COP 4720 - Information Systems and Databases II, Spring 2007,
Midterm

(This midterm consists of 6 questions in 3 pages.)
Good luck

Remarks:

• This midterm is out of 100 points. The value of each question/sub-question is written in
 square brackets, next to question number. You can get partial credits for your answers.
• Answer each question on a separate paper.
• Write your name on every paper you return.

Question 1 [6] Briefly describe the following terms

B. [2] Average seek cost
C. [2] Rotational latency

Question 2 [20]

A. [10] Briefly describe the TPMMS (Two Phase Multiway Merge Sort) algorithm.

B. [10] Assume that the size of a record is 2^{11} bytes and a 16 records fit in one block. Assume
 that the available memory size is 128 MB. Find the maximum number records that can be
 sorted using TPMMS.

Question 3 [14] Assume that a block can hold either two records or four key/pointer pairs or eight
 pointers. Assume that we have a database D with 11 records with the following keys:

$$D = \{10, 10, 10, 15, 15, 20, 20, 30, 40, 40, 40\}$$

B. [8] Build a dense index with indirection when the data is placed on the disk in the following
 order.
Question 4 [18] Assume that a disk block can hold two records. Assume that we have a database \(D \) that contains initially three records with the following binary keys.

\[
D = \{01100, 00101, 11001\}
\]

Assume that linear hashing with at most 75% capacity is employed to index \(D \). Construct the index structure on \(D \). Insert two more records with keys 01010 and 11101 in this order. Show the index structure after the insertion of each record.

Question 5 [24] Assume that we have a database of gas stations \(G \) in the Santa Barbara area. For each gas station, we store its coordinates \((X, Y)\). Assume that \(G = (X, Y) \) consists of the following 11 records:

\[
G = \{(50, 100), (50, 120), (60, 80), (70, 50), (80, 45), (90, 80), (100, 30), (100, 150), (150, 45), (155, 200), (220, 150)\}
\]

The locations of the gas stations are shown in Figure 1. Assume that two records can fit in one block. Also assume that each dimension takes a value in the \([0, 256]\) interval.

Build a static-kd-tree, variation of kd-tree, on \(G \). Unlike the kd-tree, this tree blindly partitions a dimension into two from the middle of that dimension even if the points are not split evenly.

Question 6 [18] List at least one advantage of

B. [6] kd-tree over quad tree

C. [6] Extensible hashing over sparse index
Figure 1: Location of the gas stations on the X-Y plane