acute and Delaunay
triangulations. Constructions tiling three-dimensional space, and hence solving Problem 2, are given
in Section 5. The paper concludes in Section 6 with a quality assessment of these constructions
and directions for future research.

2 Motivation

We were originally motivated to study acute triangulations by the space-time meshing algorithm of
Üngör and Sheffer [46]. This tent-pitcher algorithm was designed to discretize space-time domains
into meshes that obey a certain cone constraint, which requires all faces in the mesh to have smaller
slopes than the cones that define the domain of influence imposed by the numerical (engineering)
problem. (For instance, we might require simply that all faces make at most a 45◦ angle with
the horizontal.) Because there is then a well-defined direction of information flow across element
boundaries, such meshes enable the use of very efficient element-by-element methods (including
space-time discontinuous Galerkin methods) to solve a wide variety of numerical problems, for
instance in elastodynamics. The tent-pitching algorithm starts with a space mesh of the two-
or three-dimensional input domain and constructs the space-time mesh using an advancing front
approach. The algorithm is known to generate a valid space-time mesh if the initial space mesh is
an acute triangulation [46], but may fail if there is an obtuse angle or even a right angle.

Later, Erickson et al. [17] proposed an improved version of the tent-pitching algorithm. By
removing the acute angle requirement, the new space-time algorithm works over arbitrary spatial
domains. However, there is a loss of efficiency (more elements are required) whenever there is a
nonacute angle.

Thus the study of Problem 1 is motivated by current space-time meshing algorithms. But
even a solution to Problem 2 is useful, since it leads to a better understanding of the acute
triangulation problem for more general input domains, and it also finds some direct applications in
mesh generation.

Spatial tilings of high quality have been used for designing meshing algorithms: Fuchs [24],
Field and Smith [18, 20], Naylor [38], and Molino et al. [37] built meshes by overlaying standard
tilings onto the given polyhedral domain. They used tilings known at the time, such as Sommerville
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(a) (b) (c)

Figure 1: An almost regular triangulation of a cube with a hole (A. Fuchs); (a) the point set of
a body-centered cubic (BCC) lattice overlaid with the domain; (b) the adjusted point set; (c) the
conforming Delaunay triangulation.

constructions (Figure 5) and subdivided cubes (Figure 7), which we discuss in Section 3.2. Their
approach has three steps, illustrated in Figure 1:

(a) Overlay the chosen tiling with the given domain. The main challenge in this step is finding the
right scaling, location and orientation for the tiling so that it matches the domain boundary
as closely as possible.

(b) Adjust the points to get a better fit. For this purpose, one of the standard smoothing
techniques [10, 19, 23] can be used. Alternatively, Fuchs [24] suggested minimizing a function
which penalizes configurations that produce irregular vertices.

(c) Construct the mesh by computing the conforming Delaunay triangulation of the adjusted
point set and the domain boundary.

Fuchs [24] reports good performance of his experiments when he used the second Sommerville
construction (Figure 5(b)) as the space tiling. (This tiling is the Delaunay triangulation of the
body-centered cubic lattice.) The dihedral angles of his mesh in Figure 1(c) range between 7.6◦

and 168.2◦. However, most of the angles (here and also in his meshes of similar geometric domains)
cluster around 60◦ and 90◦, which are exactly the dihedral angles of the BCC tetrahedron in the
input tiling. Some of the constructions we propose in Section 5 are considerably better in terms of
dihedral angles and also other quality measures. Our new constructions can find immediate use to
improve the results of this previous research [18, 20, 24, 37, 38] on tiling-based meshing.

3 Background

3.1 Acute and nonobtuse triangulations

There has been considerable research [1, 3, 5, 7, 15] on the nonobtuse triangulation problem, which
imposes a slightly weaker constraint than the acute triangulation problem. Angles in a nonobtuse
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triangulation are less than or equal to 90◦. Bern et al. [3] showed that any d-dimensional point set
of size n can be triangulated with O(ndd/2e) simplices, none of which has any obtuse dihedral angles.
However, they also proved that a similar bound depending only on n and d, and not on the geometry
of the input points, is not possible if all angles are required to be at most 90◦ − ε. This indicates
that the acute triangulation problem is much more challenging than nonobtuse triangulation. To
appreciate this difference, consider the two problems for a square domain in two dimensions. A
single diagonal cuts a square into two nonobtuse triangles, as in Figure 2(a). Finding an acute
triangulation, however, can be a challenging recreational math problem.

(a) (b) (c) (d)

Figure 2: (a) nonobtuse triangulation of a square (b) a square meshed with eight acute triangles
(c) a square meshed with ten acute triangles (d) triangulation where maximum angle is 72◦

Lindgren [33] showed that at least eight triangles, as in Figure 2(b), are needed. Later, Cassidy
and Lord [11] showed that for any n ≥ 10 (but not for n = 9) there is an acute triangulation with
exactly n triangles. Figure 2(c) shows the solution with ten triangles. We can use the maximum
angle in a triangulation as a quality measure. The triangulations in Figure 2(b,c) can be realized
with maximum angles about 85◦ and 80.3◦, respectively. Eppstein [16] improved this angle to 72◦

using fourteen acute triangles, as shown in Figure 2(d). Using Euler’s formula, Eppstein also showed
that any acute triangulation of a square must have an interior vertex of valence five, implying that
72◦ is the best possible. It is unknown whether there is a triangulation achieving this with fewer
than fourteen triangles.

The acute triangulation problem has been studied for other simple polygons as well. Gard-
ner [26] asked the question for triangles. Manheimer proved that seven acute triangles are necessary
and sufficient to subdivide a nonobtuse triangle [36]. Recently, Maehara [34] showed that an
arbitrary quadrilateral can be tiled by 10 (but perhaps not by any fewer) acute triangles. Gerver [27]
considered the problem of finding triangulations with a stricter upper bound (between 72◦ and 60◦)
on their angles, and gave necessary conditions for a polygonal domain to have such a triangulation.
If we restrict ourselves to two-dimensional point sets, a solution to the acute triangulation problem
is given by Bern et al. [6]. Their approach starts with a quadtree, and replaces the squares by tiles
with protrusions and indentations. Figure 3 shows sample tiles together with an acute triangulation
resulting from their algorithm.
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(a) (b)

Figure 3: Acute triangulation gadgets and their use on a point set (M. Bern and D. Eppstein [6])

Krotov and Kř́ıžek [31] studied refinement methods to subdivide a nonobtuse tetrahedral
partition into another finer one. Unfortunately, they called the resulting triangulations acute type
instead of nonobtuse even though 90◦ dihedral angles were ubiquitous in them. Another related
work is by Hangan, Itoh and Zamfirescu [29, 30] who studied acute surface triangulations of certain
special shapes such as a cube, sphere and icosahedron.

3.2 Acute and nonobtuse tilings

Aristotle claimed that regular tetrahedra could meet five-to-an-edge to tile space, and this claim
was repeated over the centuries (see [39]). This of course is false, because the dihedral angle of a
regular tetrahedron is not 72◦ but arccos 1

3 ≈ 70.53◦. Figure 4 shows the small gap left when five
tetrahedra are placed around an edge.

70.53

Figure 4: The regular tetrahedron does not tile space.
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(a) (b) (c) (d)

Figure 5: Sommerville tetrahedra. The first tetrahedron is half of the third. The fourth tetrahedron
is one fourth of the second.
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Figure 6: Family of space tilings. The edges with length c have valence four. Hence some of the
dihedral angles along these edges must be nonacute.

There are, however, tetrahedral shapes which can tile space. Sommerville [42] found four
such tetrahedra, shown in Figure 5. Four decades later, Davies [13] and Baumgartner [2]
independently rediscovered three of the Sommerville tetrahedra; Baumgartner also found a new
example. Goldberg [28] surveyed the list of all known space-tiling tetrahedra, and found three
infinite families, including the one shown in Figure 6(a).

The construction of this family is based on a tiling of the plane by equilateral triangles of side-
length e. The infinite prism over each triangle is filled with tetrahedra whose sides are 3a, b, b, b, c, c,
where b2 = a2 + e2 and c2 = 4a2 + e2, as shown in Figure 6. Since the ratio a/e is arbitrary, there
is a continuous family of tetrahedral space-fillers of this type. Goldberg’s two other families can
be derived simply by cutting these tetrahedra into two congruent pieces, either by the triangle
CDMAB, or by the triangle ABMCD, where MAB and MCD are the midpoints of the segments
AB and CD, respectively. Notice that the second type of cut (through ABMCD) results in



Tiling space and slabs with acute tetrahedra 7

(a) (b)

Figure 7: Cube subdivided into (a) 5 or (b) 6 tetrahedra.

nonconforming triangulations. Whether the list of space-tiling tetrahedra is complete or not is
still an open problem [14, 39]. None of the known space-tiling tetrahedra is acute (although several
are nonobtuse). In fact, the tilings all contain edges of valence four. (In Goldberg’s family, these
are the edges of length c.)

Since it seems likely that there is no tiling of space by congruent acute tetrahedra, we will now
consider tilings with several shapes of tetrahedra. There are now many more ways to fill space, for
instance by subdividing the cube into five or six tetrahedra as in Figure 7. These tilings also, of
course, have 90◦ dihedral angles, and so are nonobtuse but not acute.

There are many results (like minmax and maxmin angle results) known about optimality of
Delaunay triangulations in the plane. But these do not extend to three dimensions, and little is
yet known about optimum triangulations in space. Thus it is not surprising that the constructions
of acute triangulations do not easily extend from two to three dimensions. It is remarkable that
acute triangulations of space can be constructed at all.

4 Acute Tetrahedra

An acute tetrahedron does not necessarily have high quality in terms of either aspect ratio or radius-
edge ratio. Low-quality tetrahedra have been classified into nine types [12], and three of these (the
spire, splinter and wedge in Figure 8) can have all their dihedral angles acute. However, fortuitously,
the tetrahedra in our constructions are mostly quite close to regular, and are high-quality for use
in mesh generation and numerical simulations.

4.1 Acuteness test

By definition, a tetrahedron is acute if each of its six dihedral angles is less than 90◦.

Lemma 1. Consider an edge ab of a tetrahedron abcd, and let Π denote projection to a plane
normal to ab. The dihedral angle along ab is acute if and only if Π(a) = Π(b) lies strictly outside
the circle with diameter Π(c)Π(d).

Proof. The dihedral angle along ab is by definition the angle ∠Π(c)Π(a)Π(d); the lemma follows
from standard plane geometry (Thales’ theorem, see Figure 9(c)).
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Figure 8: Low-quality tetrahedra that can be acute: spire, splinter and wedge.

This lemma can be applied to each of the edges of a tetrahedron. We now examine some
alternate criteria for acuteness.

Lemma 2. A tetrahedron is acute if and only if the orthogonal projection of each vertex onto the
plane of the opposite facet lies strictly inside that facet. An acute tetrahedron has acute facets, but
not every tetrahedron with acute facets is itself acute.

Proof. Suppose the projection p of a vertex d is not inside the opposite triangle 4abc. Then p

lies in one of the six other regions of the plane determined by the edges of 4abc, as depicted in
Figure 9(a). Then, the dihedral angle along Any extended edge of 4abc that separates this region
from the triangle must then be an edge whose dihedral angle in the original tetrahedron is nonacute.
(If the projection is on an extended edge, then the corresponding dihedral angle is exactly 90◦.)
Conversely, if the dihedral angle along edge ab is nonacute, then d projects outside 4abc, as in
Figure 9(b).

We prove the second statement in contrapositive form, while noting that nonacute sliver
tetrahedra can have acute face angles. Suppose tetrahedron abcd has a nonacute face angle ∠bac;
we will show the tetrahedron is nonacute. If the projection of d onto 4abc is not in the interior we
are done by the first part of the lemma. Otherwise, we claim the dihedral angle along ad is larger
than ∠bac and thus is nonacute. To check the claim, remember the spherical dual law of cosines
(see [45]):

cos d′ = − cos b′ cos c′ + sin b′ sin c′ cos∠bac

where b′, c′ and d′ are the dihedral angles along the edges ab, ac and ad, respectively. (See
Figure 9(d).) Assuming b′, c′ < π

2 , this gives cos d′ < cos∠bac as desired.

4.2 Acuteness of Delaunay Triangulations

Given a set of vertices, the Delaunay triangulation is optimal in many ways. However, a Delaunay
triangulation in any dimension can have obtuse angles. In this section, we investigate the converse,
whether an acute triangulation is necessarily the Delaunay triangulation for its vertices. The answer
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Figure 9: Acuteness tests: (a) if vertex d projects outside 4abc, the label shows which edges have
obtuse dihedral angles; (b) if the dihedral angle along ab is obtuse, both c and d project outside
their opposite triangles; (c) Thales’ theorem says that the angle at ab is acute exactly when it lies
outside the circle with diameter cd; (d) if the vertex d projects inside the triangle abc then the face
angle ∠bac is smaller than the dihedral angle on ad.

is positive in the plane, but negative in three-space. The following appears to be folklore; it was
asserted without proof by Bern et al. [6].

Lemma 3. Any acute two-dimensional triangulation T is Delaunay.

Proof. Since T is acute, the diametral circle of each edge is empty of other vertices. By definition,
this means the edge is in the Gabriel graph [25] of the vertex set, which is a subgraph of the
Delaunay triangulation. But since the edges of T form a triangulation, it must be the entire
Delaunay triangulation. See also Figure 10 (a).

Corollary. If an acute triangulation of a two-dimensional vertex set exists then it is unique.

Lemma 4. There is an acute triangulation T in three dimensions which is not Delaunay.

Proof. Consider a “cube corner” tetrahedron, and glue it to a copy of itself across the equilateral
face. Then move the two corner vertices away from each other a tiny amount to make the tetrahedra
acute. In coordinates, take a suitable small ε > 0, and let a = (−ε,−ε,−ε), b = (1, 0, 0), c = (0, 1, 0),
d = (0, 0, 1), and e = (2/3 + ε, 2/3 + ε, 2/3 + ε). The two tetrahedra abcd and bcde are acute, but
the Delaunay triangulation of these five points consists of three tetrahedra: abce, acde, and abde,
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cb

a

a b

e

d

c

(a) (b)

Figure 10: (a) Acute triangles in the plane are Delaunay. An alternate proof uses the fact that
the circumcircle is contained in the union of the three diametral circles around the edges. (b) An
example of an acute triangulation in space which is not Delaunay.

as in Figure 10 (b), because e is inside the circumsphere of abcd. Note that the three Delaunay
tetrahedra are obtuse, having 120◦ dihedral angles along edge ae. The acute triangulation we
started with is obtained by performing a 3-to-2 flip on the Delaunay triangulation.

In two dimensions, a triangle is acute if and only if its circumcenter lies inside the triangle. Given
an acute (Delaunay) triangulation, the dual Voronoi tessellation thus provides an orthogonal dual
mesh whose nodes are inside the corresponding triangles. For this reason, Bossavit has suggested [8,
9] that acute triangulations are useful in computational electromagnetics. In three dimensions, an
acute tetrahedron can fail to contain its own circumcenter (as with the example in the lemma
above), and conversely a tetrahedron that contains its circumcenter can fail to be acute (as with
a symmetric sliver). Many of the triangulations we construct below are built from tetrahedra
containing their circumcenters, but we have not investigated this problem in detail.

5 Constructions for Acute Tilings

5.1 TCP triangulations

Our first set of acute triangulations basically come from the crystallography literature. Here we
survey some known results and refer the reader to [43, 44] for more details. Chemists studying
alloys of two transition metals have often found that since the two types of atoms are similar (but
slightly different) in size, the Delaunay triangulation of their positions is built of nearly regular
tetrahedra. These TCP (tetrahedrally close packed) structures were first described by Frank and
Kasper [21, 22] and have been studied extensively by the Shoemakers [41] among others.

A combinatorial definition of the TCP class was given by Sullivan [43]: A triangulation is called
TCP if every edge has valence 5 or 6, and no triangle has two 6-valent edges. This definition
includes all the chemically known TCP structures, but also allows some new structures [44] not yet
seen in nature.
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It is not hard to check that the definition allows exactly four types of vertex star in a TCP
triangulation. Dually, the Voronoi cell around any vertex has one of the four combinatorial types
shown in Figure 11: these are the polyhedra with pentagonal and hexagonal faces but no adjacent
hexagons. (It is interesting that these dual structures are seen in some other crystal structures: in
some zeolites, silicon dioxide outlines the Voronoi edges, while in clathrates, water cages along the
Voronoi skeleton trap large gas molecules.)

(a) (b) (c) (d)

Figure 11: Foam cells with pentagonal and hexagonal faces

All known TCP structures can be viewed as convex combinations of the three basic ones (called
A15, Z and C15) shown in Figure 12. There are many ways to understand these structures [43]. To
construct A15, we can start with a BCC lattice. Its Delaunay triangulation is the Sommerville tiling
shown in Figure 5(b); since the edges have even valence the tetrahedra can be colored alternately
black and white. If we take the BCC lattice together with the circumcenters of all black tetrahedra,
we have the vertices of A15: their Delaunay tetrahedra are all now nearly regular. Similarly, the
C15 structure arises from the diamond lattice by adding selected circumcenters, and the Z structure
can be obtained similarly starting with hexagonal prisms.

The C15 structure (also known as the cubic Friauf–Laves phase) is shown in Figure 13, where
the red spheres are centered on a diamond lattice (FCC together with a certain translate) and the
blue spheres are at selected circumcenters.

In any triangulation of space, the average dihedral angle multiplied by the average edge valence
is exactly 360◦. If a tiling could be made of regular tetrahedra, the average edge valence would thus
be n0 := 360◦/ arccos(1

3) ≈ 5.1043. But by symmetry, the regular tetrahedron is a critical point for

(a) (b) (c)

Figure 12: The Voronoi cells for the three basic TCP structures, A15, Z, and C15.
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(a) (b) (c)

Figure 13: The vertices of the C15 triangulation are at the centers of these balls.

(a) (b) (c) (d)

Figure 14: Four simple periodic square/triangle tilings of the plane which lead to the TCP structures
named (a) Z; (b) A15; (c) σ; and (d) H.

average dihedral angle, so any tiling made of nearly regular tetrahedra should have average valence
quite close to n0. Indeed, all known TCP structures have average valence between 5 1

10 and ≤ 51
9 ,

the values for C15 and A15.

Sullivan [44] has formalized a construction suggested by Frank and Kaspar for mixing the basic
TCP structures. Start with any tiling of the plane by copies of an equilateral triangle and a square,
like one of the four shown in Figure 14. Suppose the side length of the square and triangle is 4.
Mark black and white dots on the tilings as shown. (The dots are at edge midpoints, at triangle
centers, and at distance 1 from the sides of the squares.) Then the vertices of the corresponding
TCP structure are at heights 4k − 1 above the black dots, at heights 4k + 1 above the white dots,
and at heights 4k and 4k + 2 above the vertices of the square/triangle tiling. (Here k ranges over
all integers.)

Again, in each case the TCP triangulation is simply the Delaunay triangulation of this periodic
point set. See Figure 16. The triangulations constructed in this way are all combinations of the
A15 and Z structures. A more complicated variant of this construction [44] builds combinations of
the Z and C15 structures, again starting from an arbitrary square/triangle tiling.
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Especially in the mixed structures like σ and H, the particular geometry we have described here
may differ slightly from that found in the actual crystals with the same combinatorics. Presumably,
these slight adjustments do not affect the shapes of the tetrahedra very much. The quality figures
we present below are measured using the exact geometry we have just described.

Sullivan’s original interest in these structures was for the mathematical study of foam geometry.
The Kelvin problem asks for the most efficient partition of space into unit-volume cells, that is, for
the partition with least surface area. Lord Kelvin’s suggested solution was a slightly relaxed form
of the BCC Voronoi cells (truncated octahedra). But in 1994, Weaire and Phelan [47] discovered
that a relaxed form of the Voronoi cells for the TCP structure A15 is more efficient than the Kelvin
foam [32].

It is perhaps not surprising that TCP structures are related to foams: Plateau’s rules for
singularities in soap films minimizing their surface area imply that a foam is combinatorially dual
to some triangulation, preferably one with nearly regular tetrahedra. It is an interesting question
whether any triangulation meeting the combinatorial definition of TCP can be built with tetrahedra
close to regular, but certainly for the known TCP structures this seems always to be the case. Thus
our acute triangulations arising from this construction have high quality by almost all measures.

5.2 Icosahedral Construction of the Z Structure

An alternate construction for the TCP Z structure is inspired by the work of Field [18]. His tilings
involved right-angled tetrahedra, but by selectively adjusting the point set, we obtain a tiling with
only acute tetrahedra. A regular icosahedron can be subdivided into 20 acute (and nearly regular)
tetrahedra simply by coning to the center point. We place icosahedra in a hexagonal lattice in the
plane, each in the same orientation, touching edge to edge, as in Figure 15.

gb

f

h i

c

a
e

d k

j

Figure 15: Icosahedron construction.
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This layer then gets repeated vertically, with each icosahedron sharing a horizontal face with
the ones just above and below it. Our point set is then the vertices and centers of all the icosahedra.
Its Delaunay triangulation, shown in Figure 16(d), is combinatorially the TCP Z structure, but
with slightly different geometry than that constructed before. The horizontal faces (seen head-on
as equilateral triangles in Figure 15) are shared by two icosahedra. Each other face separates an
icosahedron from one of the four types of Delaunay tetrahedra that fill the gaps. There are two
types of gaps. The deeper gaps are defined by the points a, b, c, d, e, f, g, and g′ (the mirror image
of g with respect to the plane through b, d and f); they are filled with two types of tetrahedra,
e.g., bdfg and abfg. The shallower gaps are defined by the points d, f, h, i, j, k, e, and e′ (the mirror
image of e with respect to the plane through f , k and i); they are filled with two types of tetrahedra,
e.g., ee′df and ee′fh.

Notice that in our triangulation we use only the vertices of the icosahedra. This differs from
Field’s construction [18] which introduces additional points to triangulate the shallower gaps.

(a) (b)

(c) (d)

Figure 16: Acute triangulations filling space. (a) The TCP structure Z (from a triangle tiling). (b)
The TCP structure A15 (from a square tiling). (c) The TCP structure σ, a mixture of A15 and Z.
(d) Icosahedron construction of Figure 15.
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5.3 An Acute Triangulation of a Single Slab

The acute triangulations we have described so far, though periodic, do not have any planar
boundaries within them. Here we describe an acute triangulation of a slab (which can of course be
repeated to fill all of space). We view this as partial progress towards the problem of triangulating
an arbitrary domain, although it seems much harder to find an acute triangulation of a cube or
even an infinite square prism. We triangulate the bottom half of the slab in the following eight
steps. Let h be the height of the slab and γ = h/14.2.

1. Start with a grid of equilateral triangles of side length 6γ on the base plane, as in Figure 17(a).

2. Place a nearly regular tetrahedron (with height 4γ) over each triangle, as in Figure 17(b).

(a) (b) (c)

  

(d) (e) (f)

(g) (h)

Figure 17: Eight steps in filling a slab with acute tetrahedra. The nodes in the base plane are
colored white; successive layers above that plane are then colored yellow, red, blue and black, in
order.
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3. Add a tetrahedron in the gap between each pair of adjacent tetrahedra, as in Figure 17(c).
The resulting surface has deep hexagonal dimples at the original vertices in the base plane.

4. Add six tetrahedra in each dimple, each with one vertex on the starting plane, two vertices
at height 4γ, and one new vertex at height 4.6γ over the starting vertex, as in Figure 17(d).
Now we have a surface with shallow hexagonal bumps.

5. Place a vertex at height at 7.1γ over the midpoint of the edge between each pair of adjacent
bumps. Each such vertex and edge form a vertical triangle; let this separate two new
tetrahedra whose fourth vertices are the the two nearby bump vertices, as in Figure 17(e).
The surface is now covered by tall diamond-shaped bumps.

6. Place a tetrahedron between each adjacent pair of bumps, as in Figure 17(f). We now have an
alternating grid of medium-depth six-sided holes (over each of the shallow hexagonal bumps)
and deep tetrahedral holes (over the points where three of the shallow hexagonal bumps
meet).

7. Fill each tetrahedral hole, to form a surface alternating between six-sided holes and flat
triangles, as in Figure 17(g).

8. Place six tetrahedra into each medium-height hexagonal hole to turn it into a medium-height
hexagonal bump, as in Figure 17(h). In order to make the bumps equal to the holes, the
height of the new vertices is chosen as [2(7.1− 4.6) + 4.6]γ = 9.6γ.

To complete the triangulation of the slab, we now repeat the first seven steps in reverse order.

Any of the constructions given in this section serves to prove our main result:

Theorem 5. It is possible to tile three-dimensional Euclidean space with acute tetrahedra.

6 Conclusions

6.1 Evaluation of the constructions

We report in Table 1 the quality of the tetrahedra used in our constructions in comparison to the
Sommerville tetrahedra, the cube subdivision tetrahedra and the regular tetrahedron. For each
construction we list the radius-edge ratio of the best and the worst quality tetrahedra as well as the
extreme dihedral angles. The radius-edge ratio of a tetrahedron is the ratio of its circumradius to
the length of its shortest edge. Tetrahedra with smaller radius-edge ratio are preferable in many of
the applications discussed in Section 1. Also, the smaller the largest dihedral angle and the larger
the smallest dihedral angle, the better a construction is. A study of Table 1 indicates that our
constructions are superior in quality to three of the four Sommerville tetrahedra and competitive
with Sommerville II and with the cube subdivisions. Thus our constructions are quite suitable for
mesh generation.
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radius-edge
ratio

smallest
dihedral angle

largest
dihedral angle

Construction min max min max min max
TCP Z from triangle tiling .651 .737 53.13 67.37 73.89 77.07
TCP A15 from square tiling .645 .707 53.13 67.79 73.39 78.46
TCP σ .645 .737 53.13 67.79 73.39 78.46
TCP C15 .612 .711 60 70.53 70.53 74.20
TCP Z from icosahedra .629 1.000 41.81 69.09 71.99 83.62
Slab .636 .938 46.83 67.88 74.39 87.70
Sommerville I (Figure 5a) 1.118 1.118 45 45 90 90
Sommerville II (Figure 5b) .645 .645 60 60 90 90
Sommerville III (Figure 5c) .866 .866 45 45 120 120
Sommerville IV (Figure 5d) 1.581 1.581 30 30 131.81 131.81
Cube V (Figure 7a) .612 .866 54.73 70.53 70.53 90
Cube VI (Figure 7b) .866 .866 45 45 90 90
Regular tetrahedron .612 .612 70.53 70.53 70.53 70.53

Table 1: The quality of the tetrahedra in our constructions (and of the regular tetrahedron) can
be measured in terms of the radius-edge ratio and the extreme dihedral angles.

As far as the bounds on dihedral angles, the TCP structure C15 is the best of our constructions.
Note that given any vertex v in any triangulation, there must be some edges of valence less than six
incident to v. (Otherwise the cell around v in the dual complex would be a polyhedron whose faces
all have at least six sides, contradicting Euler’s formula.) Thus every triangulation must have some
dihedral angles at least 72◦; our C15 structure comes close to this limit. Conversely, any acute
triangulation of flat space must have some edge of valence at least six. (Otherwise each edge has
valence exactly five, and the triangulation would be spherical. We expect in fact that the acuteness
hypothesis here is unnecessary.) Thus there is some dihedral angle less than or equal to 60◦; our
C15 structure exactly achieves this bound.

6.2 Future Research

There are still some challenges left to make use of these tilings in real-life meshing techniques. A
strategy is required to fit the tilings into a planar projection of the spatial domain. Malkevitch
studies this problem in [35]. He describes the conditions for a polygon to be tiled by squares and
equilateral triangles. Also, even though one of our constructions fits between two parallel planes in
a slab, all of them have dimples (cavities on the surface) in most directions, making them not very
suitable for meshing domains with flat surfaces.

Open problems related to this work include the following:

1. How efficiently can we test whether a three-dimensional point set forms the vertices of an
acute triangulation, and find such a triangulation if it exists? The planar version of this
problem is solved by Delaunay triangulation, but Lemma 4 provides a counter-example to
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this approach in three dimensions. Alternatively, one could use a triangulation algorithm
that minimizes the maximum angle [4]. However, such an algorithm is yet to be developed
for three-dimensional domains.

2. Are these constructions the best possible? For instance, which tiling of space with tetrahedra
minimizes the maximum dihedral angle?

3. Is it possible to tile the space with congruent copies of some single acute tetrahedron?

4. Is it possible to subdivide a cube (or even an acute tetrahedron) into acute tetrahedra?

5. Can the gadget-based acute triangulation methods of [6] be extended to an algorithm for
finding a strictly acute triangulation of any three-dimensional point set?
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