Notes On Improved Bandwidth Approximation for Trees

July 9, 2007

These notes outline the basic definitions and theorems we looked at in class when studying [1]. An
intutive sketch of the proof of the main theorem is given.

1 Definitions

The following where the definitions of the basic elements of the work in this paper.

Definition 1.1. The Bandwidth Minimization problem is the following: given an undirected graph
G = (V,E), find a one-one mapping of vertices f : V' — [n| whose bandwidth, which is defined to be:

maz; jeplf(i) — f(7)], (1)
1S MINImMum.

The Bandwidth Minimization problem is hard to even approximate on trees. In fact, it is NP-hard
to approximate it to within any constant even when the input graph is a caterpillar of maximum
degree 3.

We consider a tree T' = (V| E) with n vertices and [ leaves, which we root at an arbitrary vertex
r. This imposes an ancestor-descedent relationship on the vertex set of T'. Let d(u,v) be the number
of edges in the unique path between u and v in 7'.

Definition 1.2. The capterpillar dimension of a rooted tree T denoted by k(T) is: for a tree with
a single vertex, k(T) < k + 1 if there exists paths Py, Pa, ..., Py beginning at the root and pairwise
edge-disjoint such that each component T; of T — F(P1) — E(P2) — ... — E(Py) has k(T;) < k, where
T — F(P)) — E(Py) — ... — E(Pg) denotes the tree T with the edges of the P;’s removed, and the
components T; are rooted at the unique vertex lying on some FP;.

The collection of edge-disjoint path in the above recursive definition form a partition of F, and are
called caterpillar decomposition of T

Definition 1.3. A tree volume Tvol(S) of a k-point metric S is a product of the lengths of the edges
of the minimum spanning tree of S.

Definition 1.4. The local density D of a graph G is defined to be maz,cv|N(v,d)|/2d, where N(v,d)
1s the set of vertices in G at distance at most d from the vertexr v.

2 Theorems

To devolop some intution consider a simple algorithm for producing a linear arrangement of a rooted
tree: let ¢(r) = 0 and ¢(v) = d(r,v). This is not a one-to-one map, but we can make it so by arranging
the set of vertices falling on a particular position in some arbitrary or random fashion.



This algorithm turns out to be poor since there are examples with bandwidth about sqrt(n) and
the algorithm gives O(n).

Algorithm Random Lengths: For each path P; in the caterpillar decomposition, choose a rate R;
independently and uniformly. For each edge in P;, let its length be R;. Let the dstance function using
these edge length be denoted by d’, and let ¢(v) = d'(r,v)

The map ¢ : V — R induces a linear order on the vertices in V. The map f is the natural
conversion of ¢ into a map from V to [n] thus: f(i) = j if [{v € V]p(v) < ¢(i)}| = 7.

Theorem 2.1. The bandwidth of the output produced by Random Lengths on catilpillars is a logn
approximation to the optimal bandwidth.

Theorem 2.2. Random Lengths is a O(log?n~/k(T))-approzimation algorithm for the bandwidth tree
problem.

The times where the algorithm does bad is when there is a tie in the ordering. The author bounds
the probability for this to happen and correspondingly the effect:

Lemma 2.3. For any set S of k points, the probability that all the points of S fall in some integer
interval is bounded above by O(\/k(T))*~1/Tvol(S).

The proof of the lemma uses a lemma obtained by raveling a theorem of Leader and Radcliffe:

Lemma 2.4. Let X; be independent random variables, where X; takes a value uniformly from the set
[d;, 2d;], where d; € Z. Then there exists a constant ¢ > 0 (independent of the d;’s) such that for any
unit open winterval I C R,

At first, we observe that any two vertices u, v € S with least common ancestor /', then d(v, ") /d(u, ")
lies between 1/2 and 2. This follows simply from the fact that edges are being stretched by at most a
factor of 2.

The authors then give an ordering on the vertices of S by traversal of tree T. Let S = vy, ..., v,
where v; is visited int this traversal before v;11. The rate for a path is chosen when a vertex belonging
to it is visited for the first time, randomly. Finally, we fix I € (a,a+1) into which v falls,where a € Z.
The probability that v;41 also falls into I is 3c\/k(T")/d(vi,vi+1). This is shown by consideringthe
time at which v; is visited. We let x be the least common ancestor and v; and v;41. Clearly, x
is distinct from both these vertices, since they both lie in S, and thus are unrelated. Hence it has
children y and z which are ancestors of v; and v;y1, respectively, and y lies to the left of z. This
implies that x and v;11 must have still not been seen. Further, the total contribution of the paths is
d(x,vi+1) > d(x,v;)/2 > d(vi,vi+1)/3. Now the position of v; 11, conditional on the events up to when
v; is visited, is the sum of at most k(7") independent random variables X, being the contribution of
the path between z and v;y1, and thus lying in some range [dj,2d;], where ) d; = d(x,viy1. Thus
the chance that v lies in I iss at most 3c\/k(T)/d(vi, vit1)-
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