
BIOINFORMATICS Vol. 00 no. 00
Pages 1–11

RINQ: Reference-based Indexing for Network Queries
Günhan Gülsoy , Tamer Kahveci
Computer and Information Sciences and Engineering, University of Florida, Gainesville, FL 32611
{ggulsoy,tamer}@cise.ufl.edu

ABSTRACT
We consider the problem of similarity queries in biological network

databases. Given a database of networks, similarity query returns
all the database networks whose similarity (i.e., alignment score) to
a given query network is at least a specified similarity cutoff value.
Alignment of two networks is a very costly operation, which makes
exhaustive comparison of all the database networks with a query
impractical. To tackle this problem, we develop a novel indexing
method, named RINQ (Reference-based Indexing for Biological
Network Queries). Our method uses a set of reference networks
to eliminate a large portion of the database quickly for each query.
A reference network is a small biological network. We precompute
and store the alignments of all the references with all the database
networks. When our database is queried, we align the query network
with all the reference networks. Using these alignments, we calculate a
lower bound and an approximate upper bound to the alignment score
of each database network with the query network. With the help of
upper and lower bounds, we eliminate the majority of the database
networks without aligning them to the query network. We also quickly
identify a small portion of these as guaranteed to be similar to the
query. We perform pairwise alignment only for the remaining networks.
We also propose a supervised method to pick references that have a
large chance of filtering the unpromising database networks. Extensive
experimental evaluation suggests that (1) our method reduced the
running time of a single query on a database of around 300 networks
from over two days to only eight hours; (2) our method outperformed
the state of the art method Closure Tree and SAGA by a factor of
three or more; (3) our method successfully identified statistically and
biologically significant relationships across networks and organisms.

Keywords: Biological network databases; indexing; network
comparison

1 INTRODUCTION
With the advances in biotechnology and high throughput computing,
the amount of data describing the interactions among molecules
has increased greatly in recent years. Depending on the types of
interactions, this data is expressed through various models such
as metabolic (Francke et al., 2005), gene regulatory (Levine and
Davidson, 2005) or protein interaction (Giot and Bader et al, 2003)
networks. The term pathway is also used in the literature to describe a
part of them. In this paper, we will use the term biological network to
describe a collection of these interactions. Understanding biological
networks has been one of the main goals of biological sciences as they
contain key information regarding how organisms work. To achieve
this goal, biological networks are analyzed in a number of ways.

One of them, comparison based analysis, identifies similar parts of
two biological networks by aligning them. Such analysis has been
successfully used for finding functional annotations (Clemente et al.,
2006), identifying drug targets (Sridhar et al., 2007), reconstructing
metabolic networks from newly sequenced genome (Francke et al.,
2005), and building phylogenetic trees (Clemente et al., 2005).

Aligning two biological networks is a computationally challenging
problem. Existing methods often map this problem to subgraph
isomorphism problem. For this problem, there are no known
polynomial time algorithms which guarantee to produce the optimal
alignment. A number of methods aim to find approximate (Dost et al.,
2008; Pinter et al., 2005; Shlomi et al., 2006) or heuristic (Ay and
Kahveci, 2010; Ay et al., 2009; Liao et al., 2009) results in practical
time. However, they still require a significant amount of time.

Computational difficulty of biological network alignment becomes
apparent when we need to align a query network with a database of
biological networks. To test this, we downloaded 297 networks from
KEGG (Ogata et al., 1999). These networks had 16 to 120 genes (i.e.,
nodes) and 17 to 165 edges. We aligned the networks in the dataset
with a set of 50 query networks using the QNet algorithm (Dost
et al., 2008). Each of these query networks had seven nodes. Average
processing time for a single query network was over two days on a
single processor. The same experiment for eight node queries took
more than a week for a single query network. In this paper, we aim to
align a query network with a database of networks efficiently. Formal
definition of our problem is as follows:
Problem definition: Assume that we have a database of n biological
networks denoted by D ={d1,d2, ..., dn}, where di is the ith
network in our database. Also, we are given a query network denoted
by q. Let us denote the alignment score between q and di (di ∈ D)
with sim(q, di). Given a similarity cutoff ε, similarity search returns
all the database networks di that satisfy sim(q, di) ≥ ε. We aim
to reduce the processing time of similarity searches in biological
network databases to a practical level.

A number of variants of the problem of aligning two networks
have been considered in the literature (Ay and Kahveci, 2010; Dost
et al., 2008; Kelley et al., 2004; Liao et al., 2009; Shlomi et al., 2006).
However, there has been a limited number of studies on similarity
searches in network databases (Giugno and Shasha, 2002; He and
Singh, 2006; Mongiovi et al., 2010; Yan et al., 2004). Although
these methods work well for specific types of network databases,
they are not well suited for biological network databases which
is the problem considered in this paper. This is mainly because
they often use an overly simplified similarity measure for network
alignment. When used with costly biological network alignment tools,
the time complexity of these indexing methods become impractical.
We elaborate on previous works in Section 2.

c© Oxford University Press . 1

Contributions: In this paper, we develop a reference-based indexing
method to answer similarity queries in biological network databases
efficiently. We call this method Reference-based Indexing for
Biological Network Queries (RINQ). The main advantage of this
method is its independence of the pairwise network alignment
algorithm the database employs. Briefly, RINQ works as follows.
First, we choose a small set of networks to use as reference networks.
We align all of the reference networks with the networks in our
database, and store all the alignment mappings and scores. These
steps are performed offline. After these two steps, our database is
ready to accept queries. Given a query q and a similarity cutoff ε,
instead of aligning q with all the database entries, we align it with
the reference networks. Using these alignments and the precomputed
alignments between reference and database networks, we compute a
lower bound and an approximate upper bound for sim(q, di) for each
database network di. We will refer to these upper and lower bounds
as UB(q, di) and LB(q, di) respectively. Computing upper and
lower bounds take much less time than aligning the query network
with the database networks. Depending on the values of the upper
and lower bounds, we may encounter one of the following three
cases.
• Case 1: (Filter Set) UB(q, di) < ε

• Case 2: (Result Set) ε ≤ LB(q, di)

• Case 3: (Twilight Zone) LB(q, di) < ε ≤ UB(q, di)

We can interpret these cases as follows. The first case means that
sim(q, di) < ε. We filter such database entries. Second case implies
sim(q, di) > ε, which is what we are looking for. We can directly
add such di to our result set. For the database networks di that fall
into the third case, the value of sim(q, di) is unclear. We align q
with such di to find their actual similarity value. In other words,
we perform the costly network alignment algorithm only for the
networks that fall into the third case. Our experiments suggest that

1. RINQ filters up to 80 percent of the database entries depending
on the given similarity cutoff and the query.

2. RINQ is significantly faster and more accurate than the existing
methods including SAGA (Tian et al., 2007) and CTree (He and
Singh, 2006).

3. The alignments returned by RINQ are statistically significant
and biologically relevant.

Rest of the paper is organized as follows. Section 2 discusses
the previous works related to our problem. Section 3 elaborates on
RINQ. Section 4 presents our experimental results. Section 5 briefly
concludes the paper.

2 RELATED WORK
Most of the existing work on comparing biological networks focus
on alignment of a pair of networks. This problem is the fundamental
building block of the similarity search problem considered in this
paper. However, aligning even a single pair of networks is a
computationally difficult task. To alleviate this difficulty a number of
methods in the literature restricted alignments to specific topologies
or network sizes. For example, PathBLAST (Kelley et al., 2004)
and QPath (Shlomi et al., 2006) align linear pathways with protein
interaction networks. Pinter et al. devised an algorithm which can
align queries of tree networks with a multi source tree network (Pinter
et al., 2005). QNet uses a color-coding algorithm to align trees

or bounded treewidth networks with any network with provable
confidence values (Dost et al., 2008). To evaluate the performance
of QNet, we aligned a set of seven node query networks with a
database of gene regulatory networks using our implementation
of the QNet algorithm. We downloaded all the gene regulatory
networks from KEGG (Ogata et al., 1999) that had more than 15
nodes in our local database. There were 297 such networks (See
Tables 3, 4 in Appendix II). When we set the confidence value to
99%, the average running time to align a single query network with
all database networks exhaustively took over two days. Even after
we reduced the confidence to 90%, the running time for exhaustive
search was still one day. A number of other approaches exist to
speed up for pairwise network alignment problem. NetMatch (Ferro
et al., 2007) and NetGrep (Banks et al., 2008) allow user to define
queries with specific node features. Then they use fast approximate
algorithms to match the user defined queries. Heuristic methods aim
to solve the alignment problem faster without providing a confidence
value (Ay and Kahveci, 2010; Bruckner et al., 2009; Liao et al., 2009).
However, despite all these efforts, the running time still remains to
be a bottleneck.

Several indexing methods for similarity searches in graph
databases exist. Majority of these methods can be classified as feature
based indexing methods. These methods start by picking specific
features of the networks for filtering purposes. GraphGrep chooses
paths as index feature (Giugno and Shasha, 2002). gIndex uses
frequent subgraphs for the same purpose (Yan et al., 2004). SAGA
uses fragments of database networks and tries to combine them
together to find larger matches (Tian et al., 2007). These methods
focus on finding exact matches of a given query in the database.
SIGMA is another feature based indexing method which concentrates
on the problem of inexact matching in graph databases (Mongiovi
et al., 2010). Another method for graph database indexing is Closure-
Tree (CTree) (He and Singh, 2006). Closure-Tree organizes the
networks in the database using a binary tree structure. It places each
database network at a different leaf node in this tree. Each internal
node in this tree is a hypothetical network that is obtained by aligning
the two networks corresponding to its children nodes. An interesting
property of the CTree is the following. The score of the alignment of
any query network with an internal node is at least as much as that
with a leaf node rooted at that internal node. Following from this,
given a query network, closure tree algorithm starts aligning query
to the root node. It then proceeds to the children nodes. It prunes
an entire subtree rooted at an internal node, if the alignment to that
internal node has a score less than the given cutoff.

Existing graph database indexing methods work well when each
database network is small or the underlying similarity measure is not
expensive. However, these two properties do not hold for biological
network databases such as metabolic and gene regulatory networks.
As a result, when they are applied to these networks, either the index
construction time becomes impractical or the amount of performance
gained becomes too small. For instance, when a costly dynamic
programming method, such as QNet (Dost et al., 2008), is used
to summarize sets of networks accurately in the CTree method,
computing the summary for even a single internal node can take
more than one month for networks with more than 12 nodes. On the
other hand, the method we develop in this paper allows querying
databases with networks of arbitrarily large number of nodes. We
provide an experimental comparison of our method with SAGA and
CTree in Section 4.3.

2

3 ALGORITHM
In this section, we explain the indexing method we developed for
querying biological network databases. We first describe the notation
we use in the rest of this paper. We denote the database of n biological
networks with D ={d1, d2, ..., dn}. Here, di represents the ith
network in the database. As we will explain later, our algorithm
uses a set of reference networks. We denote the set of m candidate
references with C ={c1, c2, ..., cm}. In this representation, each
ci corresponds to a candidate reference network. We denote the
actual set of references with R ={r1, r2, ..., rk}, where R ⊆ C.
To simplify our notation, we will drop the subscript and use d, r or
c to represent di, ri or ci respectively whenever possible. We will
represent a query network with q. We use q[j], c[j], r[j] and d[j] to
refer to the jth node in respective networks.

An alignment is a mapping between the nodes of two networks. Let
us represent the mapping between q and d with β. Then, β(q[i]) =
d[j] means that q[i] is aligned to d[j]. Note that all these mappings
are one to one and symmetric. In other words, if β(q[i]) = d[j], then
β(d[j]) = q[i]. When a node q[i] is not aligned to any node in d (i.e.,
insertions or deletions), we will use the notation β(q[i]) = ∅. The
similarity score between two nodes q[i] and d[j] is represented as
sim(q[i], d[j]). Let Ed and Eq be the set of edges (i.e., interactions)
of d and q respectively. Let us denote the function that returns the
weight of an edge in Ed with EWd. Given a mapping β between q
and d, the individual node similarities between q and d, we calculate
the similarity score sim(q, d) as:

sim(q, d) =
∑

β(q[i])6=∅

sim(q[i], β(q[i]))

+
∑

β(q[i])=∅

InDel Penalty

+
∑

(β(q[i]), β(q[j])) ∈ Ed
AND (q[i], q[j]) ∈ Eq

EWd(β(q[i]), β(q[j])).

The organization of the rest of this section is as follows. In
Section 3.1, we provide an overview of reference-based indexing. We
elaborate on our reference selection method in Section 3.2. Finally,
in Section 3.3, we explain the calculation of the lower and upper
bounds we use for RINQ.

3.1 An overview of our reference-based indexing
RINQ has two major steps, namely index creation and query
processing. We create index once as a preprocessing step in two
phases. In the first phase, we create a large set of candidate references
from the database networks. In the second phase, we pick a subset
of these candidates as the actual reference set by considering their
performance over a set of training queries. In our index, we store the
alignments between all the reference and database network pairs.

Once the index is created, we are ready to answer similarity queries
on our database. Given a query network q, we align q with the
reference networks in R rather than the database networks. Usually,
the cost of these alignments is negligible since R contains much
fewer and smaller networks than D. For each dj ∈ D, we compute
a lower bound and an approximate upper bound to the similarity
score between q and dj . We do this by using the alignments of the
references to q and dj . We denote these lower and upper bounds by
LB(q, dj) and UB(q, dj) respectively.

Using the lower and upper bound values, we classify each dj in
one of the following three sets: Filter Set, Result Set, or Twilight Zone.

If UB(q, dj) < ε, the alignment score between q and dj cannot be
larger than ε. We put such dj in Filter Set. We eliminate the networks
in the filter set without further calculation. If ε ≤ LB(q, dj), it
means dj has an alignment score which is definitely larger than ε. So
dj should be in the set we return as the result of our query. We place
such dj in the Result Set. Finally, if LB(q, dj) < ε ≤ UB(q, dj),
the bounds do not imply anything about the network being in the
result set or the filter set. We place such dj in the Twilight Zone.
For the entries in the twilight zone, we need to calculate the actual
alignment scores to decide if we can place them in the result set.
Since aligning two networks is a costly operation, we would like to
have as few networks in the twilight zone as possible.

We discuss how we create the reference set in Section 3.2. We
defer the discussion on the lower and upper bound computations
using references to Section 3.3.

3.2 Reference selection
The success of our method depends greatly on the reference set.
Ideally, a reference set should contain reference networks from which
we can construct a network that is similar to the given query network.
This section describes how we choose our reference networks for
our database with the help of a training query set. Briefly, we select
references in two phases. In the first phase, we quickly generate a set
of promising references. In the second phase, we carefully examine
these candidates and choose a subset of them that has maximal
performance on the training queries.

3.2.1 Phase I: Creating the candidate reference set. Ideally the
reference set in our database should satisfy the following properties:

Property 1. (SMALL) Each reference network should have a small
number of nodes.

Property 2. (COMPREHENSIVE) At least one reference should align
well with any database network.

Property 3. (NON-REDUNDANT) Each reference network should
differ from the rest significantly.

The first property above ensures that the query aligns with each
reference quickly. The second property ensures that it is possible
to find tight lower and upper bounds for any query that aligns well
with a reference network. If two references are highly similar, then
the lower and upper bounds computed through them will be similar
regardless of the query network. Thus one of them is sufficient to
compute the bounds. The third property avoids such redundancy.

In order to satisfy the first rule we set the size (i.e, the number of
nodes) of each reference network to that of the largest query allowed.
Let us denote this number with T . We use T = 6, 7 or 8 in our
experiments. Using small T ensures Property 1 described above.
Following from the rules above, we create a potentially large set of
candidate references from the database networks iteratively. Each
iteration consists of two steps.
Step 1. We pick a database network randomly. We choose a random
node from that network as the seed. We then grow that seed by
including one of the neighboring nodes to the seed randomly, until
the seed contains T nodes.
Step 2. We align the current seed with rest of the candidate reference
networks we created so far. If any of the alignment scores is greater
than a predefined cutoff, it means that the current seed is redundant.

3

Table 1. The distribution of the number of database networks to different
sets for a given query. The networks in the partition True are the ones that
need to be returned for the query. The networks in the partition False are the
ones that are not similar to the query. The networks are also divided into three
sets, Result Set, Twilight Zone and Filter Set. All the Ni inside the partitions
represent the number of network in the corresponding partition.

Result Twilight Filter
Set Zone Set

True N1 N2 N3

False 0 N4 N5

Therefore, we discard the current seed. Otherwise, we include the
current seed in the candidate reference set.

Steps 1 and 2 eliminates redundancy from the candidate reference
network set, therefore enforcing Property 3. The iterations continue
until we are unsuccessful at creating a new candidate reference
network, hence fulfilling Property 2.

3.2.2 Phase II: Creating the final reference set. Recall from
Section 3.1 that we align a given query network with all the reference
networks in R first. In order to perform this comparison quickly, it is
desirable to have a small number of references in R. The amount of
time we would like to spend for filtering the database determines the
size ofR. We will use at most 100 references in our experiments. We
choose our actual reference set as a subset of the candidate references.
A naive solution would be to pick the reference networks randomly
from the candidate reference set. This simple strategy may produce a
good reference set since the candidate set already satisfies the three
properties listed at the beginning of this section. Here, we develop
an intelligent strategy that optimizes the reference selection further.
This strategy learns the accuracy of the references by training over a
set of queries.

At this point, we take small detour to explain how we compute the
accuracy of our references for a query. As we explained in Section 3.1,
our references place each database network into one of the three sets,
namely Result Set, Filter Set and Twilight Zone. Among these, the
last two may contain true or false results (i.e., a database network
is a true result if its alignment to the query has a score greater than
the given cutoff). Table 1 shows the decomposition and the number
of networks in each set. Result set contains only true results as our
lower bound is guaranteed to be at most the actual score. The filter
set on the other hand may contain true results, as well as false results.
Our method fails to find the true results in this set if there are any. We
compute the accuracy of our method as the ratio of true results that
our method can return. Formally this number is N1+N2

N1+N2+N3
. This

metric is also known as recall in the literature.
Algorithm 1 iteratively tries to find the reference set which yields

the highest accuracy. We do this with the help of a set of training
query networks. We avoid a purely combinatorial approach because
the number of possible reference sets is very high. Instead, we
develop a hill climbing approach. Algorithm 1 describes this method
in detail. We start by randomly choosing a reference set. Then, at
each iteration, we replace one reference network in R with another
in C − R to improve the accuracy of our index for the training
queries. To do this, we first eliminate the reference from the current
reference set whose removal drops the accuracy the least. Next,
among all the remaining candidate references, we find the one whose
inclusion to the current reference set increases the accuracy the most.
If these two changes improve the overall accuracy we accept them.

Algorithm 1: Create reference set R
Align all the networks in Q and C with the networks in D
Remove k networks from C randomly and add them to R
repeat

Set Current Accuracy to the accuracy of R
Remove ri from R where accuracy of R− {ri} is maximum
for all cj in C do

Calculate accuracy using R ∪ {cj}
end for
if The resulting accuracy is better than the current one then

Add cj to R for which the accuracy of R ∪ {cj} is largest
Remove cj from C

else
Insert ri back in R and Break the loop.

end if
until Accuracy cannot be improved anymore or C is empty

We repeat these iterations until there is no candidate reference which
can improve the overall accuracy.

3.3 Computing the bounds
For a query network q, we calculate UB(q, d) and LB(q, d) for each
d ∈D with the help of references. When we create the reference set
as described in Section 3.2, we also record the alignment of each
(ri, d) pair (ri ∈ R). For each (q, d) pair, we compute UB(q, d)
and LB(q, d) using the precomputed alignments of each ri with d,
and the alignments of each ri with q. In Section 3.3.1, we present an
exact lower bound calculation technique. Then in Section 3.3.2, we
discuss an approximate upper bound calculation method.

In order to simplify the explanation of bound calculations, we
denote an alignment of q and ri with a relation ψi. We will use the
relation δi to represent the alignment between ri and d.

3.3.1 Lower bound calculation In order to provide a tight lower
bound for a given query and database network pair, we use each
reference independently. Using each reference network ri, we
calculate a different lower bound value LBi(q, d). After calculating
k different lower bounds, we choose the largest one (i.e., LB(q, d) =
maxi{LBi(q, d)}) as the lower bound.

Given q, ri and d, we compute LBi(q, d) in two phases. In the
first phase, we map a subset of the nodes of q to those of d from
their existing alignments with ri. In the second phase, we map the
remaining nodes if possible and calculate final alignment score.
Phase I. Using the representations for alignments between (q, ri)
and (ri, d) pairs, our indirect alignment φi between q and d through
ri is simply the composition of relations δi and ψi. In other words, it
is the relation φi(q[j]) = δi(ψi(q[j])). For example, in Figure 1(a),
q[1] and ri[1] are aligned (i.e., ψi(q[1]) = ri[1]). Also r[1] and d[1]
are aligned (i.e., δi(ri[1]) = d[1]). From these two, in Figure 1(b)
we align q[1] with d[1] (i.e., φi(q[1]) = d[1]). Notice that φi maps
each node of q (or d) to at most one node in d (or q). This is because
both δi and ψi map one node of q and d to at most one node in ri.
Also notice that there may be nodes in q or d that are not aligned to
any node by φi.
Phase II. If all the nodes of q are aligned at the end of Phase I, we
simply use this alignment to compute LBi(q, d). Otherwise, there
will be unaligned nodes from at least one network. One way to deal
with the unaligned nodes is to consider them as insertions or deletions
(indel) in the alignment of q and d. This, however, is not desirable
as each indel will lower the value of LBi(q, d). We observe that
it is possible to align such nodes if there is a matching node in d
that is not aligned in Phase I. For example, in Figure 1(a), both q[2]

4

q[1]

q[2]

q[4]

r[1]

r[2]
r[3]

r[4]

d[1]
d[6]

d[3]

d[5]

d[4]

query reference target

q[3]

d[2]

(a) Mappings ψ and δ

q[1]

q[2]

q[4]

d[1] d[6]

d[3] d[5]

d[4]

query target

q[3]

d[2]

(b) Indirect alignment φ

Fig. 1. Overview of the lower bound calculation. Figure 1(a) shows the
alignments of (q,r) and (r,d) pairs. Figure 1(b) shows the resulting indirect
alignment. Solid lines represent the edges within a network. Dashed lines
represent the mapping between the nodes of two networks.

and d[2] are unaligned with a reference node. Thus, they both are
unaligned. In Phase II, we align such nodes with each other. We do
this by performing a breadth first traversal on q and d simultaneously.
We start the traversal from the root node of q and the node aligned
to it in d. Then, we visit every child of this node in q, also visiting
the aligned node in d. When visiting a node, we check the shortest
path between this node and its parent. If both in q and d there are
unaligned nodes, we align such nodes to each other in the order they
are traversed. We mark the nodes we cannot align as insertion and
deletions. We start the traversal from a pair of nodes that are aligned
to each other in Phase I and that are both neighbors to unaligned
nodes. Figure 1(b) shows the alignment found after Phase II using the
reference alignment in Figure 1(a). Finally, we compute LBi(q, d)
as the similarity score sim(q, d) resulting from the alignment φi.

3.3.2 Upper bound calculation As we discussed in Section 3.3.1,
each reference provides an indirect alignment between q and d.
Consider the extreme scenario when one of the references is identical
to q. In that case, the indirect alignment of q and d through that
reference will be the optimal alignment since d is optimally aligned
with each reference in our index. As the similarity between q and a
reference increases, we expect that the indirect alignment obtained
from that reference will approach to the optimal one. Our upper
bound computation strategy follows from this observation. Even
when none of the references is identical to q, each one may be similar
to a subnetwork of q. Thus, by considering all the references at once,
we may be able to reconstruct a subnetwork that is very similar to q.
Note that this method is not guaranteed to produce an upper bound.
Its success depends on how well the reference set represents q. As we
described in Section 3.2, Algorithm 1 chooses the reference set that
maximizes the accuracy of our upper bound function. We discuss the
observed accuracy of our method later in Section 4.

We calculate UB(q, d) in two phases. In the first phase, we find
the set of node pairs from q and d that can be aligned using all the
references. In the second phase, we find the highest scoring alignment
under this limitation by relaxing the topologies of q and d.
Phase I. For each reference ri ∈ R, we find an indirect mapping
φi between q and d as we explained in Phase I of Section 3.3.1.
We then create a joint mapping φ from all indirect mappings as
φ(d[j]) = ∪1≤i≤k{φi(d[j])}. That is φmaps each d[j] to the set of
all nodes of q that d[j] is indirectly aligned by at least one reference.
Notice that it is possible to have some nodes in d or q that are not
mapped to any node by φ. This happens when no reference in our
reference set aligns with them. This however does not mean that
those nodes of q and d are dissimilar. In order to deal with such
nodes, we expand φ by mapping such such d[i] (q[j]) to all the nodes
in q (d).

q[1]

q[2]

q[3] q[4]

d[1]

 d[2]

d[4]

d[5]

d[3]

x[1]

x[2]

x[4]x[3]

d[6]

query reference 1 target

(a)

q[1]

q[2]

q[3]

q[4]

 d[2]

d[4]

d[5]

d[3]

y[1]

y[2]

y[3]

y[4] d[6]

query reference 2 target

d[1]

(b)

q[1]

q[2]

q[3]

q[4]

d[2]

d[4]

d[5]

d[3]

d[6]

d[1]

(c)

Fig. 2. Overview of the upper bound calculation method. Figures 2(a) and
2(b) show the alignments of q and d with references 1 and 2 respectively. In
Figures 2(a) and 2(b), solid lines represent the edges between the nodes of a
single network, and dashed lines represent the mappings of two nodes in two
different networks. Figure 2(c) shows the bipartite graph resulting from the
indirect alignments using two references. In Figure 2(c), all the lines, solid
and dashed, represent an element of the relation ψ. Solid lines originating
from d[6] show that these elements are added to ψ, since no information
about the node d[6] was gathered through references. All the edge weights
are omitted in all figures.

Figure 2 depicts this on an example that has two references. In this
case, we have two reference networks. Figures 2(a) and 2(b) show the
alignments of these references to both q and d. Figure 2(c) shows the
relation φ based on these two references. Notice that in Figure 2(c),
d[4] is mapped to two nodes from q, q[4] and q[2]. This is because
d[4] is indirectly mapped to q[4] and q[2] through reference 1 and
reference 2 respectively. Also, d[6] is mapped to all the nodes in q as
it is not aligned to any node in any of the references.
Phase II. In this phase we align q and d using the mapping φ obtained
in Phase I. Since φ is computed from many references jointly, it can
map some of the nodes in q to topologically distant nodes of d and
vice versa. We ignore the topologies of q and d at this phase. Instead,
we consider the mapping φ as a weighted bipartite graph. The nodes
of q and d are the nodes of this graph. The mappings in φ are the
edges. The similarity between the nodes that map are the weights of
the edges. We compute the upper bound UB(q, d) as the total weight
of the maximum weighted bipartite matching between q and d.

4 RESULTS AND DISCUSSION
This section evaluates the performance of RINQ experimentally.
Database. We used networks from the KEGG database (Ogata et al.,
1999) in our experiments. We downloaded all the gene regulatory
networks that have more than 15 genes (i.e., nodes). In total, there are
297 such networks as of September 2010. In this database, we had
21 different types of networks (such as MAPK signaling pathway)
from 46 different organisms. Further details about the size as well as
the distribution of the networks to different types and organisms are
in Appendix II (See Figures 8, 9 and Tables 3, 4).
Queries. We created three sets of query networks from this dataset
by performing random walks on the database networks. These sets
contain six, seven and eight node queries respectively. Each query set
consisted of 100 query networks. We then randomly split each query

5

set into two disjoint sets, each containing 50 networks. We used one
of these sets for training our index, and the other one for testing. All
the query networks can be downloaded from our server at http:
//bioinformatics.cise.ufl.edu/palRINQ.html.
Implementation Details. We implemented RINQ in C++. We
align two networks using our own implementation of the QNet
method (Dost et al., 2008). In order to calculate node similarity
scores, we use BLAST (Altschul et al., 1990). We use the minus
logarithm of the E-values as the node similarity scores. We carried
out experiments with both high and low indel penalties. For high and
low indel penalties, we used 1.5 and 0.5 times the largest possible
node similarity score respectively.
Methods Compared Against. We compared RINQ against two
of the existing filtering methods, SAGA (Tian et al., 2007) and
CTree (He and Singh, 2006). These methods did not have their source
codes publicly available. Thus, for experiments with SAGA, we used
the online SAGA server. The CTree method describes two variations
for filtering the internal nodes of the tree, namely maximum weighted
bipartite matching and neighbor biased matching. We implemented
and tested both of them. We report the results for CTree for only
the neighbor biased matching as it performs better than the other
alternative.
Evaluation Criteria. We measured the running time and accuracy
as the performance criteria. We measured the performance of our
method by changing the values of two variables. These variables are
the number of references and query selectivity. In our experiments,
the number of references varies from 4 to 100. Query selectivity
indicates the percentage of true results for each query. For instance,
4% selectivity means that 4% of the networks in the database
are similar to the query according to the given similarity cutoff.
We performed experiments with up to 10% selectivity. For each
parameter combination, we performed experiments using 50 testing
queries. We present the average of 50 queries for each experiment.
We used all three sets of queries in our tests. However, due to space
restrictions, we only include the tests for seven node queries here.
Our other experiments on the other query and reference sets yield
similar results.
Test Environment. We performed our tests on Linux servers
equipped with dual AMD Opteron dual core processors running
at 2.2 GHz, and 3 GB’s of main memory.

In Section 4.1 we evaluate the contribution of our reference
selection strategy to the performance of RINQ. In Section 4.2, we
discuss how our index structure performs for varying index and query
parameters. In Section 4.3, we compare the performance of RINQ to
SAGA and CTree. Finally, in Section 4.4 we present the statistical
and biological significance of our results.

4.1 Effects of reference selection strategy
Recall that we proposed to carefully select a reference set from the
candidate set we generated (Section 3.2.1). The first question we
need to answer is how each of these steps affect the performance
of reference based indexing. In order to do this, we compared our
method to two alternatives variants. The first one picks references
randomly from the database using random walk. The second one
chooses references randomly from the candidate reference set. We
conducted two sets of experiments using 4% and 8% query selectivity.
In each experiment, we varied the number of references from four to
100 and measured the average accuracy and the running time.

 420

 440

 460

 480

 500

 520

 540

 90 91 92 93 94 95 96 97 98 99

R
un

ni
ng

 ti
m

e[
m

in
ut

es
]

Accuracy (%)

Random references from dataset
Random references from candidate set

Intelligent Reference Selection

Fig. 3. Running time versus accuracy of our method for different reference
selection strategies. Experiments are repeated for different number of
references. Average query processing time is presented as running time.
Accuracy is calculated over all test queries. Lower running time and higher
accuracy indicates better performance. The running time of exhaustive search
is over two days (not shown in figure).

Figure 3 shows the results for three reference selection strategies.
We also measured the running time of exhaustively searching the
database without using our index. The running time of exhaustive
search was over two days. The experiments demonstrate that
reference based indexing is significantly faster than exhaustive search.
It improves the running time by a factor of five over exhaustive
search. Creating candidate references by following the three rules
(see Section 3.2.1) alone improves the running time by up to 5%.
Finally, carefully selecting references using Algorithm 1 results in up
to 10% additional improvement. In summary, the results suggest that
the reference selection strategy of RINQ indeed helps in improving
the performance of our method. It also demonstrates that RINQ
makes similarity searches in biological network databases practical.

4.2 Effects of index and query parameters
Earlier in Section 4, we pointed out that two parameters can affect
the performance of RINQ, namely the number of references and
query selectivity. In our next set of experiments, we evaluate the
effects of these parameters on the performance of RINQ. In order
to do this, we designed two sets of experiments. In our first set
of experiments, we fixed query selectivity to 4% and 8%, and
performed database queries with varying number of references for
each selectivity value. We carried out the same experiment with
RINQ using alignments with both high and low indel penalties. For
the second set of experiments, we fixed the number of references and
we changed the query selectivity from 3% to 10%. We present the
running time and accuracy with respect to varying parameters.

In addition to RINQ, we also report the running time of a
hypothetical method named Oracle. We assume that Oracle already
knows the networks in the result set for any query and aligns query
with only those networks. Thus, the running time of Oracle is a
lower bound to any database search method. The purpose we had for
including such a hypothetical method is to observe how much room
for improvement RINQ leaves in practice.
Effects of the number of references: Figure 4 shows the results for
varying number of references. The results suggest that RINQ achieves
up to 80% improvement in running time over exhaustive search.
With higher indel penalties, the importance of matching topologies
increase. Our experiments with RINQ show that as the alignment
favors topology, the accuracy of our method increases. This suggests

6

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 ti
m

e
[m

in
ut

es
]

Number of References

RINQ:H
RINQ:L
Oracle

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y
(%

)

Number of references

RINQ:H
RINQ:L

Fig. 4. Impact of the number of references. Top: The average running time
RINQ and Oracle. Bottom: The accuracy of RINQ. The query selectivity is
8%. The graphs includes two different tests with RINQ. RINQ:H refers to
RINQ experiments which use alignments with high indel penalties. RINQ:L
refers to experiments using alignments with low indel penalties. The running
time of exhaustive search is over two days (not shown in figure).

that the references can preserve the alternative topologies in the
database accurately. Another observation from this experiment is, as
the number of references increase, the running time of our method
increases slowly while its accuracy increases rapidly to almost 100%.
This is a desirable property as it suggests that RINQ needs to maintain
only a small number of references. Thus, it uses a small amount of
storage and performs a small number of query-reference network
alignments. From our results, we suggest using around 30 references
for our database.
Effects of query selectivity: Following from our previous
experiments, we fix the number of references to 32 and vary the query
selectivity. Figure 5 plots the results. As the selectivity increases, the
size of the result set, and thus the number of networks we need to
align with the query increases. As a result, the running time of RINQ
grows. We observe that running time of our method does not increase
linearly. This is expected as the size of the actual result set grows, it
gets harder to place database networks into the filter set. The small
gap between Oracle and RINQ indicates that our method is very
successful in filtering unpromising database networks. It also shows
that our method leaves little room for improvement particularly for
small selectivity values. For instance, when the selectivity is 3 %,
our method’s running time is almost that of the smallest number of
alignments needed for that selectivity.

For all the selectivity values, RINQ has very high accuracy. We
observe that as we increase the query selectivity, RINQ’s accuracy
increases as well. This is mainly because for small selectivity values,
even a few false dismissals can reduce the accuracy. The results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
un

ni
ng

 T
im

e[
m

in
ut

es
]

Query Selectivity(%)

RINQ
Oracle

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 3 4 5 6 7 8 9 10

A
cc

ur
ac

y(
%

)

Query Selectivity(%)

32 references

Fig. 5. Running time and accuracy of RINQ for different query selectivity
values. These results are calculated using 32 references.

demonstrate that our method reaches to very high accuracy values
quickly.

4.3 Comparison of RINQ with existing methods
An obvious question that needs to be answered is how well RINQ
performs as compared to existing state of the art methods. In order
to evaluate this, we compared RINQ with two existing methods,
namely SAGA (Tian et al., 2007) and CTree (He and Singh, 2006).
In order to have a fair comparison, similar to RINQ, we used SAGA
and CTree to create a candidate set of results. We used our QNet
implementation to find the actual results from the candidate set for
each method.

SAGA requires the user to provide the list of genes that can be
aligned with each gene in the query network. The user can also
specify the minimum percentage of query nodes that needs to be
aligned. We varied these two parameters to get the smallest candidate
set for SAGA for different accuracies. CTree uses a neighbor biased
matching algorithm to filter database networks. We varied the
constant that defines the amount of neighbor bias to get the best
running time of CTree for different accuracy values.

We ran RINQ, SAGA and CTree using the same query and
database networks. We queried each method with the same set of
query selectivity values. We recorded running time and accuracy of
each method. For all the three methods, the amount of time it takes
for filtering the database was much smaller than the post-processing
time, where we compare query network with the candidate networks.
In our experiments, RINQ requires only eight seconds for filtering
phase using 32 references, whereas, the other methods require from
a few seconds up to minutes. We ignore the amount of time the index
structure takes to filter database networks for this is a negligible
fraction (0.03 % to 0.1 %) of the time it takes to process the candidate

7

 100

 200

 300

 400

 500

 600

 700

 800

 65 70 75 80 85 90 95 100

R
un

ni
ng

 ti
m

e[
m

in
ut

es
]

Accuracy (%)

SAGA
CTree
RINQ

Fig. 6. Running time versus accuracy of SAGA, CTree and RINQ.
Experiments are repeated for same queries with different selectivities. Average
query processing time is presented as running time. Accuracy is calculated
over all test queries. Lower running time and higher accuracy indicates better
performance.

set. We report the average running time and accuracy values for
SAGA, CTree and RINQ over all queries.

Figure 6 plots our results. In our experiments RINQ performed
much better in terms of both accuracy and speed than both CTree
and SAGA. RINQ is up to 3 times faster than CTree for the same
accuracy values. We could not achieve comparable accuracy with
SAGA. We believe that this is probably because SAGA is well suited
for exact matches and its accuracy drops quickly as the difference
between the genes in the query and the database network grows.
In order to improve the accuracy of SAGA further, we grew the
set of genes that each gene can align (i.e., this corresponds to
reducing the similarity cutoff for gene pairs in the SAGA queries).
However, SAGA fails to return any results in that case. Given that
(1) its running time (when its accuracy is 75 %) is already much
larger than both RINQ and CTree (when their accuracies are 85 and
89 % respectively), and (2) its running time will only increase with
increased accuracy, we concluded that SAGA could not compete
with the two for high accuracy values. In conclusion, we observed
that RINQ is a significant improvement over existing methods.

4.4 Significance of results
In order to validate our method, we discuss the significance of our
results in this section. We first evaluate the statistical significance
of our results. We then discuss some of the biologically interesting
observations from the statistically significant results.

We start by discussing the statistical significance of our results. We
compute the statistical significance of each query as its p-value. We
do this as follows for a given query network and a similarity cutoff.
We first run RINQ to find the set of database networks that have an
alignment with score greater than the cutoff with the query. We then
compute the probability that a given random query network has at
least as many matching database networks in the same dataset with
alignment score at least the same similarity cutoff. We report this
probability as the p-value.

Table 2 presents the p-values and the result set sizes of the top
five queries when similarity cutoff is set to 90, 80 and 70 % of the
maximum possible similarity score. The maximum score is the score
that is achieved when the query network is aligned with itself. We
observe that for all the three similarity cutoff values the top queries
are statistically significant. This implies that the database contains
motifs that have at least as many genes as the query networks. The top
queries are a part of these motifs. The results are also encouraging

Table 2. The p-values and the result set sizes of top five queries when
similarity cutoff is set to 90, 80 and 70 % of the maximum similarity score
that can be achieved with an exact match. The values in the parantheses are
the result set size (i.e., the number of matches) reported by RINQ for that
specific query.

Similarity [%]
Rank 90 80 70

1 1.4E-6 (21) 1.0E-13 (34) <1E-15 (48)
2 5.7E-4 (17) 1.3E-7 (27) <1E-15 (44)
3 3.4E-2 (13) 5.4E-4 (21) 1.9E-7 (32)
4 3.4E-2 (13) 4.4E-2 (16) 3.0E-6 (30)
5 7.3E-2 (12) 4.4E-2 (16) 3.2E-4 (26)

as they demonstrate that RINQ is capable of finding such frequent
patterns quickly.

When the similarity cutoff decreases, the number of matching
database networks grow. This proves that motifs are not exact
duplicates of the same networks, but they are approximate alignments.
This is an important result as it shows the necessity of approximate
alignment algorithms. Decreasing p-values also indicate that our
results are more significant. This supports our results in Figure 5(b)
that for lower similarity cutoffs (i.e., higher query selectivity), RINQ
has higher accuracy. Higher accuracy and lower p-values indicate
that RINQ performs better with lower similarity cutoffs.

One can argue that the large number of matches found by RINQ
can be attributed to the fact that there are multiple pathways that
belong to the same pathway class from different organisms (See
Table 4 in Appendix II). Next we focused on the individual queries
that have the best p-value and explored the characteristics of the
matching database subnetworks as well as the biological significance
of these matches.

Figure 7 depicts two of our top queries. The query in Figure 7(a)
is a subnetwork of the ErbB signaling network of Rattus norvegicus.
This query is ranked as the first for 90 and 80 % similarity and
the second for the 70 % similarity. ErbB signaling network is
closely related to cancer (Hynes and Lane, 2005). Mutations and
dysregulations of ErbB network proteins are frequently observed
in cancer cells. ErbB signaling network consists of ErbB family
of receptor proteins and a number of intracellular signaling
pathways (Yarden and Sliwkowski, 2001). ErbB family of receptors
are cell membrane proteins. Extracellular growth factors bind to
these proteins. In response to this binding, ErbB proteins can trigger
many different cell signaling networks. One of the most important
intracellular targets of ErbB receptors is MAPK signaling network.
Our first query is a part of ErbB signaling pathway that is responsible
for triggering the MAPK signaling pathway.

RINQ successfully identifies the relationship between our query
and the similar patterns in the ErbB and MAPK signaling networks
of other organisms. When we query our database for 90% similarity,
RINQ successfully returns all the 21 true results, with only three
false positives. Among these 21 results, nine are from the ErbB
signaling network of various organism and the rest from the MAPK
signaling network. For queries with 80% and 70% similarity, RINQ
also identifies the database networks with 100% accuracy. For 80 %
similarity, RINQ finds matching patterns in the Insulin signaling
networks of nine organisms. Indeed, the insulin signaling network
contains the Ras-Raf-MEK-ERK-Elk1 pathway that is responsible
from growth and differentiation and the Ras-Raf-MEK-ERK-MNK
pathway that contributes to protein synthesis. As we reduce the
similarity to 70 %, RINQ returns additional alignments from the

8

Myc

MEK SosRasRaf

ElkERK

(a)

PLCy PKC SPK Ras

Raf−1ERK MEK

(b)
Fig. 7. Sample queries from our experiments. (a) A subnetwork of ErbB
signaling pathway of Rattus Norvegicus (rat). (b) A subnetwork of VEGF
signaling pathway of Mus Musculus (mouse)

chemokine signaling pathway. There are totally five organisms,
namely Mus musculus, Homo sapiens, Canis familiaris, Bos taurus
and Pan troglodytes, whose chemokine signaling pathways align with
this query. These are all phylogenetically close to the query organism.
Further exploration of these pathways show that they indeed contain
the Sos-Ras-Raf-MEK1-ERK1/2 pathway that regulates a set of
critical functions such as cytokine production, cellular growth
and differentiation, cell survival, apoptosis and migration. Some
organisms, such as Ornithorhynchus anatinus, Sus scrofa, Gallus
gallus and Xenopus laevis have one or more protein deletions in their
ErbB signaling networks. Among these the first two belong to the
same class as the query organism (i.e., mammalian) while the last
two belong to different classes. Nevertheless, RINQ successfully
identifies such networks and provides tight estimates for their actual
network similarity.

The query in Figure 7(b) is taken from the VEGF signaling
pathway. Although there are VEGF signaling networks of only 14
organisms in our database, this query returns totally 48 alignments
at 70 % similarity. These alignments are found in eight types of
networks of 14 different organisms. This demonstrates that the
VEGF signaling network interacts with many other networks. It
also suggests that this query is a part of an important motif as it
appears in numerous organisms. RINQ could identify this motif as
well among others.

5 CONCLUSION AND FUTURE WORK
In this paper, we considered similarity queries in biological network
databases. Since pairwise comparison of biological networks is a time
consuming operation, exhaustive database searches are impractical
for such databases. We introduced reference based indexing to speed
up such queries. We developed methods for calculating upper and
lower bounds to the alignment score quickly. Using these bounds, we
classified database networks as similar or not without aligning them
with the query network. We also developed an intelligent method
to choose references which maximizes the chance of references
to prune database networks. Our experiments showed that (1) our
method reduced the running time of a single query on a database of
around 300 networks from over two days to only eight hours; (2)
our method outperformed the state of the art method Closure Tree
and SAGA by a factor of three or more; (3) our method successfully
identified statistically and biologically significant relationships across
networks and organisms. To the best of our knowledge this is the
first attempt at developing reference based indexing of biological
networks. Therefore, application of this method to other types of
biological networks is an important future research direction for us.
This approach enables indexing large biological networks. Therefore,
we believe that it is an important step towards large scale analysis
of biological network databases and has great potential to assist
biological sciences which need such large scale comparison.

Acknowledgments. This work was supported partially by NSF under
grants CCF-0829867 and IIS-0845439.

REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool. Journal of Molecular Biology, 215(3), 403 – 410.
Ay, F. and Kahveci, T. (2010). SubMAP: Aligning Metabolic Pathways with

Subnetwork Mappings. In RECOMB, pages 15–30.
Ay, F., Kahveci, T., and de Crécy-Lagard, V. (2009). A fast and accurate algorithm for

comparative analysis of metabolic pathways. J. Bioinformatics and Computational
Biology, 7(3), 389–428.

Banks, E., Nabieva, E., Peterson, R., and Singh, M. (2008). Netgrep: fast network
schema searches in interactomes. Genome Biology, 9(9), R138.

Bruckner, S., Hüffner, F., Karp, R. M., Shamir, R., and Sharan, R. (2009). Torque:
topology-free querying of protein interaction networks. Nucleic Acids Research,
37(suppl 2), W106–W108.

Clemente, J. C., Satou, K., and Valiente, G. (2005). Reconstruction of phylogenetic
relationships from metabolic pathways based on the enzyme hierarchy and the gene
ontology. Genome Inform, 16(2), 45–55.

Clemente, J. C., Satou, K., and Valiente, G. (2006). Finding conserved and non-
conserved reactions using a metabolic pathway alignment algorithm. Genome
Inform, 17(2), 46–56.

Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., and Sharan, R. (2008). QNet: a
tool for querying protein interaction networks. J Comput Biol, 15(7), 913–925.

Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, G. D., and
Shasha, D. (2007). NetMatch: a Cytoscape plugin for searching biological networks.
Bioinformatics, 23(7), 910–912.

Francke, C., Siezen, R. J., and Teusink, B. (2005). Reconstructing the metabolic
network of a bacterium from its genome. Trends Microbiol, 13(11), 550–558.

Giot, L. and Bader et al, J. S. (2003). A protein interaction map of drosophila
melanogaster. Science, 302(5651), 1727–1736.

Giugno, R. and Shasha, D. (2002). GraphGrep: A fast and universal method for
querying graphs. In Proc. 16th Int Pattern Recognition Conf , volume 2, pages
112–115.

He, H. and Singh, A. K. (2006). Closure-Tree: An index structure for graph queries.
International Conference on Data Engineering, 0, 38.

Hynes, N. E. and Lane, H. A. (2005). Erbb receptors and cancer: the complexity of
targeted inhibitors. Nat Rev Cancer, 5(5), 341–354.

Kelley, B. P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B. R., and Ideker, T. (2004).
PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res,
32(Web Server issue), W83–W88.

Levine, M. and Davidson, E. H. (2005). Gene regulatory networks for development.
Proceedings of the National Academy of Sciences of the United States of America,
102(14), 4936–4942.

Liao, C., Lu, K., Baym, M., Singh, R., and Berger, B. (2009). IsoRankN: spectral
methods for global alignment of multiple protein networks. Bioinformatics, 25(12),
253–238.

Mongiovi, M., Natale, R. D., Giugno, R., Pulvirenti, A., Ferro, A., and Sharan,
R. (2010). SIGMA: a set-cover-based inexact graph matching algorithm. J.
Bioinformatics and Computational Biology, 8(2), 199–218.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999).
KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 27(1),
29–34.

Pinter, R. Y., Rokhlenko, O., Yeger-Lotem, E., and Ziv-Ukelson, M. (2005). Alignment
of metabolic pathways. Bioinformatics, 21(16), 3401–3408.

Shlomi, T., Segal, D., Ruppin, E., and Sharan, R. (2006). QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics, 7, 199.

Singh, R., Xu, J., and Berger, B. (2007). Pairwise Global Alignment of Protein
Interaction Networks by Matching Neighborhood Topology. In RECOMB, pages
16–31.

Sridhar, P., Kahveci, T., and Ranka, S. (2007). An iterative algorithm for metabolic
network-based drug target identification. Pacific Symposium on Biocomputing,
pages 88–99.

Tian, Y., McEachin, R. C., Santos, C., States, D. J., and Patel, J. M. (2007). SAGA: a
subgraph matching tool for biological graphs. Bioinformatics, 23(2), 232–239.

Yan, X., Yu, P. S., and Han, J. (2004). Graph indexing: a frequent structure-based
approach. In SIGMOD, pages 335–346, New York, NY, USA. ACM.

Yarden, Y. and Sliwkowski, M. X. (2001). Untangling the erbb signalling network. Nat
Rev Mol Cell Biol, 2(2), 127–137.

9

APPENDIX I. TIME COMPLEXITY OF THE
METHODS DEVELOPED IN THIS PAPER
In this section, we present the time complexity of the methods
we developed throughout this paper. We will assume that all the
necessary network alignments are precomputed and stored such that
we can retrieve them in linear time. For simplicity, we represent the
number of nodes networks q and d with |q| and |d| respectively.

Complexity of lower bound calculation
We calculate the complexity of lower bound calculation for each
phase separately. In Phase I, we go over all the nodes in q, to find the
composite relation δ. So, the time complexity of Phase I is O(|q|). In
Phase II, we traverse all nodes in q to complete the alignment. The
complexity of this phase is O(|q|). Finally, we calculate the scores
by adding all the individual scores accumulated by each node in q,
which is O(|q|). So, the overall time complexity of lower bound
calculation is O(|q|).

Complexity of approximate upper bound
Complexity of upper bound computation can be calculated in two
phases. In the first phase, the algorithm finds the indirect mappings
through each of the k references. The complexity of this phase is
O(k|q|). In the second phase, we perform MWBM between the
nodes of q and d. Using Hungarian algorithm, we can execute
this matching in O(|d|2|q|) time. In total, the time complexity of
calculating UB(q, d) is O(k|q|+ |d|2|q|).

Complexity of candidate reference creation
To create the candidate reference set, we iterate the following two
steps:

Step I. Create a seed using random walk

Step II. Align current seed with the rest of the candidate
reference networks

We analyze each of the two steps next.

Step I. We perform random walk simply by listing our
possible choices of nodes and then choosing a new
node randomly from this list. We choose T nodes in
order to create our seed. Updating the set of possible
choices after each node selection takes O(|d|) time.
Thus, the total time to generate a seed with T nodes
is O(T |d|).

Step II. After creating a seed, we align this seed with all the
existing m candidate references in C. Recall that
the number of nodes in each network in C is T . In
other words, the number of nodes in the seed and the
candidate networks are the same. This property of the
two networks enable us to align them optimally using
dynamic programming in a single iteration. Thus,
the complexity of a single seed to candidate reference
alignment isO(22TT). There are at mostm networks
in C. Hence, m alignments take O(m22TT).

From the complexities derived above, we conclude that a single
iteration takes O(m22TT + T |d|) time. We repeat this until the
iterations fail a predefined number of times consecutively. Let’s
denote this number with f . In the worst case, we have to try f − 1
times to create the next reference. To create m reference networks,
we need to try 1 + (m − 2)(f − 1) + f times, which is O(mf).
So, the overall complexity of candidate reference creation can be
expressed as O(mf(m22TT +T |d|)). In our experiments, we were
able to create C in approximately 10 minutes, where m = 100,
f = 100, and T = 7.

Complexity of reference selection
We consider the complexity of Algorithm 1 in two separate parts.

Part I. (PREPROCESSING) First, we align all (q, d), (q, c)
and (c, d) pairs. Let t denote the number of
training queries. The complexity of the alignment
method we use defines the time complexity of these
tn + tm + mn alignments. We are using QNet
algorithm to align networks. so, the complexity
of the preprocessing phase is O(tn(2|q||d||d|)ρ1 +
tm(2|q||c||c|)ρ2 + mn(2|c||d||d|)ρ3) where ρi is
the number of iterations per alignment. Number of
iterations depends on the number of nodes in the
smaller network and the predefined confidence value
for the result.

Part II. (POSTPROCESSING) Once we compute all the
pairwise alignments described above, we are ready to
select references. Our algorithm iterates until it finds
the reference set with largest accuracy value. During
these iterations, first we calculate the accuracy of the
index for using each R − {ri} as the reference set.
To do this, we compute the upper bound for each
(q, d) pair. In total, there are tnk such upper bound
calculations, resulting inO(tnk(k|q|+|d|2|q|)) time.
We also compute the accuracy using each R ∪ {ci}.
This step takes O(tmk(k|q|+ |d|2|q|)) time. In the
worst scenario, this iteration repeats until all the
networks in C are used. So, the overall complexity
of the postprocessing is O(((tnk(k|q|+ |d|2|q|)) +
(tmk(k|q|+ |d|2|q|))) ∗m).

In our experiments, we used QNet algorithm with 99% confidence
to align two biological networks. Using this alignment method,
we aligned 50 training queries, 100 candidate references and 297
database networks with each other. These alignments took around
25 days for seven node query and reference networks on a single
cpu. However, the iterations of the algorithm completed within a few
hours after completing the alignments.

APPENDIX II. DETAILS OF THE SAMPLE DATASET
We downloaded our sample database from KEGG (Ogata et al.,
1999). We downloaded all the gene regulatory networks that are
larger than 15 nodes. In total, our database consists of 297 gene
regulatory networks. In this database, we had 21 different type of
networks from 46 different organisms. Table 3 shows the different
organisms and the number of networks which belong to that organism.

10

Homo sapiens, Mus musculus and Rattus norvegicus have the largest
number of networks among all the organisms in our database.

Table 4 displays the different types of networks in our database.
The most frequent pathway is the Phosphatidylinositol signaling
system which appears in 45 different organisms. Note that the same
network of different organisms can differ in terms of the genes as
well as the interactions that govern them.

Figure 8 presents the distribution of the number of genes and the
number of interactions of each network in our database. Half of the
networks in our database has 30 or more genes. Also, half of the
networks in our database has more than 40 interactions. About 6 %
of these have more than 100 nodes and interactions.

Figure 9 plots the density of the networks in the database in terms
of the number of interactions as compared to the number of genes.
The number of interactions are usually slightly more than the number
of genes, indicating that the networks are often sparse.

Table 4. The distribution of the networks in our database to different classes
of networks. Each network class corresponds to a different biological function.
There are totally 21 classes of networks in our database. The networks are
listed in alphabetical order.

Network name Num of networks

Adipocytokine signaling pathway 16
B cell receptor signaling pathway 9
Calcium signaling pathway 11
Chemokine signaling pathway 11
ErbB signaling pathway 18
Fc epsilon RI signaling pathway 10
Fc gamma R-mediated phagocytosis 9
GnRH signaling pathway 3
Insulin signaling pathway 14
Jak-STAT signaling pathway 15
MAPK signaling pathway 18
MAPK signaling pathway - yeast 1
mTOR signaling pathway 10
NOD-like receptor signaling pathway 12
Phosphatidylinositol signaling system 45
PPAR signaling pathway 16
RIG-I-like receptor signaling pathway 5
T cell receptor signaling pathway 10
Toll-like receptor signaling pathway 14
VEGF signaling pathway 14
Wnt signaling pathway 36

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

S
iz

e

Database networks

Number of interactions
Number of genes

Fig. 8. The distributions number of genes and the number of interactions for
each network in our database. The graphs does not show a relation between
the number of genes and number of interactions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
in

te
ra

c
ti
o
n
s

Number of genes

Fig. 9. The number of genes and number of interactions for each network in
our database.

11

Table 3. The distribution of the networks in our database to different organisms. There are totally 46 organisms in our database. The organisms are listed in
alphabetical order.

Organism Num of Organism Num of
networks networks

Aedes aegypti (yellow fever mosquito) 2 Drosophila simulans 1
Anopheles gambiae (mosquito) 2 Drosophila yakuba 2
Apis mellifera (honey bee) 2 Equus caballus (horse) 19
Acyrthosiphon pisum (pea aphid) 2 Gallus gallus (chicken) 13
Arabidopsis thaliana (thale cress) 1 Hydra magnipapillata 2
Branchiostoma floridae (Florida lancelet) 1 Homo sapiens (human) 20
Brucella melitensis bv. 1 16M 4 Monosiga brevicollis 1
Bos taurus (cow) 19 Macaca mulatta (rhesus monkey) 17
Caenorhabditis briggsae 2 Monodelphis domestica (opossum) 17
Caenorhabditis elegans (nematode) 3 Mus musculus (mouse) 20
Canis familiaris (dog) 18 Nematostella vectensis (sea anemone) 2
Ciona intestinalis (sea squirt) 2 Nasonia vitripennis (jewel wasp) 2
Culex quinquefasciatus (southern house mosquito) 2 Ornithorhynchus anatinus (platypus) 13
Drosophila ananassae 2 Pan troglodytes (chimpanzee) 16
Dictyostelium discoideum (cellular slime mold) 1 Rattus norvegicus (rat) 20
Drosophila erecta 2 Saccharomyces cerevisiae (budding yeast) 1
Drosophila grimshawi 2 Strongylocentrotus purpuratus (purple sea urchin) 2
Drosophila melanogaster (fruit fly) 3 Sus scrofa (pig) 8
Drosophila mojavensis 2 Trichoplax adhaerens 1
Drosophila persimilis 2 Tribolium castaneum (red flour beetle) 2
Drosophila pseudoobscura pseudoobscura 2 Taeniopygia guttata (zebra finch) 13
Danio rerio (zebrafish) 13 Xenopus laevis (African clawed frog) 8
Drosophila sechellia 2 Xenopus tropicalis (western clawed frog) 6

12

