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Result 1:∀ p ≥ 1 l2 is embeddable into lp with constant distortion. Infact
for p = 2k where k ∈ N , l2 is isometrically embeddable.

A simple example of an l12 embedding in l21 is shown in Figure 1. Any line
parrallel to the 2 co-ordinate axis is an example of an isometric embedding
of l12 into l21. The remaining lines are examples of embeddings of l12 into l21
with constant distortion.

A formal statement of Result 1 is the following theorem by Dvoretzky,

Theorem 1. For every k ≥ 2 and every ε > 0, there exists an N =
N(k, ε) such that every normed space (X, p) with dim X ≥ N contains a
k-dimensional subspace that is ε−Euclidean.

We now look at Figiel’s proof(T. Figiel, A short proof of Dvoretzky’s
theorem on almost spherical sections of convex bodies) for this theorem.The
proof of the above theorem follows from the results of three propositions.
Before we state and prove these propositions we explain certain terms in the
above theorem.

1. N = N(k, ε): This means that N the lower bound on the dimension
of (X, p) is a function of k and ε.

2. ε−Euclidean: A normed space (X, p) is ε−Euclidean if there exists an
inner-product norm, say |.| and a constant C such that

C(1− ε)|x| ≤ p(x) ≤ C|x|,∀x ∈ X

We now introduce certain sets and give their geometric interpretation.
Consider a normed space (X, p), such that 2 ≤ dimX ≤ ∞ and the Eu-
clidean norm |.|.

1. SX = {x ∈ X : |x| = 1}. This is the l2 = 1 ball as shown in Figure 2
for dim X =2.
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Figure 1: Examples of l12 embedded in l21. The y = c1 line is an isometric
embedding of l2 into l1, while the y = x line is an embedding of l2 into l1
with a constant distortion of

√
2

Figure 2: The figure shows the geometric interpretation of the various enti-
ties described for the 2-d scenario where p=1.
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2. x⊥ = {y ∈ X : |x+y| = |x−y|}, ∀x ∈ X. This set represents a line
in 2-d(Figure 2), a plane in 3-d and a hyperplane in higher dimensions.
The vector x is perpendicular to this line or plane or hyperplane(hence
the set is denoted by x⊥).

3.
∑

X = {(x, y) ∈ SX × SX : y ∈ x⊥}. This set consists of tuples (x, y)
where x lies on the ball SX and for every such x we pair it up with all
y′s that lie at the intersection of the ball SX and the hyperplane x⊥.
Figure 2 shows this for the 2-d case.

4. λX = the normalized |.|− rotation invariant Borel measure on SX .

5. σX = the normalized |.|− rotation invariant Borel measure on
∑

X .

Definition of distance v(): v(X, p, |.|) =
∫P

X
(Dp(x)y)2p(x)−2dσX(x, y)

where Dp(x) is the gradient of the p-norm at the point x. Dp(x)y is the
inner-product of the vectors Dp(x) and y. p(x) is a convex function differ-
entiable almost everywhere. Figure 2 shows the direction of Dp(x) when
p = 1 and dimension 2.

Lets try to see if the distance v() has properties of a metric,

1. Non-negativity: v() is definitely non-negative since its an integral over
each term squared.

2. Identity: If p = |.| the integral is 0, since the direction of Dp(x) will be
along the vector x and x is perpendicular to the corresponding y ∈ x⊥

and hence the inner-product Dp(x)y is pointwise 0 ∀(x, y) ∈
∑

X . If
p 6= |.| then there are a measurable number Dp(x)y that have non-zero
value and since each term is squared the integral is positive.

3. Symmetry: Symmetry clearly exists.

4. Triangle inequality: Checking this seems non-trivial to me, so HW :).

The three propositions from which the proof of Theorem 1 follows are,

Proposition 1. There exists a sequence cn → 0 such that, for any n-
dimensional normed space (X, p) there exists an inner-product norm |.| on
X with v(X, p, |.|) ≤ cn.

Proposition 2. For any (X, p, |.|) and integer k with 1 ≤ k ≤ dimX, there
exists a subspace E of X with dim E = k and v(E, p |E , |.| |E) ≤ v(X, p, |.|).

Proposition 3. For any k, ε > 0 there exists a δ > 0 such that, if dim
E = k and v(E, p, |.|) < δ, then (E, p) is the ε−Euclidean.

Lets now prove these propositions. Before we prove Proposition 1 we
state the Dvoretzky-Rogers lemma which used in its proof.
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Lemma 1. For every normed space (X, p) with dim X = n, ∃ an integer
m > 1

2

√
n − 1 and linear operators T : ln2− > X, U : X− > lm∞ such that

‖T‖ = 1, ‖U‖ ≤ 2, T is one-to-one , and UT ((x1, ..., xn)) = (x1, ..., xm) for
(x1, ..., xn) ∈ ln2 .

Proof of Proposition 1.

Proof. Let the Euclidean norm on X be defined as |x| = ‖T−1(x)‖ln2
. If p

is differentiable at x ∈ X and y ∈ X, then |Dp(x)y| ≤ p(y) ≤ |y|. The
inequality p(y) ≤ |y| holds from the definition of norm of a linear operator
and the fact that ‖T‖ = 1, .i.e.

‖T‖ = supx
p(x)
|x|

∀x ∈ X

1 = supx
p(x)
|x|

1 ≥ p(x)
|x|

p(x) ≤ |x|

The inequality |Dp(x)y| ≤ p(y) emanates from triangle inequality, which
leads to the above set of inequalities. With this we have,

q(x) =
∫

SX∩x⊥
|Dp(x)y|2dλx⊥y

≤ 1
n− 1

sup{|Dp(x)y|2 : y ∈ SX ∩ x⊥}

≤ 1
n− 1

The last inequality in the above equation is derived from the fact that
|y| = 1 and |Dp(x)y| ≤ |y|.

Using definition of v() and lemma 1 we have,

v(X, p, |.|) =
∫

SX

q(x)p(x)−2dλX(x)

≤ 1
n− 1

∫
SX

‖U‖2‖Ux‖−2dλX(x)

=
‖U‖2

n− 1

∫
Sln2

‖UTz‖−2dλln2
(z)

≤ 4
n− 1

∫
Sln2

(max
1≤i≤

√
n

2

|xi|)−2dλln2
(z)

= cn
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The second step in the above derivation, again is from the definition of
norm for linear operators. i.e.

‖U‖ = supx
‖Ux‖
p(x)

∀x ∈ X

‖U‖ ≥ ‖Ux‖
p(x)

p(x)−2 ≤ ‖U‖2‖Ux‖−2

In third step we take ‖U‖2 outside the integral and replace x by Tz
where x ∈ X and z ∈ ln2 .

In the fourth step we use the inequality ‖U‖2 ≤ 2 and the definition of
l∞ norm.

Proof of Proposition 2

Proof. Let γ denote normalized rotation invariant measure on the Grass-
mann manifold Γ of all k-dimensional linear subspaces E of X, then we
know that,∫

P
X

f(x, y)dσX(x, y) =
∫

Γ
dγ(E)

∫
P

E

f(x, y)dσE(x, y)

On putting f(x, y) = (Dp(x)y)2p(x)−2 we see that,
v(X, p, |.|) =

∫
Γ dγ(E)

∫P
E

f(x, y)dσE(x, y) which is the expected value of
v(E, p |E , |.| |E) over all E. Thus there must exists atleast one E for which
v(E, p |E , |.| |E) ≤

∫
Γ dγ(E)

∫P
E

f(x, y)dσE(x, y) = v(X, p, |.|).

Proof of Proposition 3

Proof. We prove this result by contradiction. If Proposition 3 was false,
then ∃ numbers k, ε and a sequence (pn), n ∈ N of norms on E = lk2 such
v(E, pn, |.|) < 1

n and pn fails to be ε−Euclidean. Let S = {x ∈ E : |x| = 1}.
Assume,

supx∈Sp0(x) = 1 > 1− ε ≥ infx∈Sp0(x)

where p0(x) = limn−>∞pn(x). Let,

A = {x ∈ S : Dpn(x) exists for n ∈ N ∪ 0}
B = {x ∈ A : Dp0(x)y = 0 where y ∈ x⊥}

Since p′ns are convex, we have λE(A) = 1, limn−>∞Dpn(x) = Dp0(x)
where x ∈ A.

By Fatou’s lemma,∫P
X

(Dp0(x)y)2dσE(x, y) = 0
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Thus λ(A \ B) = 0. And so points x1, x2 ∈ S can be connected in S by
a rectifiable curve g(t), a ≤ t ≤ b, whose most points are in B. Hence,

p0(x2)− p0(x1) =
∫ b
a Dp0(g(t))(g′(t))dt = 0

which means p0 is a constant on S which is a contradiction.

The three propositions have been proved from which the theorem follows.
For completeness we state the following lemma.

Lemma 2. Let m(n) be a sequence of positive integers, such that m(n) ≤ n
and limn−>∞m(n)− > ∞ and let

α(n) =
1
n

∫
S
(max1≤i≤m(n)|xi|)−2dλ(x)

where λ is a normalized rotation invariant measure on the unit sphere S
of ln2 . Then limn−>∞α(n) = 0
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