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Abstract.
We provide new results exhibiting relationships between asymptotic length
bounds, fractal dimension and generator structure, for various natural classes
of unifarmly generated piecewise linear eurve families.

Introduction.
(3iven a uniform sequence of curves in ®° with an increasing number of
pilecewise linear segments, can one find a LiEhL asymptotic bound for the
length of a eurve in the sequence in terms of the number of curve segments?
If 20, does this bound have any relationship to the curve's fractal dimension?

The first. of these questions arose in the early twentieth century when a
man named Hichardson was trying to measure the coastline of Great Britain.
He ahserved that the smaller the scale he used. the ](J]‘.IE:.'T the coastline
became. So if one used a sufficiently small scale, then the length of the
eoastline wonld appear ta be infinite. More recently, Mandelbrot wrote about
the similarity apparent in any coastline. He observed that no matter how
small the scale, the coastline appeared to have the same shape. Mandelbrot
later defined such curves by the name fractals, since each has a fractional
value corresponding to its dimension.

We deal primarily with expressing the length of piecewise linear curves
and curve families in terms of the number of segments in the corve and
relating this length bound to the fractal dimension of the curve or curve
family. We will concern ourselves with specific types of curves anly: uniformly
generated, similarly generated, spiraling angle bounded, self-similar and self-
avaiding curves, all of which are defined formally and analyzed.

Uniform sequences of curves are specifiable through a “generator® which
is just a way of representing the growth of a curve family from one stage to
the next. Not only are we trying to find an expression for the length of a
curve family in terms of its fractal dimension, we are also trying to find a
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relationship between the length, fractal dimension, and the generator of a
curve family.

Another motivation for this project is to find a relation between subdivi-
sion schemes and fractals. Subdivision schemes are corner cotting schemes
that are nsed widely for approximating or interpolating a given curve starting
from a finite number of points that is usually called a set of contral points,
or a contral polygon. Subdivision schemes construet a sequence of point
sequences (which, if linearly connected form a sequence of piecewise linear
curvm:l, with Increasing number of proints, The new points in the SO LTI O
are constructed from the old points using a fixed generator (or “mask®).
Several basic questions concerning the convergence of the sequence of paint
sequences generated by a subdivision scheme remain open. In particular, it
is not known for what kind of masks and control polygons, the correspond-
ing sequence of point sequences converges to a continuous curve. It is also
not known for what kind of masks and control polygons, the corresponding
sequence of piecewise linear curves converges to a continuously differentiable
CUTYe,

Instead of concerning ourselves with the convergence of a subdivision
scheme, the properties of divergent subdivision schemes captured our at-
tention. For example, when will a subdivision scheme diverge to a fractal?
Looking at when our generators/masks diverge could lead to learning more
about when a subdivision scheme diverges. Another key to the “extent of
discontinuity” of a sequence of point sequences generated by a subdivision
scheme may lie in the fractal dimension of the corresponding sequence of
piecewise linear curves. Looking empirically at how fractal dimension of this
sequence varies from mask to mask may provide some clues to answering
these questions.

Organization. In the first of the following sections we provide some prelimi-
nary definitions and background on curve sequences and fractals. The second
section is devoted to new results exhibiting relationships between asymp-
totic length bounds, dimension and generators for various classes of curve
families which we define. A Java applet that draws a fractal of the user’s
choice in one of the above classes is available at hitp:/ fwww hws.eda) ro-
bitail {Fractal.html. The last section pravides numerous open questions and
conjectures.

Preliminaries.



First we need to define the fractal, or Hausdorff dimension of a curve or enrve
famnily.
Definition 1.
Consider the metric space (R™, d) where m is a pasitive integer and d denates
the Euclidean metric. Let A © ®™ which is bounded. Then define the
diam|A] to be
diamn{A) = sup{d(z.y) : z,y € A}.

Let 0 < ¢ < oo and 0 < p < no. Let A denate the set of sequences of subsets

=
{4; C A}, such that A4 = |J A;. Then we define

i=1

MiA pe] = iTLf{ZI:d'iam{ﬂ,]:I” c{ A} = e fori=1,2.3,..}.

Lt
MA, p)=sup{M[A, p.e] - e =D}

Then far each p € [0, 50] we have M(A, p) € [0, 52]. Then the Housdorff
dimension, 5, is the unique real number such that

A -
M""“”_{n, ifp >4

[Barnsley, p.201].

Although the Hausdorlf dimension is the most useful definition of fractal
dimension, it is not usually very easily calenlated. 5o in many cases, the
sireilarily dimension is used to estimate the Hausdorff dimension of a curve.
In order to define similarity dimension, an tleraled funclion system [IFS)
must first be defined.  For most of the curve families we are concerning
ourselves with, the growth of the curve family from one generation to the
next can be defined in terms of functions which use previons segments and
ratios to generate the next curve. An IFS is such a set of functions.

Definition 2.

(Given a metric space 5, an ilerated function syslem corresponding to a ratio
list {r1,r2,....¢a) is a list (fi, fo. ..., fo) where [i : § — § is a similarity
(i.e. a reflection, a rotation, a dilation or a combination of the three) with
ratio r; [Edgar, p.105].

One example is
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= /N N/
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Let’s eall the curve on the left, . Here the ratio list is
(1/2.1,2.1/2,1/2,1/2) and the funthun list wauld be samething like this:

s

e fi = dilate({") starting from the starting endpaint of O
e fi = dilate({) and reflect{{') starting at end of carve f),

e [y =dilate({(”], reflect{"), and rotate{(, 60" starting at end aof curve

I,
o [1 = dilate({") starting at end of curve fa,

o and f; = dilate{"), and rotate{”, =607 starting at the end of carve f,.

Definition 3.

(Given a curve family ) with an iterated function system realizing a ratio
list [ry, 7y ..., rg ), the similarily dimension of the curve family is the value
8o which satisfies the equation

I =7 g™ P, 0,

Whether caleulated by using the Hausdorfl or similarity dimension, the fraec-
tal dimension of a curve is a way to measure how much volume or area the
curve takes up in R

Definition 4.
A curve family ) i said to be self-similar if every carve (7, is obtained
from (; by applying the same |F3 to each segment of ;.

Theorem 5. (known)



Let € be a self-similar piecewise linear curve family which is converging to
the fractal ' as ¢ tends to oo, Then

IE.::-:H.:*_'_‘-

where 8 is the Hausdorff dimension of € and s is the similarity dimension
of C.
Examples.

The koch Curve:

— = 7] 7]
0 =1
! {
! /3 /3
The W)* Generator:
!
/3
—_— { I
i f J.::
O = | Do
! !
! /s /

Length, Dimension and Generators.

BHefore we go on, a few assumptions must be made. The first is that the
distance between the two cndptﬂ of a carve ' 15 assumed to be one, unless
otherwise stated. Also, we use e, to denote a curve in a curve famﬂg,r %
containing n segments. [t is not necessary that eq € O3 V0 € 2.

Definition 6.
A curve family, (7, is said to be uniformly generated if there is some uniform
way in which the curve famﬂ].r gErows and changtu. In other words, there are

e |



some rules, however vague, gaverning the growth for the curve family from
one generation to the next.

Proposition 7.

Let € be a uniformly generated piecewise linear curve family, converging
to the fractal ¢ as : tends to oo and let ex be the curve in ) that has n
segments. Then

|ea] < Qa1
where 8- 18 the Hausdorff dimension of (.

Prool. By definition of the Hausdorfl dimension of (7, it follows that & is

ﬂ Y . ' . -
the maximum real value for which pg =des litri, e 2o lealt 4+ |}|‘§'-' is finite,
1
1]
In order to maximize [ea| = T |ea(f, 2 4 1)[. assume that for any 1 <27 < n
E

kg

cali t 4 1| = |eq(f. 7 4 1)|. Therefore, |e,| = T [e. (i1 4 1)) = n{pg fn)li%e
E

In ather words, |o,| < O(n! ]'r"i'::l sinee pp can be treated as a constant. &

Definition &

A curve family O is said to be similarly generaled if for the ratio list
(1,79, ... re) of the corresponding iterated function system, there exists an
¢ and j such that r; # ;.

Explanation.

For a piecewise linear curve O, each segment j in the curve will be assigned
a corresponding angle measure, ¢ For the first segment, ¢, is just the angle
measured from the horizontal to that segment. For any other segment j. &;
can be found by using ¢;_; and the angle between segment j <1 and j, call it
#. Ta find #, at the endpoint shared by segments j — 1 and j extend segment
7 =1 out. Then treating this extension as the horizontal, # is equal to the
aTLEl-:.' measured from that extension to segment . S0 B = g1+ f.



Definition 9
The generator for a curve family ) is the pattern by which one sesment in

the curve of ) at stage j generates new segments for the stage 7 4 1. For
mast similarly generated curve families, the generator will be an alternative

representation of a curve [a:mih.r'a IFS.

Definition 10
(Given the generator (¢ made up of n segments. Let w = 11:{:113_1 {{#;]}. Then
Lika

the growth factor, 3o of the curve ' can be expressed as

Ao = ged {5 —w : 1 < jand |&;] # w).

Definition 11
An efficient way to represent generators is to use matrices. The growth of

a similarly generated curve family ) from stage j to 741 can be represented



by twa generator matrices which will be called segment and length generators.
To ereate either matrix, the rows and columns must be identified by angles.
The maost useful angles will be those corresponding to w and multiples of F=.
The rows and columns should be identified such that /.., = £ ume, ¥i. The

segrnent generator matrix is the matrix A in the following equation
B = As;

where Hig1 and &; are column matrices representing the number of segments
in stages j 4 1 and j. respectively. The length generator matrix is the matrix
H in the rn|lt1“'iTLE aquation

Ly = B

where ;1 and !; are the column matrices representing the number of sep-
ments in the stages § 4+ 1 and j, respectively. It is assumes that the angles
identified with the rows of a colomn matrix are in the same order as the
angles identified with the rows of A or H.

Example. Suppaose we have the following generator:

.'ﬂl.ﬂE]tH:
0
S A
0+ B 0- B.
0 =] —l
b 0 i
Length:
)
/3
I ) |
/ /
a = | —
! I,f;, Ifq



Lt '—'Il-'mu:-I = Leslumn, = ||]c'| . gl‘l}":} = '—'Im!umnz = |gnu| and i'l""_'ru.'-! =
Lostumne = |1830°]. If we assume all segments in any stage ¢ are of equal
length, then we can say that

3 L0
A=]12 3 1
1] 3
and
1/3 /4 0
B=|1/4 1/3 1/4
D14 1/3
Even though a segment with ¢ = [180°| also produces a segment with ¢ =

2707|, this growth can only be represented if we increase the size of our
5 )
generalor matrices.

Definition 12
A curve family ) is said to be equi-similarly generaled if for the ratio list

(r1.72.....7) of the corresponding iterated function system, for any 1 <
1 e =r; ln ather words, all segments in a given stage have the same

length.

Definition 13
i ) N . - .
(3iven any piecewise linear curve ' made up of n sesments, ' is said to be

spiraling angle bounded by o if

ac = max {|¢;|}.

Definition 14

The curve family ;. which is converging to the fractal 7 as i tends to 2o,
is spiraling angle bounded if for any two curves ey and e, where m and n
are sufficiently large and m < n, a. = a._ . ie e, and ¢, have the same
spiraling angle bound. Furthermaore, it can be said that the spiraling angle
hound, e, 18 a0 = e, = e .

Propaosition 15.

(3iven a piecewise linear curve O with a spiraling angle bound ap < W*, the
length of ' can be expressed as

O] = kd



where k 12 some constant and d is the distance between the endpoints of .

Prool. Assume that ' has n segments. The length, 4, can be broken
up into n segments denoted by d ;. where 1 < ¢ < n and d;;;, is the
horizantal distance between the two endpoints of segment 2. Then for cach
diiprs |[Cle a4 1)) = :—*— Altogether,

1,140
O

|

08 O

1

COR O

d.

=1
Zdli.{l'l =

=l

IC'] =

Sinee ap < WP, —L— is some constant, k. Therefore || = kd. &

T oo ergs
Remark. Since || < kd where k is some constant, the curve (' is said
ta be k-rectifiable . However even if a uniformly generated sequence aof k-
rectifiable curves converges to a continuous curve O, the length of ' may
naot be equal to the limit of the lengths of the sequence.

Propaosition 16,
(3iven a piecewise linear curve O with a spiraling angle bound & = 90°, the

length af ' can be expressed as
'] = Oflog n),

where n i3 the number of segments in O

Proof. Consider the following generator:

= ¢"+ 'EII: q}_ EII:
0 =] b+ lIII—"'.-F'EI
) b ¢

Since agp = 9" and 7o = 90", growth only takes place on segments which
have angle measure 0°. So the segments with an angle measure |90°] do not

change from one stage to the next stage. This generator can be represented

in matrix form as:
#.'r.,] B 3 ﬂ] #ﬁ}- 1]
#v:] 12 0] L#via

Ly



where #h; and #v; are, respectively, the number of new horizontal and
vertical sesments at stage 7% and

|ﬁ}-|] _ [ll.lrii- ] ] [Hr., i
vy U W 3 T
where |[h;| and |v;| represent the lengths of new horizontal and vertical sep-
ments, respectively, in stage ;5. By combining the first matrix equation
with the fact that for every 3 new horizontal segments in stage j = 1 there

are 2 unchanging vertical segments, 1t 15 easy to see that the total number of

segrments al stage 7 is

.2 17
n = 3(#hi1) + 2(#hi) + S(#Aj2) = (#hjoa).
Since #.Illj: 1= Zi#n':;; q and #hy = 1,

7= l_T’[:i-" 3 = 17(33).

Then we can express j as §j = 34 log, n—log, 17. To find ||, we can say that
| = vertical length of C 4 horizontal lenglth of . Since growth only oceurs
on horizontal segments, the horizontal length of the curve at any stage is d.
Also, since any new vertical growth is %d’, the vertical length is %;d’ Thus

o ¥
|| = T_{'jd+ d = _:1'{3+ log, i = log, 17)d 4 d.

Therefare

| < Oflog n).

&

Remark. From Proposition 7, | < Ofn! 11"5"}- Sinee logn = nldls.l;‘Ln’ and
1ilinnf!": Iﬂfa]f""ﬁi = (1, the Hausdorfl dimension of such a caorve would be &0 = 1.
Therefare, such a curve ' with a spiraling angle bound, ap = W® would be

a non-rectifiable curve with fractal dimension 1.

Proposition 17,
(Given the generator in the following fgure:

11



= ¢"+.E'|: q}_ EII:
1] =l b—s |

0 i &

Let A be the segment generator matrix for a equi-similar and spiraling angle
bounded curve family ©; which is converging to the fractal " as ¢ tends to
oo, Assume that the segment generator has a growth factor of 3. = 90" and
that the spiraling angle bound, ¢, is a multiple of 90°. Then any entry A,
where 7 is the row number and j is the column number can be expressed as

if 8 =48
if 8 =8y and 8; = #;
if #; =48, £ 907 and #;, # g

otherwise,

Ay =

e R RS R

where #; and #; are the angle measures corresponding to row @ and column
1. respectively, and &, = 0°.

Prool. Consider the growth of a segment with an angle measure of ¢ where
d] = ac.
Case 1: @ # aq.

Since ¢ # oo this segment will generate 3 segments of angle measure #,

| segment of angle measure ¢ — 907 and | segment of angle measure ¢ 4 W)*.
Soif ¢ = 8 then A; = 3, A,_;; = | and A, = 1. In the case where

g =0"=6], |¢ =W = |2+ 30°|. Therefore Az, = 2.
Case 22 o = ap.

Since ¢ = ap, no growth can oeceur on this segment and this segment
will become 3 segments with the same angle measure &, Therefore if ¢ = 8,

Aii =3 and A;1; =1

Lemma 15
Let ; be a equi-similarly generated piecewise linear curve family that has

a spiraling angle bound of & = 907 and is converging to the fractal (' as ¢
tends to 20, Let e, be the curve in ) with » segments. Assume the segment

12



generator matrix for O has a unique largest real eigenvalue, call it Apae.

Then
n < 00
where k 13 the stage in which g is produced.

Proofl. The number of segments at any stage, k. can be found by using
the segment generator matrix, A, and a vector, X, corresponding to the
initial curve e of the curve family O The number of segments, s(k) can be

&
calenlated by using the matrix formula s(k) = 3 [.-"!"'.3%.“,;.];.1L where b = fAn fop.
=1
Hy finding the eigenvalues and eigenvectors of A, the above equation becomes
L
s(k)= ¥ [PD*P ' Xy);1 where I is the diagonalized eigenvalue matrix, F is
i=1

the correspoanding eigenvector matrix and P~ is the inverse of P, By solving
this equation, one finds that s(k) can be written as a linear combination of
A's eigenvalues to the power of k& where the coefficients of each term are
independent of k. As k pets large, A2
ather words, s(k) < I'J[Jl:iu]- 2

becomes the dominant term. In

L
- In cases where F is singular, one would use the equation s(k) = 3 [.d*IU]J_l
j=1
where X, can be written as a combination of the eigenvalues of A.

Proposition 19,

Let € be a equi-similarly generated piecewise linear curve family that has
a spiraling angle bound of oo = 907 and is converging to the fractal ' as ¢
tends to 2o, Let en be the curve in O that has n segments. Then

g | = n’ o8 A e Il'.E].

Proofl. Assume all the segments in ¢, are af cqua| |I:.‘1'|5L]1 and are of |1:n51h
1/ K of the length of the segments in the previous generation. Consider the
generator matrices which praduce the eurve family O, The length of £, can
be represented as |en| = 1{7)5(7) where I{7) is the length of any segment in
the curve at stage j and s(j) is total number of sepments in the curve at
stage j. Since the length of a segment at any stage j is 1 /K of the length of a
sepment at stage = 1, clearly () = (1/K)". By Lemma I8, s(7) < @A )
where Ay . is the largest eigenvaloe of the segment generator matrix A. Then

13



i < Oflog, _s(j1). So the equation |e.] = I{j)s(j) becomes
leal < O[(1f R)™mas (),
Sinee s(j) = n and a"8" = pl8=
|ea| € O(n! " 1080ma: #)

]

Lemma 2. { this really could be false — must check it further |
Let ; be a equi-similarly generated piecewise linear curve family that has a
spiraling angle bound of & = 307 and is converging the fractal ' as ¢ tends
ta sa. Assume ) has a growth factor 3, = 90°. Then
gy 1/2
Moo < R+ ﬂm(z + 2o E)
£
where R is the ratio between the length of a segment in stage j and the
length of a segment in stage 7 4 1.

Prool. (Empirical Sketch) In order to get a bound on A, .. in terms of the
spiraling angle bound aq, | used Maple to first find the eigenvalues for the
generator defined in Proposition 17. By looking at the largest eigenvalues of
this generator at different spiraling angle bounds, | haped to find a pattern in
these eigenvalues from one spiraling angle bound to the next. When | asked
Maple for the eigenvalues for the generator with a spiraling angle bound of
ae = B0, it returned:

bytes used=1000268, alloe=917336, time=1.28
bytes used=2000572, alloe=1179432, time=2.72

343V 33V 34 (24 2eas(1/9 Fi))Y? 3 = (24 2eos(1/9 Pi))VE
34 (2 = cos(1f9Pi) = 1), 3= (2 = cos(1/9 Pi) = %12,

34 (2 = cos(1f9Pi) 4 %17 3= (2= cos(1/9P1) + %10, 3, 3

Bl := 3 sin{1/9 Pi)

14



which was surprising. | did not expect to see sines and cosines in the eigenval-
nes, The results up until this peint seemed fairly random, but the prospect of
them steming from some trigonometric equation was intrigning. So | decided
ta sew if all the results | had obtained thus far agreed with this new found
F . ‘ c £3=4113 . :
equation Amsz = 34 (2 4 2eos et I noticed that for smaller ac this
equation definitely held. As a, increases though, this equation is slightly
larger than the corresponding Ay ... | concluded that for this specific gen-
erator, Ap.. = 34 (24 2cos 'f:':-}”!. Then | looked to see if [ could find a
similar type of equation for ather generatars. To my surprise, by generalizing
the about result, | had a bound for the eigenvalies of the other generators
as well. Therefore, | have come to the conclusion that

g 1/2
Am,gﬁ+ﬂ,_z(z+zma“—ﬂ) .

&

Theorem 21.

Let € be a equi-similar piecewise linear curve family that has a spiraling
angle bound of a- < W* and is converging to the fractal ' as ¢ tends ta so.
Let e be the curve in O with n segments. Then

|r:ﬁ,| = f}l:n'] ':J

where d is the distance between the two endpoints of O and

_ log H
E B xig 1Y
lc:g(h‘.-i— Az [3+2cuﬁ T} )

Proof. From Proposition 17, we have |e,| < O(n!'"%8ma: ®). Hy Lemma 20,

log, K < £ Therefore, _
|"—'n| < I:----:'|:TT] '::I.

v

Lemma 22

Let 7, be a self-similarly generated piecewise linear curve family that is
converging to the fractal ' as ¢ tends towards oo. Let (1, 1.0 )
be the ratio list realized by the corresponding 1FS. Assume that for the initial



eurve O, |Cs) = 1. Let 2q be the curve in O containing n segments. Then
the average length of a sepment at stage j is
I 71 | I %4
i =—(— — .. —) .
(7] = o + ” +oot
Prool by Induetion,
Base Case: 7 = 1. Let ' € {; be the curve which represents the curve
family at stage 7 = 1. Since (7 is reproduced & times in the curve ) by

similarities with ratios (1 /ey, /e, . . 1 e, ), the average length of a segment
in {7y is

R U [ 1
M1y = —(—ICal + —|Col + .. + —ICal).
F A 3 L
Sinee |Cy| =1,

oLyl 1 1 1 71 1 [
(=—(—4— 4t )=+ 4.
Tl e g g\ vy Ve
Therefare the statement 1{j] = ;_:{ml + L’l:_ +... 4 i}f holds when j = 1.
Inductive Case: Assume the statement holds for § = k for some & =

I. We want to show that the statement holds for j = k 4 1, ie. Ik +

I} = ﬂ—ﬁ-—[:? + i + ... 4 i}k”. Clonsider J'I:J':' -+ ]:I. Each segment, of curve

"y is reproduced # times in the curve (' by similiarities with ratios
(Lfg, e, ... 1 g ). The average length of one of these o new segments
can be expressed as

ik +1) = S(-i(k) + irm 4R,

T

1.0

, Lg1 1 !
Ik +1) = —{—+—+._.+u—)h:kj.

o win I

Sinee [ k] = _ﬁLi + f__‘ +...4 L_llr]lll1 Ik 4 1) can be rewritten as

. 1 | | | o b
|'[I.~+I;|:k—|1(—+—+...+—) |
el i o] e
Therefore the statement f[;} —] ;]J-Li + i + ... 4 ﬂ::l} hialds rurj =k41if
it holds for j =k ¥k = L.

L



-1

Since the statement, {(j) = l{ﬁ + 1; +...4 i}} holds for j = 1 and
if it halds for value, then it holds for the next, by the principle of induction,

the statement holds for all 7 = 1.

Lemma 23.
Let ; be a self-similarly generated piecewise linear curve family that is
converging to the fractal (' as ¢/ tends towards oo, Consider the ratio list

(L o, U, oo 1 fie, ). Then

l | |
| (— e —:]f.'l—l ;
og, - +;.-2+ +!-L. = fae
where 8- is the similarity dimension of the fractal .

Proofl. Let 4 = [31— + i + ... 4 i:l In order to maximize the value of ¥,

assume that for all 1 < & < & vy = v for some v > 0. Then 4 becomes
4 = afv for any positive #. Consider the similarity dimension, sp of the

fractal ". By definition, s is the solution to the equation | = &1 /e)".

Alsa consider log, 5. Since v = o /w,
1
lag, &1

Then &0 = li:lgm lje, ie 50 = I-:.,; -

log, ¥ = log, ofv = 1 =log, v, by a property of logarithms. Since s¢ =
log, v =1 = 1fa;.
Therefare, in general,

1 1 1
|c|g,,(ﬂ—+—+...+—)£l—lfa¢.
1

My i

h

Although Proposition 7 gives a bound on the lengths of similarly gener-
ated curves in terms of the Hansdorfl dimension, we would prefer to have a
bound in terms of the similarity dimension because it is easier to obtain.
Proposition 24,

Let € be a similarly generated piecewise linear curve family that is con-

verging to the fractal ' as ¢ tends towards so. Let eq be the curve in O}
containing n segments. Then

leal < O(n'"17),

where sc is the similarity dimension of (.

17



Prool. Without loss of generality, sinee we are looking for a bound on ey,
we can assume the curve family is sell-similar, oltherwise the bound is not
tighl. The length of £n can be represented as |eq| = {(f)s(j) where [{j) is a
function giving the length of a segment at stage j and s(7) 15 the number of
segrnents in the curve eq. If every segment in stage j becomes m segments
in stage j+1, then s(j) = m/_ Sinee 5(j) = n, the stage j can be written as
i = log, n. By Lemma 18, {{j] = H%Li + :—z +...4 HLT:I} S0 the equation
eq| = Ii)s(i] becomes

1 /1 1 R
e :—(—+—+.-.+—) T,

il vy Ve

Substituting in for § and simplifying gives

(I 1 ]yl n
el = —+—+...+—) :
15 Mz iy
Qinee o' 8" = ploEs

Ly AL
T =n|”‘5"{"||vz|”"='a.

lJsing the result from Lemma 23,
leal € Ofnt-112¢),

&

Definition 25

A carve 18 said to be k—acff-umid’ing for a miven constant k af far any two
points of the curve, say + and j, an ellipse with fod ¢ and j can be made

using a string of length d;; where d;; is the distance between ¢ and j, such
that this ellipse contains the whale corve between the points ¢ and j.

Theorem 26.

Let # be a P]ant-ﬁ”ing curve. Then P cannot be k-an”—avuiding far any k.

Proofl. Given k > 1. Assume F is a plane-filling curve that is k-self-
avoiding. If at any stage in the construction of P, F is self-intersecting or
self-contacting, then clearly F is not k-self-avaiding. Otherwise, we can find,
for every M > 0 a stage, call it 4, in the construction of F where F, goes
through everypoint in the M-lattice [i.e. a plane grid where the distance
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betwesn adjacent paints is 1/M . Since P sis k-self-avoiding, depending on
k. there exists a number N(k) which represents the maximum number of
lattice points on a portion of F whaose endpoints are adjacent on the lattice.
Notice that N{k) is independent of the lattice. We can find an M = 1)
such that for any curve P which goes through all the points of an M-lattice,
there must exist two adjacent points, call them v and { such that the enrve
between 5 and { must contain strictly more than N (k] points. Then the
curve hetween 5 and { escapes the ellipse with foci 4 and ¢ and with string
l:.'ngt.h kd‘ﬁ." where d'.ﬂ‘- 1% the distance between the pointa and £ Therefore
F is not k-self-avoiding. T

Proposition 27,
Let k < 2 and (7 be a k-self-avaiding curve family converging to the fractal
(' as ¢ tends to so. If e, is the curve in ; with n segments, then the length

‘DI.- Oy CAll |J|.'.‘ I!TIFIT‘EHHEE' A5
lea] < O(n'oE= ¥},

Prool. Assume that the curve e appears in the jth stage of construction
of the fractal . In order to maximize the length of the curve e, assume
that the length of the curve increases by a factor of k from one stage to the
next. So the length of the curve o, can be expressed as |ey| < kid, Also,
assume that any segment in one stage will generate two segments in the next
stage. Then we can say that n = 27, or j = lag,n. By substitution and a
property of logarithms, we can write the length of 6, as

o] € O[k82™) < O(n's k),

h

Conjecture 28,
Let &y be a k-self-avaiding curve with n segments. Then the length of ¢ can

hl: E}{PH.'.‘!H'EI'j s
o] < O{nflE)

where fik) is the function graphed below.
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Open Questions

When does the sequence of point sequences generated by a subdivi-
sion scheme ar uniform generation scheme converge to continuous curve
(module finitely many discontinuities)? |This is a DIFFICULT ques-
tron).

[ This probably just requires some basic differential geometry and tapol-
IZJEJ,":I If ConvVergance does take P-lac:-:.' as abave, does the LuLa|-|1:n51|:|
sequence of the corresponding sequence of piecewise linear curves con-
verge to a limit? In other words, is the sequence of piecewise linear
curves k-rectifiable for some k7 (Notice, however, that the limit of the
total lengths may not be the same as the length of the limit curve
consider the staircase with increasing number of steps and 45 degree
gradient, which converges to the diagonal of the corresponding square
and whose |.|!.'TLEE.|'I iz 1. bt the limit of the ]-:.'ngll.hn of the curve SO LTI O
18 -..-"E} How about viceversa: if the sequence of total lengths converges
to a limit, then does the sequence of point sequences converge to a
continuons curve (or atmost with finitely many discontinuities)?

[This prabably alsa just requires some basie differential geometry and
topology) Is it the case that the sequence of point sequences generated

20



by a subdivision scheme converges to a continuous curve

il and anly if

the corresponding sequence of piecewise linear curves converges to a
continuens curve (maodulo finitely many discontinuities)

if and only if

both converge to a &1 curve (modulo finitely many points where the
curve is nat ).

# (This is probably alsa fairly easy) Due to time constraints, the relation
between a generator and a mask was not found. The question of finding
this relation is still apen. It seems rather obvious that a relation should
exist; it's just a matter of having the time and patience to find it

e What is the break point between a subdivision scheme which converges
(or diverges) and a subdivision scheme which diverges to a fractal?
In particular, find a sequence of masks/generatars &7y ... (7, ... (7, 50
that

— for (71... (74, the corresponding sequence of point sequences con-
verges to continuons curves,

— for (74, ... by, the corresponding sequence of point sequences does
not converge to anything close to a continuons curve (the length
sequences do not converge to a limit, and the sequence is not
rectifiable], but the fractal dimension of the sequence is still 1,

— and finally for each of the remaining generators, we obtain a se-
quence representing a fractal of dimension strictly greater than

e bFor both of the latter cases above, what is the relationship between the

mask, the asymptotic length {of a divergent length sequence) and the
fractal dimension?

e What if there isn’t a unique maximuom eigenvalue for a generator ma-
trix? How does ane B0 about, ﬁnl:ling the ]cngih of a eurve? Also, what
would be the relation between such a generator and fractal dimension?
What about the geometry of such a generator?

e Why is App < B4 Ay 2(2 4 2cos f?'i;-_}lf! when Ag .. is unigue?
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e What 12 the geometric interpretation of this result? In other words, is
there a relationship between unique largest eigenvalues and the geom-
etry of a generatar?

e (ne mare parameter to look at is the sequence of areas enclosed by a
uniformly generated sequence of curves.

e (ne should look at all the questions mentioned here and studied in this
write-up for higher dimensional fractals, say areas of fractal surfaces,

valimes enclased |:r1-|.I fractal surfaces ete..
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