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1 Embedding the diamond graph in Lp and di-

mension reduction in L1

Definition 1 G0 consists of a single edge of length 1. Gi is obtained from Gi−1

as follows. Given an edge (u, v) ∈ EGi−1
, it is replaced by a quadrilateral u,a,v,b

with edge lengths 2−i. In what follows, (u, v) is called an edge of level i−1, and
(a, b) is called the level i anti-edge corresponding to (u, v).

Lemma 2 Fix 1 < p ≤ 2 and x, y, z, w ∈ Lp. Then, ‖y−z‖2
p+(p−1)‖x−w‖2

p ≤
‖x − y‖2

p + ‖y − w‖2
p + ‖w − z‖2

p + ‖z − x‖2
p

Please refer to [2] for the proof of Lemma 2.

Lemma 3 Let Ai denote the set of anti-edges at level i and let {s, t} = V (G0),
then for 1 < p ≤ 2 and for any f : Gk → Lp,

‖f(s)−f(t)‖2
p+(p−1)

k
∑

i=1

∑

(x,y)∈Ai

‖f(x)−f(y)‖2
p ≤

∑

(x,y)∈E(Gk)

‖f(x)−f(y)‖2
p

.

Sketch of Proof: Let (a, b) be an edge of level i and (c, d) its corresponding
anti-edge. By Lemma 2, ‖f(a) − f(b)‖2

p + (p − 1)‖f(c) − f(d)‖2
p ≤ ‖f(a) −

f(c)‖2
p + ‖f(b) − f(c)‖2

p + ‖f(d) − f(a)‖2
p + ‖f(d) − f(b)‖2

p. Summing over all
such edges and all i = 0, · · · , k − 1 yields the desired result by noting that the
terms ‖f(x)−f(y)‖2

p corresponding to (x, y) ∈ E(Gi) cancel for i = 0, · · · , k−1.

Theorem 4 For any 1 < p ≤ 2, any embedding of Gk into Lp incurs distortion
at least sqrt1 + (p − 1)k.

Sketch of Proof: Let f : Gk → Lp be a non-expansive D-embedding. Since
|Ai| = 4i−1 and the length of a level i anti-edge is 21−i, apply Lemma 3 yields
1+(p−1)k

D2 ≤ 1.
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2 An elementary proof of the Johnson-Lindenstrauss

Lemma

Theorem 5 (Johnson-Lindenstrauss lemma) For any 0 < ǫ < 1 and any
integer n, let k be a positive integer s.t.

k > 4(ǫ2/2 − ǫ3/3)−1 lnn.
Then for any set V of n points in Rd, there is a map f : Rd → Rk s.t. for

all u, v ∈ V ,
(1 − ǫ)‖u − v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ǫ)‖u − v‖2.
Further this map can be found in randomized polynomial time.

Let X1, · · · , Xd be d independent N(0, 1) random variables, and let Y =
1

‖x‖ (X1, · · · , Xd). Let vector Z ∈ Rk be the projection of Y onto its first k

coordinates, and let L = ‖Z‖2. Clearly the expected length µ = EL = k/d.
Then, we have the following lemma.

Lemma 6 Let k < d. Then
(a). If β < 1 then

Pr[L ≤ βk/d] ≤ βk/2(1 + (1−β)k
(d−k) )(d−k)/2 ≤ exp(k

2 (1 − β + lnβ)).

(a). If β > 1 then

Pr[L ≥ βk/d] ≤ βk/2(1 + (1−β)k
(d−k) )(d−k)/2 ≤ exp(k

2 (1 − β + lnβ)).

Details of the proof of Lemma 6 can be found in [1].
Sketch of Proof: (Theorem 5)

Only need to consider the case d > k. Take a random k-dimensional subspace
S, and let v′i be the projection of vertex vi ∈ V into S. Then setting L = ‖v′i−v′j‖

and µ = (k/d)‖v′i−v′j‖
2, and applying Lemma 6 we have Pr[L ≤ (1−ǫ)µ] ≤ 1/n2

and Pr[L ≥ (1 + ǫ)µ] ≤ 1/n2.
Now choose the map f(vi) = (

√

(n/k)v′i. So for fixed pair i, j, the distortion
‖f(vi) − f(vj)‖

2/‖vi − vj‖
2 does not lie in the range [(1 − ǫ, 1 + ǫ)] is at most

1/n2. Using the trivial union bound, the chance that some pair of vertices

suffers a large distortion is at most

(

n
2

)

× 2/n2 = (1 − 1
n ). Hence f has the

desired properties with probability at least 1/n. Repeating this projection O(n)
times can boost the success probability to any desired constant and give us the
claimed randomized polynomial time algorithm.
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