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ABSTRACT
Motivation: We consider the problem of finding similari-
ties in protein structure databases. Current techniques se-
quentially compare the given query protein to all of the pro-
teins in the database to find similarities. Therefore, the cost
of similarity queries increases linearly as the volume of the
protein databases increase. As the sizes of experimentally
determined and theoretically estimated protein structure
databases grow, there is a need for scalable searching
techniques.
Results: Our techniques extract feature vectors on triplets
of SSEs (Secondary Structure Elements). Later, these
feature vectors are indexed using a multidimensional index
structure. For a given query protein, this index structure is
used to quickly prune away unpromising proteins in the
database. The remaining proteins are then aligned using
a popular alignment tool such as VAST. We also develop
a novel statistical model to estimate the goodness of a
match using the SSEs. Experimental results show that
our techniques improve the pruning time of VAST 3 to 3.5
times while maintaining similar sensitivity.
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INTRODUCTION
The key problem in structural alignment of proteins is
to find the optimal correspondence between the atoms
in two molecular structures. It is not known which
atoms of one structure correspond to the other. This
makes an exhaustive search intractable and heuristics are
frequently employed. The Root Mean Square Distance
(RMSD) between the aligned atoms of two aligned
structures is typically taken as a measure of the quality
of the alignment. Given a correspondence, the problem
of optimally aligning two structures through rotation and
translation so that the RMSD is minimized can be solved
efficiently in time linear in the number of atoms (Arun et
al., 1987).

There are three classes of algorithms for structural
alignment of proteins (Eidhammer et al., 2001). The
first class performs structural alignment directly at the
level of ��� atoms (Gerstein et al., 1996; Holm et al.,
1993; Shindyalov et al., 1998; Taylor et al., 1989; Taylor

, 1999). The second class of algorithms first uses the
SSEs (Secondary Structure Elements) to carry out an
approximate alignment and then uses the ��� atoms. The
final class of algorithms uses geometric hashing (Wolfson
et al., 1997; Holm et al., 1995; Nussinov et al., 1991).

Hierarchical algorithms are based on rapidly identifying
correspondences between small similar SSE fragments
of two proteins. The similarity of two fragments is
defined using length and angle constraints. Fragment
pairs that align well form the seed for extensive atom-
level alignments. A significant speedup can be obtained
since the number of SSEs is small and the 3-D structure
within an SSE is constrained by hydrogen bonding.
This is followed by a more detailed alignment of the
atoms themselves. We discuss the VAST algorithm below.
Other algorithms carrying out hierarchical alignment
are (Alexandrov et al., 1996; Koch et al., 1996; Mizguchi
et al., 1995; Rufino et al., 1994; Singh et al., 1997).

The VAST algorithm (Madej et al., 1995) carries out
a hierarchical alignment beginning with SSEs. It begins
with a bipartite graph: vertices on one side consist of pairs
of SSEs from query protein and vertices on the other side
consist of pairs of SSEs from target protein. An edge
is inserted between two pairs of SSEs if they can be
aligned well. A maximal clique is found in this bipartite
graph; this defines the initial SSE alignment. This initial
alignment is extended to ��� atoms by Gibbs sampling. A
nice feature of the VAST program is its ability to report on
the unexpectedness of the match through a p-value. This
is computed by considering the size of the match, the size
of the proteins, and the quality of the alignment.

In this paper, we consider the problem of finding
similarities in protein structure datasets. Our techniques
can be used to prune uninteresting proteins for a given
query (or a set of queries) quickly. We propose to extract
feature vectors corresponding to triplets of SSEs. Later,
an R*-tree (Beckmann et al., 1990) is built on this feature
space using Minimum Bounding Rectangles (MBRs). Our
technique, called PSI (Protein Structure Index), finds high
quality seeds by aligning the SSEs that are similar to a
given query protein. The proteins that do not have high
quality seeds are pruned without further consideration. We
also develop a novel statistical model to compute the p-
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value of a seed. This value defines the goodness of this
seed.

INDEXING PROTEIN STRUCTURES
Current techniques sequentially compare the given query
protein to all of the proteins in the database to find
similarities. Therefore, the cost of similarity queries
increases linearly as the volume of the protein databases
increase. We propose to reduce the protein structure search
cost by pruning the database proteins that are not similar
to a given query protein efficiently. We achieve this by
building an index structure on the SSEs of the database
proteins.

In order to construct the index structure, we approximate
each SSE using a line segment in 3-D. For each SSE,
we construct a set of SSE triplets by considering the
SSEs in the local neighborhood around that SSE. For each
triplet, we store information about pairwise distances and
pairwise angles for all pairs of SSEs in that triplet. The
pairwise distance information is a range of values obtained
by considering a set of points around the center of the line
segment approximation of each SSE. This range is defined
by using the minimum and maximum of these distances
between the set of points chosen from the two SSEs under
consideration. The pairwise angle information is a single
value that measures the angle between the line segment
approximations of the two SSEs. Thus, we have a set of
three range values and three angle values for each SSE
triplet as the feature vector. This feature vector is an extent
in six-dimensional space. These feature vectors are then
indexed using an R*-tree (Beckmann et al., 1990).

SEARCH TECHNIQUE
For a given query protein, our search technique (Camoglu
et al., 2003) runs in two phases:
� Phase 1: A set of feature vectors is obtained from the

query protein, and the R*-tree is searched using an
appropriate range with each of these vectors. Using
the results of these range searches, a candidate set
of database proteins is determined at the end of this
phase.

� Phase 2: A pairwise structure alignment program, such
as VAST, is then run on the candidate proteins to find
the actual ��� alignments.

We elaborate on the first phase.
The range queries on the R*-tree find similar pairs

of SSE triplets. Each such pair defines a mapping of
three neighboring SSEs from the query protein to three
neighboring SSEs in a database protein. A score is
assigned to each mapping of SSEs of a triplet pair based
on the inverse of the RMSD between the midpoints of the
corresponding SSEs.

Once the alignments of triples of SSEs are determined,
alignments of larger number of SSEs can be found
by merging these results. We capture the correlation
between mappings of triplet pairs by building a Triplet
Pair Graph (TPG). The vertices of TPG correspond to
aligned triplet pairs. The weight of a vertex is defined
as the score of the alignment of its corresponding triplet
pair. An edge is placed between two vertices if they
share two SSE mappings. Each connected component
in this graph represents a mapping between the SSEs
in the triplets of this connected component. We run
a Depth First Search (DFS) algorithm on the TPG to
find the Largest Weight Connected Component (LWCC).
The largest weight connected component of the TPG
corresponds to the most similar subset of SSEs of database
proteins and the query SSEs. We find an alignment of the
SSEs by inspecting the subset. We start by constructing a
bipartite graph on the LWCC. Unlike TPG, the bipartite
graph consists of two disjoint vertex sets. The vertices
in the first set correspond to the database protein’s SSEs
in the LWCC. The vertices in the second set correspond
to the query protein’s SSEs in the LWCC. The weight
of an edge show how good the alignment is between the
corresponding pair of vertices, and it is computed as the
sum of the scores of the triplet pairs that maps these
SSEs. We run a largest weight bipartite graph matching
algorithm to find a mapping of the vertices in the two sets
that maximizes the sum of edge weights. The resulting
mapping defines a seed for each database protein.

Each seed represents an alignment of the query protein
to a database protein in the feature space. Next, we use
a novel statistical model and calculate the p-value of a
seed. The p-value of a seed corresponds to the probability
of having a seed at least as good as the given one in a
randomly distributed space. Small p-values correspond to
unexpected matches. We rank all the matches in the order
of increasing p-values.

EXPERIMENTAL RESULTS
In order to evaluate the quality of our technique, we
constructed a dataset 	�
��� of single domain chains
according to SCOP and VAST. From this dataset, we
extracted 10 chains for those superfamilies that had at least
10 representatives. Call the resulting dataset 	�
� . The
dataset of query proteins, 	�� , was obtained by choosing
a protein structure at random from each superfamily in
	�� . Dataset 	�
��� consisted of 12,138 structures, dataset
	 
� consisted of ������������������� � structures, and dataset
	�� consisted of 180 structures.

Our first experiment set inspects the quality of the seeds
found using the feature vectors. We classify the query
protein (in 	�� ) into one of the superfamilies using the !
best results in feature space as follows. The logarithms of
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Fig. 1. Run time comparisons of VAST prune technique and PSI for various
SCOP classes. Target set is the "$#�%'& dataset.

the p-values of the seeds of the results in each superfamily
are accumulated. The query protein is classified as the
superfamily that has the largest magnitude of this sum.
In our experiments, more than 86 ( of the proteins are
classified correctly using the first two nearest neighbors
(NN). The quality increases to 88 ( for 3-NN, but the
percentage drops for larger number of results. Even for 20-
NN, more than 76 ( of the proteins are classified correctly.

We also tested our scheme to see how it performs as
a pruning technique for an existing alignment tool such
as VAST. For each protein in )�* , we first ran VAST on
),+- , and computed how many proteins are returned in the
answer set. We also ran PSI for the same protein on ) +.-
to obtain a candidate set. Later, we ran VAST on this set.
We compared these two results to check whether PSI has
pruned proteins that VAST considers relevant. According
to our results, running VAST on the pruned dataset does
not change the result set size significantly as opposed to
running it on the whole dataset, and PSI has a recall of
98.2 ( .

We also compared the runtime performance of PSI with
VAST’s pruning step. VAST first finds seeds using SSEs
of the query and protein. Then it computes p-values cor-
responding to these seeds. Finally the promising proteins
(based on p-values) are considered for the expensive /10
alignment step. Since PSI aims to optimize the initial prun-
ing, we considered the runtime of only the first two steps
of VAST. For all proteins in ),* , we ran PSI and VAST
on ),+2�3 . Figure 1 shows a class-wise summary of the
timing results. For all classes, PSI is significantly faster
than VAST. The speedup is the highest for 4 / 5 proteins.
The 4 / 5 proteins have more neighbors on the average. Be-
cause of that, VAST needs to inspect more seeds in these
cases. However, PSI only considers the parts of proteins
that are candidates for a similarity, and finds the seeds in
linear time w.r.t. the number of SSEs in the proteins. More

results can be found in (Camoglu et al., 2003).
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