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Lecture :3D Realizability
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We will present that the forbidden minors for 3-realizable graph are K5 and
the octahedron. You can directly go to Theorem 13 and if necessary refer to
the definitions, lemmas and theorems before it.

Definition 1 A graph G is d-realizable if, given any realization py1,---,pn of
the graph in some finite dimensional Euclidean space, there exists a realization
Q1 qn i B with the same edge lengths: |p; — p;| = |¢; — q;| for all {i,5} €
E(G).

Note that in the definition of d-realizable allows edges to have length zero.
Also note that d-realizable is a property of graphs.

Definition 2 Let G1 and Gs be two graphs, both containing a K,, as a sub-
graph. The m-sum of G1 and G2, denoted G1 @ Ga, is the graph obtained by
identifying the two K,,’s.

Definition 3 A graph is m-tree if it can be obtained through a sequence of
m-sums of Ky41’s. A graph is a partial m-tree if it is a subgraph of a m-tree.

Theorem 4 All partial d-trees are d-realizable.

Definition 5 A minor of a graph G is any graph obtained from G by a sequence
of

e cdge deletions and

e edge contractions (identify the two vertices belonging to an edge and then
remove any loops or multiple edges)

Theorem 6 If a graph G is d-realizable and H is a minor of G, then H is
d-realizable.

Sketch of Proof: Zero length edges are allowed. B

Theorem 7 The forbidden minors for partial 3-trees are K5, the 1-skeleton of
the octahedron (K222), Vs and Cs x Ca(see Figure 1).

Theorem 8 K5 is not 3-realizable.

Actually, K5 is over-constrained in 3D but under-constrained in 4D.
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Figure 1: Forbidden minors for partial 3-trees

Theorem 9 The I-skeleton of the octahedron (Ka22) is not 3-realizable.

Sketch of Proof:

Assign the following values for K5 shown in Figure 2:d15 = 1,d23 = 1,d13 = 2,
d14 = \/§,d34 = \/5, d15 = d25 = d45 = 1,d26 = d36 = d46 = 1. In order to have
a solution in 3D, dsg has to be v/2 or 2. So if we let V2 < dsg < 2, then it has

no embedding in 3D but have infinite many solutions in 4D.
|

Figure 2: Ky 5 5 is not 3-realizable

The graphs Vg and C5 x Cy are 3-realizable. This leaves the possibility that
there are other graphs which are not 3-realizable but do not have K5 or the
octahedron as a minor. The following discussion will eliminate this possibility
by showing that any graph containing Vg or Cs x Cy as a minor either contains
K5 or octahedron as a minor or is 3-realizable.

Lemma 10 If any edge is added between non-adjacent vertices of Vg, the re-
sulting graph has Ks as a minor.

V_{ é} v_{8}

Figure 3: Graphs of V5 with an added edge contract to K5
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Sketch of Proof: There are two ways to add an edge to Vg up to graph
isomorphism. Refer to Figure 3, if we contract the dotted edges, the resulting
graph is K.

|

Lemma 11 If any edge is added between non-adjacent vertices of Cs x Ca, the
resulting graph has either the octahedron or Ks as a minor.

Contractsto Octahedron  Contractsto Octahedron  Contractsto K_{5}

Figure 4: Graphs of C5 x C5 with an added edge contract to octahedron or K5

Sketch of Proof:
There are three ways to add an edge to C5 x Cy up to graph isomorphism.
Refer to Figure 4, if we contract the dotted edges, the resulting graph is either

octahedron or Ks.
|

A graph H is a subdivision of a graph G if H can be obtained from G by
replacing every edge {i,j} of G with a path from vertex i to vertex j.

Lemma 12 Let H be a graph whose vertices are of mazximum degree 3. If a
graph G has H as a minor, then G contains a subdivision of H as a subgraph.

Theorem 13 The forbidden minors for 3-realizable graph are Ks and the oc-
tahedron.

Sketch of Proof:

By Theorem 4, all partial 3-trees are 3-realizable.That is, by Theorem 7, if
a graph has no minor of K5, K32 2,Vs or Cs x Cy, it is 3-realizable.

According to Theorem 6 together with Theorem 8 and Theorem 9, if a graph
has a minor K5 or K» 2o then this graph is not 3-realizable.

Now to finish the proof, let’s consider the graphs which have minor Vg or
Cs x Cy but do not have minor K5 or K3 2 2. We will prove in this case the graphs
are 3-realizable by showing it is a subgraph of 2-sum or 3-sum of 3-realizable
graphs.

Firstly consider the case that G has Vg as a minor. Note that any vertex
in Vg has degree right 3, so by Lemma 12, G has a subgraph graph which is
a subdivision of Vg and we denote it by H. Remove H from G, we will prove
that each connected component in G\ H is connected in G to exactly one of
the subdivided edge of H. One connected component may only connect to one
vertex which is the end vertex of 2 or 3 subdivided edges and we assign any
subdivided edge to this component.
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If a component did connect to two subdivided edges, say {4,j} and {k,l}.
Since Vg contains no triangles, two of the four relevant vertices(say ¢ and k)
must be non-adjacent in V5. The subdivided edges can be contracted in G so
that the path goes from ¢ to k, which contradicts Lemma 10.

Meanwhile we have the same argument with the case that G has C5 x Cs as
a minor.

Thus, we can assign a subdivided edge {i,j} to each of the components.

For any subdivided edge {3, j},we can add an edge {7, j} to G if edge {i,j}
is not in GG. So we can get a new graph by adding this kind of edges. This new
graph is the 2-sum along the edge {i,j} of smaller graphes such as V3,C5 x Cs
or partial 3-tree. So this new graph is 3-realizable. G is a subgraph of this
new graph, so G is 3-realizable. Now we discussed all the cases and finished the

proof.
|

A characterization of 3-realizable graphs is: every 3-realizable graph is a
subgraph of a graph that can be obtained by a sequence of 3-sums and 2-sums
involving K4,Vg and C5 x Cs.
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