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Abstract  

A linear arrangement of an n-vertex graph G = 
(V, E) is a one-one mapping f of the vertex set V onto 
the set In] = {0, 1 , . . . ,  n -  1}. The bandwidth of this 
linear arrangement is the maximum distance between 
the images of the endpoints of any edge in E(G).  
When the input graph G is a tree, the best known ap- 
proximation algorithm for the minimum bandwidth 
linear arrangement (which is based on the principle 
of volume respecting embeddings) outputs a linear 
arrangement which has bandwidth within O(log 3 n) 
of the optimal bandwidth. In this paper, we present 
a simple randomized O(log 2 n lov~-n)-approximation 
algorithm for bandwidth minimization on trees. 

1 Introduct ion 

The Bandwidth Minimization problem is the follow- 
ing: given an undirected graph G = (V,E), find a 
one-one mapping of the vertices f : V -~ [n] whose 
bandwidth, which is defined to be 

max I f ( i )  - l ( J ) l ,  (~,j)EE 

is minimum. This problem is equivalent to the ma- 
trix bandwidth minimization problem, which, given a 
square symmetric matrix M, seeks to find a permuta- 
tion matrix P such that P M P  T has all its non-zero 
entries in a band of minimum width about the di- 
agonal. This not only reduces the space needed to 
store the matrices, but can help speed up matrix op- 
erations such as Gaussian elimination, making this of 
much importance in many engineering applications. 
Other applications of the Bandwidth Minimization 
problem are given in [8, 3]. 

- ' - - r ~ p o r t e d  by NSF grants CCR-9505448 and CCR- 
9820951. 

In 1976, this problem was shown to be NP-hard for 
general graphs by Papadimitriou [14]. Subsequent 
work strengthened the hardness result to trees with 
maximum degree 3, and to caterpillars of hair-length 
at most 3 [5, 13], making this one of the few problems 
known to be hard even when the input graphs are 
trees of a very simple form. Furthermore, it has 
also been shown that the Bandwidth Minimization 
problem is hard to even approximate on trees. In 
fact, it is NP-hard to approximate it to within any 
constant even when the input graph is a caterpillar 
of maximum degree 3 [16]. 

On the positive side, approximation algorithms were 
known only for special classes of trees and for 
asteroidal-triple free graphs [8, 7, 9] until 1998, when 
Feige developed a O(log 4"5 n)-approximation algo- 
rithm for general graphs_~], and independently, Blum 
et al. [2] obtained O(~/n/b log n)-approximation algo- 
rithms, where b is the bandwidth of the input graph. 
Both these algorithms are based on the idea of ob- 
taining a "nice" embedding of the input graph into 
Euclidean space and then projecting down onto a ran- 
dom line. 

The embeddings used in [3] were called volume 
respecting embeddings. Subsequent improvements 
on the bandwidth problem have been achieved by 
displaying better volume respecting embeddings: 
Feige [4] gave a better analysis of his volume re- 
specting embeddings to improve the approximation 
guarantee to O(log 3"5 n ~ )  for general graphs, 
and independently, Rao [15] obtained improved vol- 
ume respecting embeddings for planar graphs and 
Euclidean graphs, which gave even better guarantees 
of O(log z n) and O(log 3 n log k) respectively for the 
Bandwidth Minimization problem on those graphs. 
This O(log 3 n) guarantee is also the best known re- 
sult for trees, which are a fortiori planar. However, 
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it is not clear how to take advantage of the struc- 
ture of trees to get simpler or bet ter  approximation 
algorithms in this framework. 

The algorithm presented in this paper is extremely 
simple by comparison: it assigns random lengths to 
the edges of the tree, and places the vertices in or- 
der of their resulting distance from some arbitrarily 
chosen vertex. We show that  this algorithm approx- 
imates the minimum bandwidth of the input tree T 
to within a factor of O(log 2 n v ~ T ) ) ,  where ~(T) is 
the caterpillar dimension of the tree T 1. Since it 
can be shown that  the caterpillar dimension of any 
n-vertex tree is at most O(log n), the performance of 
our algorithm is always within O(log 2"5 n) of optimal. 

We note in passing that  bet ter  approximation algo- 
rithms are known for some special classes of trees: 
deterministic O(log n)-approximations are known for 
caterpillars [8] and some generalizations of height- 
balanced trees [7]. Though our general analysis 
only gives an 0 (log 2 n)-approximation guarantee for 
caterpillars, we can, by a more specialized argu- 
ment, show that  our algorithm is in fact an O(logn)-  
approximation algorithms when the input is a cater- 
pillar. 

The rest of the paper is organized as follows: in 
section 2, we fix some notat ion and definitions. In 
section 3, we describe the approximation algorithm, 
which we analyze in section 4. The  analysis for the 
O(logn)-approximation guarantee for caterpillars is 
presented in section 5. Finally, more information 
about the proof of a crucial concentration bound used 
in the analysis is given in Appendix A. 

2 S o m e  d e f i n i t i o n s  

We consider a tree T = (V, E)  with n vertices and l 
leaves, which we root at an arbi t rary vertex r. This 
imposes an ancestor-descendent relationship on the 
vertex set of T. We shall also assume that  a vertex is 
its own ancestor. Finally, let d(u, v) be the number 
of edges in the unique path between u and v in T. 

The caterpillar dimension [12, 11] of a rooted tree T, 
henceforth denoted by ~(T), is defined thus: For a 
tree with a single vertex, ~(T) = 0. Else, ~(T) _< 

tThis quantity, formally defined in section 2, has been 
previously used in [11, 12, 6] to capture the "complexity" of 
trees, being, for example, 2 for caterpillars and O(logn) for 
the complete binary tree. 

k + 1 if there exist paths P1, P 2 , . . . ,  Pk beginning 
at the root  and palrwise edge-disjoint such that  each 
component  Tj of T - E(P1) - E(P2)  - . . .  - E(Pk) 
has ~(Tj) < k, where T - E(P1) - E(P2) - . . .  - 
E(P~) denotes the tree T with the edges of the P~'s 
removed, and the components Tj are rooted at the 
unique vertex lying on some P~. The collection of 
edge-disjoint paths in the above recursive definition 
form a parti t ion of E ,  and are called the caterpillar 
decomposition of T. It is simple to see that  the 
unique path  between any two vertices of T intersects 
at most 2~(T) of these paths. It can also be shown 
that  ~(T) is at  most log/, and that  a decomposition 
with the minimum value of ~(T) can be computed 
in polynomial t ime by dynamic programming (see, 
e.g., [12]). Furthermore, if t ime is at a premium, 
it is possible to compute a (possibly suboptimal) 
decomposition of value O(log n) in linear time. 

We assign the vertices of the tree to paths in the 
caterpillar decomposition in the following manner: a 
vertex v belongs to the path P if the edge connecting 
v to its parent belongs to P .  The root vertex r is 
arbitrari ly assigned to one of the paths of its children. 
This also allows us to impose an ordering on the 
children of a vertex v: the child w which lies on the 
same path  as v is defined to be its leftmost child, and 
its other  children are arbitrarily ordered after it. 

The  tree volume Tvo!(S) of a k-point metric S is a 
product  of the lengths of the edges of the minimum 
spanning tree of S (considered as a graph with the 
weight of edge (i,j) being p(i,j)). Hence, if T is any 
spanning tree of S, the product of its edge lengths of 
T is at least Tvol(S). 

The local density D of a graph G is defined to be 
max ,  ev  maxd[]N(v,d)[/2d], where N(v,d) is the set 
of vertices in G at distance at most d from the vertex 
v. It is easy to see that  this is a lower bound on the 
bandwidth of G. 

3 M i n i m u m  B a n d w i d t h  A p p r o x i m a t i o n  fo r  
T r e e s  

"Let us consider the following simple algorithm for 
producing a linear arrangement of a rooted tree: let 
~b(r) -- 0, and ¢(v) = d(r, v). Though this is not 
a one-one map, we can make it so by arranging the 
set of vertices falling on a particular position in some 
arbi t rary (or random) fashion. Unfortunately, this 
is a poor  algorithm for bandwidth, since there are 
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simple examples where the bandwidth is about v/n, 
while this algorithm gives us O(n). One such example 
is given in figure 1, where the degrees of vertices a and 
all the bi is about v/n, a is connected to each bi by a 
path of length about V~, and the children of the bi 
are the leaves. 

a 

Figure 1: A bad example for the simplest algorithms 

A simple twist to the algorithm is to give independent 
random lengths (say, from the interval [1,2]) to 
the edges to get a weighted tree (with distance 
function d'), and embed as above. Unfortunately, 
this performs very poorly on the same example given 
above. 

• The map ~b : V ~ ~ induces a linear order on 
the vertices in V. The map f is the natural 
conversion of ~b into a map from V to In] thus: 
f(i) = j  if]{v E V[  ¢(v) < ¢(i)}1 = J -  (Note 
that  this will be a one-one map with probability 
1.) 

4 The Analysis for Arbitrary Trees  

THEOREM 4.1. RANDOM-LENGTHS is an 
O(log 2 n x/r~)-approximation algorithm for 
the bandwidth problem on trees. 

Proof  of  T h e o r e m  4.1: The proof closely follows 
tha t  given by Feige [3]. The basic structure of his 
proof is sketched below. 

. 

Continuing with this idea, we again choose random 
lengths for the edges, but  instead of choosing the 
length of each edge independently, we fix a caterpillar 
decomposition of the tree and for any path P in 2. 
the decomposition, we choose a length in [1, 2] and 
assign this length to all edges lying on P. The main 
result of this paper is tha t  this extremely simple 
algorithm (which clearly runs in linear time, given the 
caterpillar decomposition) outputs an O(log 2's n)- 3. 
approximation for the minimum bandwidth problem. 

3.1 The Algorithm 

Let T = (V, E) be an unweighted undirected tree 
rooted at r. The algorithm RANDOM-LENGTHS 
outputs  a linear arrangement of T, i.e., a mapping 
/ : V ~  In]: 

Algorithm RANDOM-LENGTHS 

• For each path P~ in caterpillar decomposition, 
choose a rate P~ independently and uniformly 
in [1, 2]. For each edge in P~, let its length be 
R~. Let the distance function using these edge 
lengths be denoted by d ~, and let ¢(v) = d ~ (r, v). 

Let a integer interval be an interval (a, a + 1), 
where a is an integer. For any S C V with 
ISI = k, show that  the chance that  ¢(S) falls 
in some integer interval of unit length (and is 
called bad) is at most Fk-1/Tvol(S) for some F. 

The expected number of bad sets of size k is thus 
at most r k-1 ~s(1/Tvol(S)).  By Markov, the 
total number of bad sets is not more than twice 
this with probability at least a half. 

By Theorem 7 of [3] ,  ~-~sl/Tvol(S) < 
n(Dlogn) k-1. Substituting this into the pre- 
vious expression, we get that  the number of bad 
sets is at most n(DFlogn) k-1 with probability 
half. 

Now if the bandwidth of f is B, and the length 
of each edge is at most M, then one of the (at 
most) M + 1 integer intervals an edge spans must 
have had at least B / ( M  + 1) points in it. This 
implies that  we have at least ((B/M+l)) bad sets. 

Choosing k = log n and simplifying, B _< D x 
M r  log 2 n. Since D is a lower bound for the 
optimal bandwiclth, this gives an O(MP log 2 n)- 
approximation. 

In the previous results, both M and [' were 
O(lov/ i~) .  In lemma 4.1, we will show that  the as- 
sertion in step 1 holds for our algorithm with F = 
O ( v / ~ ) .  Since the length of any edge is at most 
M = 2, we will get the claimed approximation guar- 
antee of O(log 2 n v / ' ~ ) .  • 
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LEMMA 4.1. For any set S of k points, the probabil- 
ity that all the points of S fall in some integer interval 
is bounded above by O ( v / ' ~ - ) ) k - 1 / T v o l ( S ) .  

Before we prove this lemma, let us record a useful 
result about the distribution of sums of "well spread- 
out" variables. This is obtained by unraveling a 
theorem of Leader and Radcliffe [10], the details of 
which we defer to the appendix. 

LEMMA 4.2. Let Xi be independent random vari- 
ables, where Xi  takes a value uniformly from the set 
[di, 2di], where di E Z>o. Then there exists a con- 
stant c > 0 (independent of the d~ 's) such that for 
any unit open interval I C_ N, 

P r  Xi E <- ( ~ i  a~/) 1/2 < " 

P r o o f  o f  L e m m a  4.1: Look at the set S of k 
vertices of the tree T. Note that  no two vertices of 
T which are related to each other can fall into I ,  
and hence we can assume (w.l.o.g.) that  S has no 
ancestor-descendent pairs in it. 

An important  observation is the following: any two 
vertices in S must be at almost the same distance 
from their least common ancestor, else S can never 
be bad. More formally, for any pair u, v E S with 
least common ancestor r', it must be the case tha t  
d(v,r')/d(u,r') lies between ½ and 2. This follows 
simply from the fact tha t  edges are being stretched 
by at most a factor of 2. Thus, if the set S does not 
satisfy this property, then the vertices of S cannot 
all lie in the same unit interval. We can thus (again, 
w.l.o.g.) assume that  S satisfies this property. 

First, let us give an ordering on the vertices of S. 
Consider the inorder traversal of the tree T (where 
the ordering on the children of any node is induced 
by the caterpillar decomposition, and is defined in 
section 2), and let S = {vl ,v~, . . .  ,vk}, where vi is 
visited in this traversal before vi+l. Now let us choose 
the random rates for the paths in a delayed fashion 
based on this inorder traversal. The  rate for a path  
is chosen when a vertex belonging to it is visited for 
the first time. Finally, we choose rates for paths in 
this way until the position of vl is fixed: we now fix I 
to  be the interval (a,a + 1) into which vl falls, where 
a E Z .  

We claim that  conditional on the rates chosen 
till vi is visited, the probability that  V/+l also 
falls into I is 3c~'T') /d(vi ,Vi+l),  where c is the 
constant in lemma 4.2. This would imply that  
the chance of S being bad would be bounded 
by II~-113cv/~/d(vi ,vi+x),  which is at most 
O( /Tvol( S). 

To prove the claim, consider the time at which vi 
is visited. Let ~: be the least common ancestor 
of vl and v~+l. Clearly, x is distinct f rom both 
these vertices, since they both lie in S, and thus 
are unrelated. Hence it has children y and z which 
are ancestors of v~ and vi+l respectively, and y lies 
to the left of z. This implies that  x and z lie 
on different paths, and the path containing z and 
all the paths that  hang off it can not have been 
seen yet, and hence the paths between x and v~+l 
must have still not been seen. Further, the total  
contribution of the paths is d(x, vi+l), which by the 
above observation, is at least d(z, vl)]2, and thus 
at least d(v~,v~+l)/3. Now the position of Vi+l, 
conditional on the events up to when vi is visited, is 
a sum of at most a(T)  independent random variables 
Xj ,  being the contribution of the paths between x 
and vi+l, and thus lying in some range [dj,2dj], 
where ~ d j  ---- d(x, vi+l). By lemma 4.2, the chance 
that  Vi+l lies in I is at most c ~ ' T - ) / d ( x ,  vi+l) = 
3 c v f ~ / d ( v ~ ,  v~+l). I 

5 I m p r o v e d  Ana lys i s  fo r  C a t e r p i l l a r s  

In this section, we will show that  the algorithm given 
above has a bet ter  performance guarantee when the 
input tree is a caterpillar. 

THEOREM 5 . l .  The bandwidth o] the output pro- 
duced by the algorithm RANDOM-LENGTHS on cater- 
pillars is an log n-approximation to the optimal band- 
width. 

P r o o f :  A Caterpillar is a path P (called the 
spine) with paths {L~j}j (called hairs) at tached to 
the vertex i E P ,  and has caterpillar dimension of 
at most 2. For the sake of analysis, let us imagine 
adding paths of length 2n to either end of the spine 
to get a new caterpillar which we shall embed. Note 
that  the local density D r of this modified caterpillar 
is almost the same as the local density D of the input 
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graph. (In fact, D '  <_ D + 2.) Hence if we can show 
tha t  B < O(D'logn), we will be done. W.l.o.g., we 
can assume tha t  the (extended) spine P is given a 
unit rate, and thus is isometrically embedded along 
the real line. Again, it suffices to bound the number  
of vertices tha t  fall in some unit interval. 

Let us focus on the interval I = [ i , i +  1]. Now 
let us look at the hair L at tached to ver tex j .  If  
ILl < ~li - j[, then no vertex from tha t  hair can 
ever fall into i, else it will have at most  one vertex 
in I .  Thus there is a constant c such tha t  the 
(worst-case) number of vertices from L falling into 
I is bounded by nL = c ~ v e  L 1/d(v~, v), where the 
v~ is the vertex of P lying at position i. Thus the 
to ta l  number  of vertices in I can be bounded by 

E L  nL = c ~ v e  v 1/d(vi, v). 

I t  is easy to  see tha t  the  lat ter  sum is bounded above 
by O(D' logn),  since there are at most 2D'd vertices 
at  distance d, and thus the sum can be bounded above 
by 2D'  ~ 1/i. • 
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A P r o o f  o f  L e m m a  4.2 

P r o o f :  Let the concentration c(X) of a real-vaiued 
random variable X be the following: 

c(X) = s u p P r [ X  E (x ,  x + 1)1. 
xER 
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The following result due to Leader and Radcliffe tells 
us how the concentrat ion of a sum of independent 
random variables behaves in terms of the concentra- 
tions of the individual variables. 

THEOREM A.1. (LEADER AND RADCLIFFE [10]) 
Let Xi  be a set of t independent random variables 
such that the concentration of Xi is at most 1/di, 
where di E Z.  Then the concentration of ~ti= 1 X~ 
is at most the fraction of elements of the poser 
M ( d l , . . .  , dr) which lie in its largest antichain. 

Here, the poset M(dl ,d2 , . . .  ,dr) is the partially 
ordered set with the base elements from 1~.=1 [dl], and 

' for all the partial order given by e _ e' iff ei _< e i 
1 < i < t. To estimate the quantity mentioned, we 
can use the following result: 

THEOREM A.2. (ANDERSON [1]) The number of el- 
ements in the largest antichain in M ( d l , . . .  , dr) is 

(1.1) 
t d f n,=,, 

w = o - 1 ) )  

As a check, note tha t  if di = 2 for all i, then this says 
that  the width of the boolean lattice is O(2'~/v/'ff), 
which is indeed true. Combining these results with 
the fact that  the concentration of the Xi random 
variables is indeed bounded by 1/di in the s tatement  
of lemma 4.2 completes the proof. • 

In passing, we may mention that  the performance of 
the algorithm is unchanged if we choose discrete rates 
u.a.r, from the set {1,1 + l~, 1 +~,--2 - ,  2} instead of 
the continuous interval [1, 2]. This can be seen by the 
fact that  the concentration of the random variables is 
bounded by the same value in the discrete case, and 
that  is the only thing that  matters. The mapping 
may not be one-one any more, but any arbitrary 
breaking of ties will work just as well. 


