Solution of Homework 3

1. (a) Let X be a set in the class r.e. Let M be a machine that recognizes X. Let $f(x) = (M, x)$. Then $x \in X \iff f(x) \in \overline{\text{A}_{\text{pseudocode}}}$.

(b) The set $\overline{\text{A}_{\text{pseudocode}}}$ is \leq^rec_m-complete for the class co-r.e. Let X be a set in the class co-r.e., i.e. \overline{X} is a set in r.e. Let \overline{M} be a machine that recognizes \overline{X}. Let $f(x) = (\overline{M}, x)$. Then $x \in X \iff x \notin \overline{X} \iff (\overline{M}, x) \notin \overline{\text{A}_{\text{pseudocode}}}$.

(c) This set A cannot be decidable. If it were decidable then there would exist an algorithm for deciding $\overline{\text{A}_{\text{pseudocode}}}$ ($x \in \overline{\text{A}_{\text{pseudocode}}} \iff f(x) \in A$ for some recursive function $f(x)$ and $f(x) \in A$ can be checked in finite time). But we know that $\overline{\text{A}_{\text{pseudocode}}} \notin \text{rec}$, contradiction.

2. (a) Let X be a set in the class r.e. Take $A = X \in \text{r.e.}, B = \Sigma^* \in \text{co-r.e.}$ then $X = A \cap B$. Therefore $X \in \text{Diff}$ and r.e. $\subset \text{Diff}$. Similarly co-r.e. $\subset \text{Diff}$ so r.e. \cup co-r.e. $\subset \text{Diff}$.

(b) Let $D = \{(x, y) : x \in \text{A}_{\text{pseudocode}} \land y \notin \text{A}_{\text{pseudocode}}\}$. Let $X \in \text{Diff}, X = A \cap B, A \in \text{r.e.}, B \in \text{co-r.e.}$ Let $f(x) = (f_A(x), f_B(x))$ where $f_A(x) \in A_{\text{pseudocode}} \iff x \in A$ and $f_B(x) \notin A_{\text{pseudocode}} \iff x \in B$. Then $f(x) = (f_A(x), f_B(x)) \in D \iff f_A(x) \in A_{\text{pseudocode}} \land f_B(x) \notin A_{\text{pseudocode}} \iff x \in A \land x \in B \iff x \in A \cap B = X$. Therefore D is \leq^rec_m-complete for Diff.

3. (a) 6.13 For any $x \in \Sigma^*$ we know that $K(x) \leq |x| + c$ for some constant c. So we can simply try all pairs (M, w) s.t. $<M, w> \leq |x| + c$, use oracle of $A_{\text{pseudocode}}$ to see if M terminates on w and if it does then run M on w and check whether M leaves x on tape. Length of a shortest such pair (M, w) is $K(x)$.

(b) 6.16 Proof by contradiction. Suppose that the set A of incompressible strings is decidable. Then A has a decider M, and there is an enumeration $f : A \rightarrow N$ such that $f(w_1) = 1, f(w_2) = 2, f(w_3) = 3 \ldots$ where w_i is the shortest string in A, w_2 is the second shortest one, w_3 is the third shortest etc. Since A is infinite there is a string $x \in A$ such that $|x| > |<M,x>| + \log |x| + c$. This string x has a shorter description $<M', f(x)>$, where M' is a machine which will output x on input $f(x)$. This machine M' operates as follows: run M on each string y in lexicographic order. Stop when $f(x)$ strings has been accepted by M, output current y. Contradiction, since x is incompressible.
(c) 6.17

Proof by contradiction. Suppose that the set of incompressible strings contains an infinite recursively enumerable (Turing-recognizable) subset A. Then A is recognized by a machine M and there is an enumeration $f : \mathbb{N} \to A$ such that $f(1) = w_1, f(2) = w_2, f(3) = w_3 \ldots$ where w_1 is the first enumerated string in A, w_2 is the second enumerated string, w_3 is the third enumerated string etc. Since A is infinite there is a string $x \in A$ such that $|x| > |<M>| + \log|x| + c$. This string x has a shorter description $<M', f^{-1}(x)>$, where M' is a machine which will output x on input $f^{-1}(x)$. (This machine M' operates as follows: run an enumerator until $f^{-1}(x)^{th}$ string has been produced.) Contradiction, since x is incompressible.

4. We will reduce $A_{\text{pseudocode}}$ to HALT (sometimes referred to in class as the set H, i.e., the set corresponding to the halting problem). We construct $f : (M, x) \to M'$ where $(M, x) \in A_{\text{pseudocode}} \iff M' \in \text{HALT}$. Machine M' is constructed as follows: ignore all input, simulate M on x, if M returns yes then accept. If M returns no then loop indefinitely.

Note that

if M does not halt on x then $(M, x) \notin A_{\text{pseudocode}}$ and $M' \notin \text{HALT}$
if M does halt on x and rejects then $(M, x) \notin A_{\text{pseudocode}}$ and $M' \notin \text{HALT}$
if M does halt on x and accepts then $(M, x) \in A_{\text{pseudocode}}$ and $M' \in \text{HALT}$.

2