1.

COT 6315/CIS 4930 Sample Test 2 (Solutions)

(a)

The set QUITEEQUAL is decidable (a simple algorithm counts the
numbers of a’s, b’s and ¢’s in the input string, always halts, and
says yes when the three numbers are the same and no otherwise),
but not context free. Proof of latter by contradiction. Suppose that
QUITEEQUAL is context free. Then the intersection of QUITEE-
QUAL and regular language a*c*b*d* should be context free as well.
However this intersection a”¢™b™d™ is not context free (see problem
2 (iii) of the second homework). Therefore QUITEEQUAL is not
context free.

The set WEIRD is regular. It can be represented as L;NLaNL3 where
L; = (1*01*01*)* is a regular language of strings that have even
number of zeroes, Ly = (0*10*10*10*10*10*)* is a regular language
of strings that have a number of 1’s that is not a multiple of 5, and
Ls; = ((0*1*)*1)*(00)*000 is a regular language of strings that end
with an odd number of 0’s (atleast 3). Since set of regular languages
is closed under intersection, set WEIRD is regular.

The language VERYDIFFERENT (L) is regular if L is regular, since
VERYDIFFERENT(L)= ¥* o L o ¥* and set of regular languages is
closed under operations of complement and concatenation.

The set BALANCED is context free but not regular. It is context free
because there is PDA for it (We want to check whether k—1 = n—m.
This can be done as follows. Push all as, pop an a for every input b,
push remaining bs (if any). At this stage stack contains either k — [
as or | — k bs. There are two cases. (1) If stack contains as then pop
an a for every input ¢, when stack becomes empty push all remaining
¢s, pop a c for every input d, accept if stack is empty after last input
d. (2) If stack contained bs then push all ¢ on a stack, pop a symbol
(c or b) for every d, accept if stack is empty after last input d.

The set BALANCED is not regular because BALANCED Na*b* =
a™b™ is not a regular language, and set of regular languages is closed
under intersection.

This language is recursively enumerable but not recursive. It is r.e
because we can run both M; and Ms on input x and accept if both
M7 and M, halt and accept z in the same number of instruction
steps. This language is not recursive because Ary = {< M,w >}
can be reduced to it (take My = My = M,z = w).

This language is recursive - run M; on z for exactly |z|*> steps, run
M, on z for exactly |z|? steps, accept if both M; and M, halted and
accepted z in exactly |z|? steps.

(c) This language is recursively enumerable but not recursive. It is not

recursive because Erar = {< M >} can be reduced to it (take M; =
My = M).
In order to show that language is recursively enumerable we will
enumerate all strings z1,22,z3... € £¥*. Run M; and M> on z; for
1 step. Run M; and M> on z» for 1 step and continue on xz; for 1
step. Run M; and M> on z3 for 1 step and continue on x5 and x;
for 1 step, etc. If there is an x such that both M; and M, both halt
on z and accept in the same number of steps, then this z; will be
found by this procedure.

