A graph is uniquely localizable in \mathbb{R}^d if it has a unique realization in \mathbb{R}^d and no nontrivial other realizations in dimension $> d$.

Theorem (Yinyu Ye): There exists a polynomial algorithm to find a real-alization embedding of a d-uniquely localizable graph.

Proof: Setting up a semidefinite program

Lemma 1: If there is no nontrivial realization in dimension $> d$ and there exists a realization in \mathbb{R}^d, then the realization is unique.

Lemma 2:
1. Uniquely localizable in $d \iff$
2. Max-rank completion M to given partial matrix M_G is of rank $d \iff$
3. Solution X to given SDP satisfies $M = X^T X$

Open Q: Give a graph theoretical characterization of d-unique localizability.

1 theorem to cover

1.1 Schonberg’s theorem: A metric space δ is of 2-negative type \iff it is isometrically embeddable in a Hilbert space.

Recall: For $1 \leq p \leq 2$, a metric space has p-negative type iff isometrically embeddable in L_p.

1.2 Lennort Tonge Weston theorem

1.2.0.3 p-negative type = generalized roundness p.

1.3 Bourgain’s theorem: Tree metrics are not isometrically embeddable in \mathbb{R}_i.

Recall: They are embeddable in \mathbb{R}_{1}.
1.4 Weston’s theorem
1.4.0.4 Any finite metric space w/n pts is isometrically embeddable in L_p^n for some $p > 0$ (p depending only on n)

1.5 For $p > 2, n > 3$, L_p^n does not have q -- negative type for any $q > 0$.

2 agenda
2.1 folklore theorem-symmetric positive definite matrix
cooley-menger conditions

2.2 Laman’s theorem-partial metric space, embeddability into \mathbb{R}^2, finite # of embeddings

2.3 Jackson & Jordan’s theorem-unique embeddability into \mathbb{R}^2, generic theoretic characterization.

2.4 d -- realizability (generic graph theoretic characterization)
connelly slaughter- $d = 3$. $d = 4,5$ open

2.5 realization of d unique localizable graphs (Yiu-yu Ye)
polynomial time-semidefinite program

3 Theorem
3.1 Schönberg’s theorem

3.1.1 A finite distance space $\delta(\forall i,j, \delta_{ij} \geq 0, \delta_{ii} = 0, \delta_{ij} = \delta_{ji})$ is isometrically embeddable in Hilbert space iff $\forall n$ points, $n \geq 2$ & for all real values $\alpha_1 \ldots \alpha_n$ $\sum \alpha_i = 0$, $\sum \delta^{2(p)}_{ij} \alpha_i \alpha_j \leq 0 \Rightarrow$ has $2(p)$--negative type.

folklore theorem: A finite distance δ is isometrically embeddable in Hilbert space iff the metric matrix $M_{ij} = \frac{1}{2}(\delta^2_{ii} + \delta^2_{jj} - \delta^2_{ij})$ is positive semi-definite. \footnote{\forall \alpha \in \mathbb{R}^n, \alpha^T M \alpha \geq 0}

Fact: $\forall m$ & for any submatrix M' of dimension m (w/duplication of rows and columns allowed), $\Leftrightarrow \forall \alpha \in \mathbb{R}^n, \alpha^T M' \alpha \geq 0$.

\footnote{\forall \alpha \in \mathbb{R}^n, \alpha^T M \alpha \geq 0}$
Theorem: a separable (countable dense set) distance space δ is embeddable into Hilbert space iff the family of functions $e^{-\lambda^2}$ is positive definite in δ.

Def: A function $g(\text{real, continuous})$ is positive definite over δ if $\forall \alpha \in \mathbb{R}, \sum_{i,j=1} g(\delta_{ij})\alpha_i\alpha_j \geq 0$.

3.1.2 Roundness

Def1: A metric space (X, δ) has roundness q, $q \in g^r(X, \delta)$, whenever $\forall a_1a_2b_1b_2 \in X$, $\delta(a_1a_2)^q + \delta(b_1b_2)^q \leq \sum_{1 \leq i,j \leq 2} \delta(a_ib_j)^q$.

Def2: A metric space has generalized roundness q when $\forall a_1 \cdots a_n b_1 \cdots b_n \in X$,

\[
\sum_{1 \leq i < j \leq n} \delta^q(a_i a_j) + \sum_{1 \leq i < j \leq n} \delta^q(b_i b_j) - \sum_{1 \leq i,j \leq n} \delta^q(a_i b_j) \leq 0 \tag{2}
\]

Theorem I: A metric space (X, δ) has generalized roundness $p \iff$ it has generalized roundness $q, \forall q \leq p$.

3.1.2.1 Theorem II: A metric space has q-negative type

$(\forall \alpha_1 \cdots \alpha_n \sum \alpha_i = 0, \forall \{x_1 \cdots x_n\} \in X, \sum \delta(x_i x_j)^q \alpha_i \alpha_j \leq 0)$ \tag{1}

\iff it has generalized roundness q.

Lemma: For a metric space (X, δ) the following are equivalent.

1. $q \in g^r(X, \delta)$, ie. (X, δ) has generalized roundness q.

2. $\forall n \in \mathbb{N}$ & all $\{x_1 \cdots x_n\} \subseteq X$, & all $w_1 \cdots w_n s_1 s_n, \sum w_i = \sum s_i (=1$ if normalization is needed),

\[
\sum \delta(x_i x_j)^q (w_i - s_i) (w_j - s_j) \leq 0 \tag{3}
\]

3.1.2.1.1 Proof of Theorem II:

\Rightarrow let (X, δ) be q-negative type.

$x_1 = a_1, x_3 = a_2, \ldots x_{2n-1} = a_n$

$x_2 = b_1, x_4 = b_2, \ldots x_{2n} = b_n$ and $\alpha_k = (-1)^k \forall 1 \leq k \leq 2n$

\[2\text{[set of pts, pairwise distance]}\]
since \(\sum_{1 \leq i,j \leq n} \delta(x_ix_j)^q \alpha_i \alpha_j \leq 0 \), sum over:

1. \(i,j \) (both odd),
2. \(i,j \) (both even),
3. \(i \) odd, \(j \) even,
4. \(i \) even, \(j \) odd

\[
0 \geq 2(2) = \sum_{1 \leq i,j \leq n} \delta^q(a_i a_j) + \delta^q(b_i b_j) - 2\delta^q(a_i b_j)
\]

therefore
\[
0 \geq \sum_{1 \leq i < j \leq n} \delta^q(a_i a_j) + \sum_{1 \leq i < j \leq n} \delta^q(b_i b_j) - \sum_{1 \leq i,j \leq n} \delta^q(a_i b_j)
\]

\(\Leftarrow \) let \((X, \delta)\) have generalized roundness \(q \),

Take \(x_1 \cdots x_n \in X \& \alpha_1 \cdots \alpha_n \in \mathbb{R} \), satisfying \(\sum \alpha_i = 0 \),

if \(\alpha_k > 0 \) then set corresponding \(w_k = |\alpha_k|/\sum_k |\alpha_k|, s_k = 0 \)

if \(\alpha_k < 0 \) then set corresponding \(w_k = 0, s_k = |\alpha_k|/\sum_k |\alpha_k| \)

simply substitute into (3) to get (1).

3.1.2.1.2 Proof of lemma

\(\Rightarrow \) let \((X, \delta)\) have generalized roundness \(p \),

Take \(x_1 \cdots x_n \in X \& w_1 \cdots w_n, s_1 \cdots s_n \geq 0, \sum w_i = \sum s_i = N^3 \)

construct a double – \(N \) simplex

\[
a_1 = a_2 = \cdots a_{w_1} = x_1
\]

\[
a_{w_1+1} = \cdots a_{w_1+w_2} = x_2
\]

\[
a_{w_1+w_2+1} = \cdots a_{w_1+w_2+w_3} = x_3
\]

\[
b_1 = b_2 = \cdots b_{s_1} = x_1
\]

\(^3 \) without loss we can assume these are natural numbers since the rations are dense in the reals

\[4\]
\[b_{s_1+1} = \cdots b_{s_1+s_2} = x_2 \]

From (2) it follows:

\[\sum_{1 \leq i,j \leq n} \delta(x_i, x_j)^p \left[\frac{w_i w_j + s_i s_j}{N^2} \right] \leq 2 \sum_{1 \leq i,j \leq n} \delta(x_i, x_j)^p \left[\frac{w_i w_j}{N^2} \right] \]

3.1.2.2 Theorem: For any \(p > 1 \), \(\exists \) a tree metric space \((X, \delta) \) which has generalized roundness \(< p \).

Def1: A metric space \((X, \delta) \) has generalized roundness \(p \) if \(\forall \forall a_1 \cdots a_n b_1 \cdots b_n \in X, \sum_{1 \leq i,j \leq n} \delta(a_i a_j)^p + \delta(b_i b_j)^p \leq \sum_{1 \leq i,j \leq n} \delta(a_i b_j)^p \)

Def2: Given a tree \(T = (V,E) \), tree metric space is defined as \((X = \{1,2,\ldots,n\}, \delta) \), \(\delta(v_1, v_2) = \text{path length between}(v_1, v_2) \)

Cor: For any given \(p > 1 \), not all tree metrics are embeddable into \(L_p \).

3.1.2.2.1 Proof:

For any \(p > 1 \), need a tree \(T = (V,E) \), with \(m \) nodes & an \(n \) & a double simplex \(a_1 \cdots a_n b_1 \cdots b_n \in V \), s.t

\[\sum_{1 \leq i,j \leq n} \delta(a_i a_j)^p + \delta(b_i b_j)^p \geq \sum_{1 \leq i,j \leq n} \delta(a_i b_j)^p \]
Take \(\delta(a_i a_j) = 2, \delta(a_i b_j) = 1, \delta(b_i b_j) = 0 \), then \(\left(\frac{n}{2} \right)^2 \geq n^2 \cdot 1^p \Rightarrow n \geq \frac{1}{1 - \frac{1}{2^p}}, \) here \(\varepsilon = p - 1 \)

Conjecture: Any tree metric of \(n \) points is embeddable in \(L_p \) for \(p = 1 + \varepsilon(n) \)

3.1.2.3 Theorem: Every finite metric space of \(n \) points has generalized roundness \(\geq p(n) \), where \(p(n) = \log_2(1 + \frac{\psi^2}{n}) \approx \log\left(\frac{n}{n-1}\right), \) \(v = \frac{2}{(2n)^{\psi(n)}} \), where \(\psi(1) = \psi(2) = 1, \psi(k) = \psi(k-1) + \psi(k-2) + 1 \)

Fact: This bound is quite tight.

3.1.2.3.1 Proof:

Proposition (base case of induction)

If \((X, \delta) \) is a 4-point metric space then generalized roundness of it \(\geq 1 \)
case 1:
\[a_1 = a_2 = \ldots a_m = x, \quad b_1 = b_2 = \ldots b_q = z \]
\[a_{m+1} = \ldots a_n = y, \quad b_{q+1} = \ldots b_n = w \]
\[0 < m, q < \frac{n}{2}, \quad m(n - m) \cdot d + q(n - q) \cdot c \leq mqu + (n - m)qe + m(n - q)f + (n - m)(n - q)v \]
(this is true because of triangle inequality)

\[\text{case 2:} \]
\[a_1 = a_2 = \ldots a_{n_1} = z \]
\[a_{n_1+1} = \ldots a_{n_2} = x \]
\[a_{n_1+n_2+1} = \ldots a_{n_3} = y \]
\[b_1 = b_2 = \ldots b_n = w \]
Lemma 1: \(n \geq 2, 0 \leq p \leq \log_2\left(\frac{n}{n-1}\right) \) and \([a_i, b_i]_{i=1}^n \subseteq (X, \delta) \) is a given double simplex ordered s.t. \(\delta(a_1b_1) \leq \delta(a_ib_j), \forall i, j \), then for \(\forall j, 2 \leq j \leq n \), \(\delta(a_1a_j)^p \leq \frac{\delta(a_1b_1)^p}{2(n-1)} + \delta(b_1a_j)^p \)

Lemma 2: consider a double simplex \([a_i, b_i]_{i=1}^n \subseteq (X, \delta) \) arranged so that \(\delta(a_1b_1) \leq \delta(a_ib_j), \forall i, j \). If \(0 \leq p \leq \log_2\left(\frac{n}{n-1}\right) \) and \(p \in g.r. \), then \(g.r. \leq p \) for this particular simplex then \(p \in g.r. \).

3.1.2.4 Theorem: \(\forall p > 1, \exists \) tree metrics not embeddable in \(L_p \).

\(\forall p > 1, \exists \) tree metrics which do not have \(p \) negative type, for \((1 \leq p \leq 2), \Leftrightarrow \) not embeddable in \(L_p \).

Conjecture: \(\exists p(n) \geq 1 \), s.t all tree metrics of \(n \) points have negative type \(\geq p(n) \)

\(\forall p > 0, \exists \) metrics spaces whose generalized roundness & negative type \(< p \Leftrightarrow \exists p(n) \) depending only on \(n \) s.t all metric spaces of \(n \) points have generalized roundness & negative type \(\geq p(n) \)

Theorem 2: \(\forall p > 2, L_p^d \) (even for \(d = 3 \)) does not have negative type \(q \) \(\forall q > 0 \)

Open Question: construct the finite double simplex that shows this. i.e that \(L_p^3 \) does not have generalized roundness or negative type \(q \).

Fact: \(L_q \) does not have \(q \) negative type for \(q > 2 \). (We know \(L_q \) has \(q \) negative type between \(1 \leq q \leq 2 \))

Theorem: \(\exists \) an isometric embedding of \(L_2 \) in \(L_p \) \(\forall 1 \leq p \leq \infty \)

Open Question: construct versions even for finite subsets of \(L_2 \).

Theorem 1 does not imply tree metrics are not embeddable in \(L_p \) for \(p > 2 \). How about embeddability in \(L_\infty \)?

Theorem: every metric space \(n \) is embeddable in \(L_\infty^n \), where \(\|x\|_\infty = \max_i |x_i| \).

Proof: set

\[
\begin{align*}
x_i & \rightarrow d[x_i, x_1], d[x_i, x_2], \ldots d[x_i, x_i], \ldots d[x_i, x_j] \ldots d[x_i, x_n] \\
x_j & \rightarrow d[x_j, x_1], d[x_j, x_2], \ldots d[x_j, x_i], \ldots d[x_j, x_j] \ldots d[x_j, x_n], \; i < j \\
d[x_i, x_j] & \rightarrow \max(d[x_i, x_k] - d[x_j, x_k], 0) = d[x_i, x_j] \text{ because triangle inequality}
\end{align*}
\]
3.2 Realizability of Graphs

3.2.1 Main Theorem: A graph is 3-realizable ⇔ it has no minor.

Def: d-realizability ⇔ a constraint system has an embedding in x-dim ⇒ embeddable in d-dim.

G is d-realizable if $\forall \delta(E)$ [(G, E) has embedding in m-dim ⇒ G has an embedding in d-dim]

Def [Minor]: A minor of a graph G is the graph that transformed from a subgraph of G by:

- Edge deletion
- Edge contraction

Def [k-tree]: A graph is a k-tree if it can be obtained through a sequence of k-sum of K_{k+1}.

Def [partial k-tree]: subgraph of k-tree.

Theorem 1: partial $d(3)$-tree is $d(3)$-realizable.

Theorem 2: Forbidden minors of partial 3-tree is
Theorem 3: If \(G \) has a minor \(\Rightarrow G \) is not 3-realizable

Conjecture: If a graph has \(e \) edges and \(e < \frac{(d+1)(d+2)}{2} \), then \(G \) is partial \(d \)-tree. Furthermore, if \(G \) has \(e = \frac{(d+1)(d+2)}{2} \), and \(G \) is not the complete graph \(K_{d+1} \), then \(a \) is still a \(d \)-tree.