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These notes outline the basic definitions and theorems we looked at in class when studying [1]. An
intutive sketch of the proof of the main theorem is given.

1 Definitions

The following where the definitions of the basic elements of the work in this paper.

Definition 1.1. The Bandwidth Minimization problem is the following: given an undirected graph
G = (V,E), find a one-one mapping of vertices f : V → [n] whose bandwidth, which is defined to be:

max(i,j)∈E|f(i) − f(j)|, (1)

is minimum.

The Bandwidth Minimization problem is hard to even approximate on trees. In fact, it is NP-hard
to approximate it to within any constant even when the input graph is a caterpillar of maximum
degree 3.

We consider a tree T = (V,E) with n vertices and l leaves, which we root at an arbitrary vertex
r. This imposes an ancestor-descedent relationship on the vertex set of T . Let d(u, v) be the number
of edges in the unique path between u and v in T .

Definition 1.2. The capterpillar dimension of a rooted tree T denoted by k(T ) is: for a tree with
a single vertex, k(T ) ≤ k + 1 if there exists paths P1, P2, ..., Pk beginning at the root and pairwise
edge-disjoint such that each component Tj of T − F (P1) − E(P2) − ... − E(Pk) has k(Tj) ≤ k, where
T − F (P1) − E(P2) − ... − E(Pk) denotes the tree T with the edges of the Pi’s removed, and the
components Tj are rooted at the unique vertex lying on some Pi.

The collection of edge-disjoint path in the above recursive definition form a partition of E, and are
called caterpillar decomposition of T .

Definition 1.3. A tree volume Tvol(S) of a k-point metric S is a product of the lengths of the edges
of the minimum spanning tree of S.

Definition 1.4. The local density D of a graph G is defined to be maxu∈V |N(v, d)|/2d, where N(v, d)
is the set of vertices in G at distance at most d from the vertex v.

2 Theorems

To devolop some intution consider a simple algorithm for producing a linear arrangement of a rooted
tree: let φ(r) = 0 and φ(v) = d(r, v). This is not a one-to-one map, but we can make it so by arranging
the set of vertices falling on a particular position in some arbitrary or random fashion.
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This algorithm turns out to be poor since there are examples with bandwidth about sqrt(n) and
the algorithm gives O(n).

Algorithm Random Lengths: For each path Pi in the caterpillar decomposition, choose a rate Ri

independently and uniformly. For each edge in Pi, let its length be Ri. Let the dstance function using
these edge length be denoted by d′, and let φ(v) = d′(r, v)

The map φ : V → R induces a linear order on the vertices in V . The map f is the natural
conversion of φ into a map from V to [n] thus: f(i) = j if |{v ∈ V |φ(v) < φ(i)}| = j.

Theorem 2.1. The bandwidth of the output produced by Random Lengths on catilpillars is a logn
approximation to the optimal bandwidth.

Theorem 2.2. Random Lengths is a O(log2n
√

k(T ))-approximation algorithm for the bandwidth tree
problem.

The times where the algorithm does bad is when there is a tie in the ordering. The author bounds
the probability for this to happen and correspondingly the effect:

Lemma 2.3. For any set S of k points, the probability that all the points of S fall in some integer
interval is bounded above by O(

√

k(T ))k−1/Tvol(S).

The proof of the lemma uses a lemma obtained by raveling a theorem of Leader and Radcliffe:

Lemma 2.4. Let Xi be independent random variables, where Xi takes a value uniformly from the set
[di, 2di], where di ∈ Z. Then there exists a constant c ≥ 0 (independent of the di’s) such that for any
unit open iinterval I ⊂ R,

Pr(
∑

Xi ∈ I) ≤ c

(
P

d2

i )1/2

At first, we observe that any two vertices u, v ∈ S with least common ancestor r′, then d(v, r′)/d(u, r′)
lies between 1/2 and 2. This follows simply from the fact that edges are being stretched by at most a
factor of 2.

The authors then give an ordering on the vertices of S by traversal of tree T . Let S = v1, ..., vk ,
where vi is visited int this traversal before vi+1. The rate for a path is chosen when a vertex belonging
to it is visited for the first time, randomly. Finally, we fix I ∈ (a, a+1) into which v1 falls,where a ∈ Z.
The probability that vi+1 also falls into I is 3c

√

k(T )/d(vi, vi+1). This is shown by consideringthe
time at which vi is visited. We let x be the least common ancestor and vi and vi+1. Clearly, x
is distinct from both these vertices, since they both lie in S, and thus are unrelated. Hence it has
children y and z which are ancestors of vi and vi+1, respectively, and y lies to the left of z. This
implies that x and vi+1 must have still not been seen. Further, the total contribution of the paths is
d(x, vi+1) ≥ d(x, vi)/2 ≥ d(vi, vi+1)/3. Now the position of vi+1, conditional on the events up to when
vi is visited, is the sum of at most k(T ) independent random variables Xj , being the contribution of
the path between x and vi+1, and thus lying in some range [dj , 2dj ], where

∑

dj = d(x, vi+1. Thus
the chance that vi+1 lies in I iss at most 3c

√

k(T )/d(vi, vi+1).
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