Homework assignment 3,

1. A set U is \leq^C_m-complete for a class D if every set X in D is reducible to U by a \leq^C_m-reduction, i.e., there is a function f in the class C, such that $x \in X \iff f(x) \in U$.

 (i) Show that the set $A_{\text{pseudocode}} = \{(M, x) : \text{the pseudocode } M \text{ accepts } x\}$ is \leq_{rec}-complete for the class of r.e. sets.

 (ii) Give a set that is \leq_{rec}-complete for the class co-r.e., and justify your answer.

 (iii) Can a set A - that is \leq_{rec}-complete for the class of r.e. sets - be decidable. Why (not)?

2. The class Diff consists of the intersections of sets in r.e with the sets in $\text{co} - \text{r.e.}$ i.e, $\text{Diff} = \{A \cap B : A \in \text{r.e.}, B \in \text{co} - \text{r.e.}\}$. (This is different from $\text{r.e.} \cap \text{co} - \text{r.e.}$ which we know to be the class of recursive or decidable sets).

 (i) Show that

 $$\text{r.e.} \cup \text{co} - \text{r.e.} \subseteq \text{Diff}$$

 and

 (ii) (Recalling the definition of complete given above) starting from a set U that is known to be is \leq_{rec}-complete for r.e., construct a set, and show that it is \leq_{rec}-complete for Diff. Hint: how about $\{(x, y) : x \in U \land y \notin U\}$?

3. Read Chapter 6.4 in book. Answer 6.13 (A_{TM} is our $A_{\text{pseudocode}}$), 6.16, 6.17 (Turing-recognizable = recursively enumerable).

4. (bonus) Show that the set $A_{\text{Hal}} = \{M : \text{the pseudocode } M \text{ halts on input } M \text{ (may or maynot accept) }\}$ is \leq_{rec}-complete for the class of r.e. sets.