Solution of Homework 4

1. (a) Problem U is NP-complete. It is in NP because given (G, F, k) where $F \subseteq G, |F| \le k$ is a set of fire-stations it is possible to verify (G, F, k) in polynomial time.

Problem U is NP-hard because $Vertex\ Cover$ can be reduced to it. Given an instance (G=(V,E),k) of $Vertex\ Cover$ it is converted into into an instance (G',k'=k,w'=1) of problem U as follows. Vertices of $G',V'=V_V\cup V_E$ represent both vertices and edges of G. Edges of $G',E'=E_1\cup E_2$ where $E_1=\{(i,v_j)|i\in V_V,v_j\in V_E \text{ if edge } j \text{ is adjacent to vertex } i \text{ in graph } G\}$. All edges in E_1 have weight 1. Edges $E_2=\{(i,j)|i,j\in V_V\}$ with weights 2/3.

By construction it follows that $(G, k) \in Vertex\ Cover$ iff $(G', k', w') \in U$. There is a brute force algorithm for U that takes $\binom{n}{k}$ time, hence upper bound of U is $\binom{n}{k}$. Lower bound is O(n).

(b) The upper and lower bound of V is O(n). The lower bound follows from the upper bound and the fact that every clause needs to be examined at least once. Upper bound can be established as follows. Every clause $a \bigvee b$ is equivalent to $\overline{a} \to b$. To determine whether a formula is satisfiable it is sufficient to verify whether the set of equivalent implications is not contradictory, i.e whether there are any implications of the type $x \to \overline{x}$. (Note that due to the transitivity of implications, $a \to b \land b \to c$ is equivalent to $a \to c$).

Formula S can be converted into a directed graph $G = (V \cup V', E)$ where V represent set of variables of S, V' of negations of variables of S and every clause $a \bigvee b$ of S will correspond to two (directed) edges in E, one is (\overline{a}, b) another is (a, \overline{b}) , where $a, b \in V, \overline{a}, \overline{b} \in V'$.

The formula S is satisfiable iff the graph G constructed above does not contain any cycles (or strongly connected components) that contain both x and \overline{x} for some variable x. This property of G can be verified in linear time using DFS and graph G can be constructed from S also in linear time, thus upper bound of problem V follows.

- (c) W is NP-hard, upper and lower bounds are unknown.
- (d) Upper bound of W is 2^n , lower bound is O(n).
- (e) Upper and lower bounds of X are unknown.
- (f) Upper bound of Y is $O(n \log n)$, lower bound is O(n).
- (g) Upper and lower bounds of Z are unknown.
- 2. The idea is to have infinitely many entries of M^* in the table, so eventually when g(n) becomes greater (as well as asymptotically greater) than $f(n), \forall n > N$ there will be at least one copy of M^* for this N, resulting in contradiction.

Technically this can be done by making M^* simulate M whenever it receives an input of the form < M > 10*.

- 3. (a) Class P is closed under union, intersection and complement. This can be shown by constructing appropriate TMs. Let M_1 be TM for A, M_2 be TM for B. TM for $A \cup B$ runs M_1 and M_2 on input, accept if at least one of them accept. TM for $A \cap B$ runs M_1 and M_2 on input, accept if both M_1 and M_2 accept. TM for \overline{A} negates the output of M_1 .
 - (b) Class NP is closed under union and intersection, proof is similar to the 3(i), except that now we have nondeterministic TMs.
 - (c) The idea of r.e proof was the following: if you have an enumeration of machines in a class (r.e), we can take the complement of the diagonal set \overline{H} (namely the complement of the halting problem) and clearly it cannot be in the class (r.e). But the diagonal set, i.e, H itself is in r.e. So, the complement is in co-r.e
 - Suppose that we were to try to imitate that proof. We can enumerate all NP machines. We can also diagonalize over them, creating set G. Also $\overline{G} \not\in NP$ by construction. However set G is also not in NP, since for every $A \in NP$ that runs in p(n) time, algorithm for G should run at least for p(n) steps, but there is no such polynomial q(n) (running time of G) such that $q(n) \geq p(n)$ for all polynomials p(n) (take p(n) = nq(n) to obtain a contradiction).
 - (d) Let A be NP-complete, then $\forall X \in NP, X \leq_m^P A$ and $A \in NP$. Then $\overline{A} \in co NP$. Let $\overline{X} \in co NP$ then $x \in X \Leftrightarrow f(x) \in A$ therefore $x \notin X \Leftrightarrow f(x) \notin A$ therefore $x \in \overline{X} \Leftrightarrow f(x) \in \overline{A}$ therefore $\overline{X} \leq_m^P \overline{A}$.
 - (e) Let S be an NP-complete set and $S \in co NP, S = \overline{A}, A \in NP$. Then $\overline{S} = A \in NP$. Also by previous exercise \overline{S} is co-NP-complete. Therefore $\overline{L} \leq_m^P \overline{S} \in NP, \forall \overline{L} \in co NP$. Thus $\overline{L} \in NP$. Similarly all L that are in NP are also in co-NP.
 - (f) No. Machine M in proof of Theorem 4.16 would be non-deterministic polynomial time (since both M_1 and M_2 are) hence it cannot be used as deterministic polynomial time machine.
 - (g) Assume that $NP \neq co NP$ and suppose that P = NP therefore co P = co NP therefore $P \neq co P$, contradiction since P is closed under complementation.

It is possible that $P \subset NP = co - NP$.

4. (a) **9.10**

Given any language $L \in NP$, the algorithm that reduces L to SAT may potentially take more than $O(n^k)$ time, or the output size of the algorithm may differ from the original input size. (For the later, think

SAT is in $O(n^5)$. Assume the reduction takes $O(n^2)$ time, but the output size is $O(n^2)$. Clearly then to solve the original problem by reducing to SAT will take time $O(n^{10})$.) Therefore, if the reduction algorithm takes t(n) time and the size of the output is f(n), then to solve the problem we need time $O(t(n) + (f(n))^k)$ which may not be in $O(n^k)$.

(b) 9.18

Let $A \in TIME(n^2)$, machine M decides A in time $O(n^2)$. Given a string $x = s \sqcup^j$ following machine M' decides x in $O(|x|)(=O(n^2))$ time. It simply simulates M on s, and this takes $O(n^2) = O(|x|)$.

(c) 9.19

First we note that it is enough to show that NEXP \subseteq EXP under the given hypothesis. Let's take an arbitrary language L in NEXP. Assume $L \subseteq NTIME(2^{n^k})$ for some constant k, that is there is a non-deterministic TM, say N, that accepts the language L in time 2^{n^k} . We shall now decide the language L in deterministic exponential time, i.e. in TIME (2^{n^k}) .

We define $f(n) = 2^{n^k}$. Now given any arbitrary x, we produce y = pad(x; f(n)), where n = |x|. (Note this can be done in deterministic exponential time, since we need only to add $2^{n^k} - n$ many \$s.) We next define a TM N', that takes a padded string and simulates N (recall N decides L) only on the portion having no \$, that is on x. For example, N' takes the string $y = x \$^{f(n)-n}$ and simulates N on x and accepts if N accepts and rejects otherwise.

We note that our N' is a non-deterministic machine that decides the language pad(L; f(n)). (Note that N accepts x if and only if N' accepts pad(x; f(n)).) However, to decide pad(L; f(n)), N' simply simulates N. Hence, it takes time at most f(n). Since the input to N' has size f(n), we conclude N' decides pad(L; f(n)) in NTIME(n) i.e. in non-deterministic linear time. Therefore, its language is in NP, i.e. pad(L; f(n)) is in NP. By the hypothesis, NP = P. Therefore, there is a deterministic machine, say M' that decides pad(L; f(n)) in polynomial time, say in time n^l , for some constant l.

Therefore, without simulating pad(L; f(n)) using N', we can as well simulate it using M' and thus decide pad(L; f(n)) which will take at most $f(n)^l$ deterministic time.

Summarizing, we describe our final deterministic machine that decides L in deterministic exponential time. To decide whether x is in L or not, M first pads x up with enough s i.e. with (f(n) - n) s (say the resulting string be y). Next M simulates M' on y. Finally, M accepts if M' accepts y and reject otherwise.

First we note that M correctly decides L. (Recall $x \in L$ if and only if $pad(x; f(n)) \in pad(L; f(n))$.) How much time then M takes to decide L? This is clearly $(f(n) - n) + f(n)^l$ i.e. to pad x we need (f(n) - n) and for simulating M' we need another $f(n)^l$.

But, this is at most $O(2^{n^k l})$ i.e. which is at most $O(2^{n^{k+1}})$ which is (deterministic) exponential. Thus we proved that if NP = P, then EXP = NEXP.

(d) 9.20

Let assume first that $A \in P$. Therefore, there is an algorithm, say M, that decides A in polynomial time, say n^l time. We shall use M to decide $pad(A; n^k)$. Given $x\l and k we first check whether it is of the desired form or not. (We simply count the \$'s and decide.) If it is not of the desired form, we reject. Otherwise, we simulate M on x and accept if M accepts. It is easy to see that this algorithm correctly decides $pad(A; n^k)$. However, the time taken to decide $pad(A; n^k)$ is no more than $((n+max(n^k-n;0))+(n^l))$ (to count we need $(n+n^k)$ and an additional n^l for simulating M), which is polynomial in the size of the input which is $(n+max(n^k-n;0))$ (for any k) i.e. at least n. Therefore $A \in P \Rightarrow pad(A; n^k) \in P$.

To prove the reverse, assume for some k there is an algorithm that decides $pad(A;n^k)$ in poly time, we shall prove that A is in P. (Using the first part, we then claim that for all natural number k', $pad(A;n^{k'})$ is in P.) To prove this, assume there is an algorithm, say M, that decides $pad(A;n^k)$ in time m^l (here m has been taken to be the input size, where $m=n+max(n^k-n;0)$, which is at most $(n+n^k)$). To decide A we pad it up and then simulate N. Formally, given x, we first produce $pad(x;n^k)$ which takes at most $(n+n^k)$ time. We then simulate M on $pad(x;n^k)$ and accepts if M does. Total time taken by this procedure is no more than $((n+n^k)+(n+n^k)^l)$ which is again a polynomial in n i.e. the input size. We use the first part of this proof to extend the result for all natural numbers. Thus, we established the desired result.