Geometric Constraint II (Oct 3-19 )

Instructor: Meera Sitharam, Recorded by Jianhua Fan

Oct 23, 2006

0.0.0.1 A graph is uniquely localizable in R? if it has a unique real-
ization in R%& no nontrivial other realizations in dimension > d.

0.0.0.2 Theorem(Yinyu Ye): Ja polynomial algorithm to find a re-
alization embedding of a d-uniquely localizable graph.

Proof: setting up a semidefinite program

Lemmal: if a nontrivial realization in dimension > d & 3Ja realization in R?,
then the realization is unique.

Lemma2:
1. uniquely localizable in d<=
2. max-rank completion M to given partial matrix Mg is of rank d <—
3. solution X to given SDP satisfies M = XT X

OpenQ: Give a graph thearetic characterization of d-unique localizability.

1 theorem to cover

1.1 Schonberg’s theorem: A metric space ¢ is of 2-negative
type <it is isometrically embeddable in a Hilbert space.

recall: for 1 < p < 2, a metric space has p — negative type if f isometrically

embeddable in L,,.

1.2 Lennort Tonge Weston theorem

1.2.0.3 p — negative type — generalized roundness p.

1.3 Bourgain’s theorem: Tree metrics are not isometri-
cally embeddable in R;.

recall: they are embeddable in R;.



1.4 Weston’ s theorem

1.4.0.4 Any finite metric space w/n pts is isometrically embeddable
in L,for some p > 0 (p depending only on n)

1.5 For p > 2,n > 3, L does not have q — negative type for
any q > 0.

2 agenda
2.1 folklore theorem-symmetric positive definite metric

matrix

coyley-menger conditions

2.2 Laman’s theorem-partial metric space, embeddability
into R2, finite #of embeddings

2.3 Jackson & Jordan’s theorem-unique embeddability into
R?, generic theoretic characterization.

2.4 d — realizability (generic graph theoretic characteriza-
tion)

connely sloughter- d = 3. d = 4,5 open

2.5 realization of d unique localizable graphs (Yiu-yu Ye)

polynomial time-semidefinite program

3 Theorem

3.1 Schonberg’s theorem
3.1.1 A finite distance space §(Vi,j,0;;> 0,0;;= 0,0;; = 9;;) is isometri-

cally embeddable in Hilbert spz;ce if f Vo points,n > 2& for all
real values a7...a,, > o; = 0, Zéfj(p)aiaj < 0 =dhas 2(p) —
negative type.

folklore theorem: A finite distance § is isometrically embeddable in Hilbert
space iff the metric matrix M;; = (62, + 5 — 03;) is positive seme-
definite.’

Fact:Vm & for any submatrix M’of dimension m(w/duplication of rows and
columns allowed), < Va € R”, o M'a > 0.

lovVa e R?, aTMa>0



Theorem: a separable(countable dense set) distance space 0is embeddable into
Hilbert space if f the family of functions e M g positive definite in §.

Def: A function g(real, continuous) is positive definite over d if Voo € R, >~ ¢(d;;)a;005 >

,j=1
0.

3.1.2 Roundness

Defl: A metric space (X, d)? has roundness g, q € r(X,d), whenever Vajasbiby €
X, (5(0/10,2)(1 + 5(blbg)q S Z(S(Gibj)q

1<i,j<2

Def2: A metric space has generalized roundness ¢ when Vay ---a,by -+ - b, € X,

Y. 0aiaj) + Do 09(bibj) — > 0%(aib;) <0 (2)

1<i<j<n 1<i<j<n 1<i,5<n

Theorem I: A metric space (X, d) has generalized roundness p <it has gener-
alized roundness ¢,Vqg < p

3.1.2.1 Theorem II: A metric space has ¢ — negative type
(Vai...an Yoy =0,V{x1 -z} € X, Y 6(x;25) %05 <0) (1)
& it has generalized roundness q.

Lemma: For a metric space(X,d) the following are equivalent.
1. ¢ € ¢"(X, ), ie. (X,d)has generalized roundness g.

2. ¥n € N& all {z1--2,} C X, & all wy - wps18n,y w; = >, s;(=1if
normalization is needed),

> 0(wszy)(wi — s4)(w; — s5) <0 (3)

1<i,j<n
3.1.2.1.1 Proof of Theorem II:
=let (X,0) be g — negative type.
T1 =0a1,T3 = a2, " Tap—-1 = Gn

Ty =0by, x4 = by, - T, = b, and a3, = (—1)F V1 <k <2n

2(set of pts,pairwise distance)



since Y 0(z;xj)%a; <0, sum over :
1<i,j<n

. 4,7 (both odd),

—_

N

1,7 (both even),

w

i odd, j even,

=~

. 1 even, j odd

0>202)= > 06%asa;)+ 89(bib;) — 26%(aib;)

1<ij<n

therefore 0 > Z 5q(aiaj) + Z (5q<blb7) - Eéq(aibj)

1<i<j<n 1<i<j<n 1<i,j<n
<let (X,0) have generalized roundness g,
Take z1 - -z, € X & ;- € R, satisfying > «; =0,

if a > 0 then set corresponding wy = |ag| /> |ok|,s, =0
k
if a < 0 then set corresponding wy =0, s, = |ax| /D |akl
k

simply substitute into (3) to get (1).

3.1.2.1.2 Proof of lemma

=let (X,0) have generalized roundness p,

Take 712, € X & w1+ Wy, 818, >0, Y ow; =>. 5, = N3

construct a double — N simplex

a1 = a2 = Gy, = T1
Auwi4+1 = " Qwy+wy = T2
Qi 4+wo+1 = * " Qwy+wa+ws = T3

b1:b2:...b31:1‘1

3without loss we can assume these are natural numbers since the rations are dense in the
reals



bSIJr] = b81+82 = T2

from (2) it follows:

3 0 my)t [ | < 250 0w, w;)7 [%5]

1<ij<n

3.1.2.2 Theorem: For any p > 1, 3 a tree metric space (X,0) which
has generalized roundness < p.

Defl: A metric space (X, 0) has generalized roundness p if VnVa; - - apby - - b, €
X, >26(aia;)P+6(bibj)? < >0 6(aby)?

1<i<j<n 1<i,j<n

Def2: Given a tree T = (V, E),tree metric space is defined as (X =
V., 9), 6(v1,va) = path length between(vy, va)

Cor: For any given p > 1, not all tree metrics are embeddable into
Ly.

3.1.2.2.1 Proof:

For any p > 1, need a tree T = (V,E), with m,nodes & an n & a
double simplex a; ---ayby---b, €V, s.t

> 6(aia;)P+5(bibj)P > >° 6(aib;)?

1<i<j<n 1<ij<n



-.—.__al

/ ~ blb2.bn
as - al

.
ad a3
Take » 6(aia;) = 2,0(a;b;) =
1,6(bib;) =0, then < ;L ) 22 >n?.1P=n > #,heres:p— 1

Conjecture: Any tree metric of n points is embeddable in L, for
p=1+¢e(n)

3.1.2.3 Theorem: Every finite metric space of n points has general-

ized roundness > p(n), where p(n) = loga(1 + “Tz) ~log(72), v = (2@%,

where ¥(1) =9 (2) = 1,9(k) =v(k - 1) +¥(k—2)+1

Fact: This bound is quite tight.
3.1.2.3.1 Proof:
Proposition (base case of induction)

If (X,0)is a 4 — point metric space then generalized roundness of it
>1



case 1: s A1 = a2 =
m = T, b1:b2:"'bq:Z
am—i—l:"'an:y;bq+1:"'bn,:w

0<m,qg< g, mn—m)-d+q(n—q)-c<mqu+(n—m)ge+m(n—q)f+
(n —m)(n — ¢)v (this is true because of triangle inequality)

case2:

ap =az = ---0ap, =2
Opy41 =" Qpy =T
Api4no+1 = Qpg = Y

b1:b2:~~bn:w



Lemmal: n > 2, 0 < p < loga("5) and [a;, b, C (X,6) is a given

double simplex ordered s.t 5(a1b1) 0(asb;), Vi, j ,then for Vj, 2 < j <

n 0(ar,a;)P < SHE 4 §(bray)P

Lemma?2: consider a double simplex [az,b i, € (X,) arranged so
that §(a1b1) < 6(asb;), Vi, j. if0 < p <loga(F25) and p € g.r [a;, bi];, (internal edge)? <
(external edge)Pfor this particular simplex then p € g.rla;, bl

Theorem: If [a;,b;];_; C (X 0) is a given double — n — simplex, then
p € g.rla;, bl Vp, w.t. 0 <p<loga(1+ 2(n71))

3.1.2.4 Theorem: Vp > 1, Jtree metrics not embeddable in L,.

Vp > 1,3 tree metrics which do not have p — negative type, for (1 <
p < 2),<not embeddable in L,.
Conjecture: Ip(n) > 1, s.t all tree metrics of n points have negative type

> p(n)

Vp > 0, Jmetrics spaces whose generalized roundness & negative
type < p <3dp(n) depending only on n s.t all metric spaces of n points
have generalized roundness & negative type > p(n)

Theorem?2: Vp > 2, Lg(even for d = 3) does not have negative type ¢ Vg > 0

OpenQuestion: construct the finite double simplex that shows this. i.e that
Lf, does not have generalized roundness or negative type q.

Fact: L, does not have g negative type for ¢ > 2. (We know L, has ¢—negative
type between 1 < g < 2)

Theorem: 7 an isometric embedding of Ly in L, V1 <p < oo

OpenQuestion: construct versions even for finite subsets of L.

Theorem 1 does not imply tree metrics are not embeddable in L,
for p > 2. How about embeddability in L7

Theorem: every metric space n is embeddable in L7, where ||z||, = max |z;].
7

Proof: set
x; — dlrz], dxixe] - dmizs] - dxixg] - dzizs)
xr; — dlzjx],dxjes] - dlzz] - - dzjzy] - dzje,], 0 <

d[z;x;] — maz(d[zxg]—d [x;x], d[zz;]) = d[ziz;] because triangle inequality



3.2 Realizability of Graphs

3.2.1 Main Theorem: A graph is 3 — realizable <it has no minor

Def: d—realizability<a constraint system has an embedding in z—dim=-embeddable
in d — dim.

G is d — realizable if Vo(F) [(G, E) has embedding in m — dim=G has an
embedding in d — dim]

Def [Minor]: A minor of a graph G is the graph that transformed from a
subgraph of G by:

e Edge deletion
e Edge contraction

Def [k — tree]: A graph is a k — tree if it can be obtained through a sequence
of k — sum of K} s.

Def [partial k — tree]: subgraph of k — tree.
Theoreml: partial d(3) — tree is d(3) — realizable.

Theorem?2: Forbidden minors of partial 3 — tree is

R APL




Theorem3: If G has a minor =G is not 3 — realizable

; . (d+1)(d+2) . .
Conjecture: If a graph has e edges and e < ~——5—=, then G is partial

(d+1)(d+2)

d — tree. Furthermore, if G has e = 5

graph K1, then a is still a d — tree.

, and G is not the complete

10



