COP 4720 - Information Systems and Databases II, Spring 2007, Final

(This test consists of 5 questions in 2 pages.) Good luck

Remarks:

- This test is out of 100 points. The value of each question/sub-question is written in square brackets, next to question number. You can get partial credits for your answers.
- Answer each question on a separate paper.
- Write your name on every paper you return.

Question 1 [24] Let \(R \) and \(S \) be two clustered relations where \(B(R) \leq B(S) \). For each of the following queries, briefly describe the smallest memory requirement for executing it in a single pass. Also write a brief pseudocode of this single pass algorithm.

A [12] \(S - set R \) (set difference)

B [12] \(R - bag S \) (bag difference)

Question 2 [30] Let \(R_1(X, Y_1) \), \(R_2(X, Y_2) \) and \(R_3(X, Y_3) \) be three clustered relations where \(B(R_1) = 4,000 \), \(B(R_2) = 6,000 \), \(B(R_3) = 8,000 \). Assume that the available memory size is \(M = 100 \) blocks. Answer the following questions:

A [10] Find the smallest number of disk I/Os for joining \(R_1 \) and \(R_2 \) using BNLJ (block nested loop join). In other words, \(R_1 \bowtie_\theta R_2 \), with \(\theta : R_1.X = R_2.X \)

B [20] Assume that the \(X \) attribute of each of the three relations takes integer value uniformly in the \([1 : 1,000]\) interval. Briefly describe how you would adapt the BNLJ to join the three relations \(R_1, R_2 \) and \(R_3 \) (i.e., \(R_1 \bowtie_\theta R_2 \bowtie_\theta R_3 \), with \(\theta : R_1.X = R_2.X = R_3.X \)). Write the pseudocode of your algorithm. Aim to minimize the number of disk I/Os in your algorithm.

What is the total number of disk I/Os for the algorithm you presented in B?

Question 3 [15] List at least one advantage of

Multi-version time stamps over time stamps.

Question 4 [19] Answer the questions below for the following schedule:

\[
S = r_2(C)r_1(A)w_3(C)w_3(D)r_2(B)w_2(A)r_1(D)w_3(B)w_4(C)
\]

A [7] Draw the precedence graph of \(S \).

C [10] Show how \(S \) will behave if 2PL is used.

Question 5 [12]

Assume that concurrency is maintained using time stamps. Find out what will happen for each of the schedules below. Note that \(st_i \) denotes the start of transaction \(T_i \).

A [6] \(st_1st_2w_2(B)r_1(A)w_2(A)w_1(B) \)

B [6] \(st_1r_1(B)st_2w_2(A)st_3r_3(A)r_1(A) \)