
Geometric Constraint II (Oct 3-19 )

Instructor: Meera Sitharam, Recorded by Jianhua Fan

Oct 23, 2006

0.0.0.1 A graph is uniquely localizable in Rd if it has a unique real-
ization in Rd& no nontrivial other realizations in dimension > d.

0.0.0.2 Theorem(Yinyu Ye): ∃a polynomial algorithm to �nd a re-
alization embedding of a d-uniquely localizable graph.

Proof: setting up a semide�nite program

Lemma1: if @a nontrivial realization in dimension > d & ∃a realization in Rd,
then the realization is unique.

Lemma2:

1. uniquely localizable in d⇐⇒

2. max-rank completion M to given partial matrix MG is of rank d ⇐⇒

3. solution X to given SDP satis�es M = XTX

OpenQ: Give a graph thearetic characterization of d-unique localizability.

1 theorem to cover

1.1 Schonberg's theorem: A metric space δ is of 2-negative
type⇔it is isometrically embeddable in a Hilbert space.

recall: for 1 ≤ p ≤ 2, a metric space has p − negative type iff isometrically
embeddable in Lp.

1.2 Lennort Tonge Weston theorem

1.2.0.3 p− negative type = generalized roundness p.

1.3 Bourgain's theorem: Tree metrics are not isometri-
cally embeddable in Ri.

recall: they are embeddable in R1.
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1.4 Weston' s theorem

1.4.0.4 Any �nite metric space w/n pts is isometrically embeddable
in Lpfor some p > 0 (p depending only on n)

1.5 For p > 2,n > 3, Ln
p does not have q − negative type for

any q > 0.

2 agenda

2.1 folklore theorem-symmetric positive de�nite metric
matrix

coyley-menger conditions

2.2 Laman's theorem-partial metric space, embeddability
into R2,�nite #of embeddings

2.3 Jackson & Jordan's theorem-unique embeddability into
R2, generic theoretic characterization.

2.4 d − realizability (generic graph theoretic characteriza-
tion)

connely sloughter- d = 3. d = 4, 5 open

2.5 realization of d unique localizable graphs (Yiu-yu Ye)

polynomial time-semide�nite program

3 Theorem

3.1 Schonberg's theorem

3.1.1 A �nite distance space δ(∀i, j,δij≥ 0,δii= 0,δij = δji) is isometri-
cally embeddable in Hilbert space iff ∀n points, n ≥ 2& for all

real values α1 . . . αn

∑
αi = 0,

∑
δ
2(p)
ij αiαj ≤ 0 ⇒δhas 2(p) −

negative type.

folklore theorem: A �nite distance δ is isometrically embeddable in Hilbert
space iff the metric matrix Mij = 1

2 (δ20i + δ20j − δ2ij) is positive seme-

de�nite.1

Fact:∀m & for any submatrix M ′of dimension m(w/duplication of rows and
columns allowed), ⇔ ∀α ∈ Rn, αTM ′α ≥ 0.

1⇔ ∀α ∈ Rn, αT Mα ≥ 0
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Theorem: a separable(countable dense set) distance space δis embeddable into

Hilbert space iff the family of functions e−λt2 is positive de�nite in δ.

Def: A function g(real, continuous) is positive de�nite over δ if ∀α ∈ R,
∑

i,j=1

g(δij)αiαj ≥

0.

3.1.2 Roundness

Def1: Ametric space (X, δ)2 has roundness q, q ∈ r(X, δ), whenever ∀a1a2b1b2 ∈
X, δ(a1a2)q + δ(b1b2)q ≤

∑
δ(aibj)q

1≤i,j≤2

Def2: A metric space has generalized roundness q when ∀a1 · · · anb1 · · · bn ∈ X,∑
1≤i<j≤n

δq(aiaj) +
∑

1≤i<j≤n

δq(bibj)−
∑
δq(aibj)

1≤i,j≤n

≤ 0 (2)

Theorem I: A metric space (X, δ) has generalized roundness p ⇔it has gener-
alized roundness q,∀q ≤ p

3.1.2.1 Theorem II: A metric space has q − negative type

(∀α1 . . . αn

∑
αi = 0,∀{x1 · · ·xn} ∈ X,

∑
δ(xixj)qαiαj ≤ 0 ) (1)

⇔ it has generalized roundness q.

Lemma: For a metric space(X, δ) the following are equivalent.

1. q ∈ gr(X, δ), ie. (X, δ)has generalized roundness q.

2. ∀n ∈ N& all {x1 · · ·xn} ⊆ X, & all w1 · · ·wns1sn,
∑
wi =

∑
si(= 1 if

normalization is needed),∑
δ(xixj)q(wi − si)(wj − sj) ≤ 0

1≤i,j≤n

(3)

3.1.2.1.1 Proof of Theorem II:

⇒let (X, δ) be q − negative type.

x1 = a1, x3 = a2, · · ·x2n−1 = an

x2 = b1, x4 = b2, · · ·x2n = bn and αk = (−1)k ∀1 ≤ k ≤ 2n

2(set of pts,pairwise distance)

3



since
∑

1≤i,j≤n

δ(xixj)qαiαj ≤ 0, sum over :

1. i, j (both odd),

2. i, j (both even),

3. i odd, j even,

4. i even, j odd

0 ≥ 2(2) =
∑

1≤i,j≤n

δq(aiaj) + δq(bibj)− 2δq(aibj)

therefore 0 ≥
∑

1≤i<j≤n

δq(aiaj) +
∑

1≤i<j≤n

δq(bibj)−
∑
δq(aibj)

1≤i,j≤n

⇐let (X, δ) have generalized roundness q,

Take x1 · · ·xn ∈ X & α1 · · ·αn ∈ R, satisfying
∑
αi = 0,

if αk > 0 then set corresponding wk = |αk| /
∑
|αk| ,
k

sk = 0

if αk < 0 then set corresponding wk = 0, sk = |αk| /
∑
|αk|
k

simply substitute into (3) to get (1).

3.1.2.1.2 Proof of lemma

⇒let (X, δ) have generalized roundness p,

Take x1 · · ·xn ∈ X & w1 · · ·wn, s1 · · · sn ≥ 0,
∑
wi =

∑
si = N3

construct a double−N simplex

a1 = a2 = · · · aw1 = x1

aw1+1 = · · · aw1+w2 = x2

aw1+w2+1 = · · · aw1+w2+w3 = x3

b1 = b2 = · · · bs1 = x1

3without loss we can assume these are natural numbers since the rations are dense in the
reals
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bs1+1 = · · · bs1+s2 = x2

from (2) it follows:

∑
δ(xi, xj)q

[
wiwj+sisj

N2

]
1≤i,j≤n

≤ 2
∑
δ(xi, xj)q

[wisj
N2

]
1≤i,j≤n

3.1.2.2 Theorem: For any p > 1, ∃ a tree metric space (X, δ) which
has generalized roundness < p.

Def1: A metric space (X, δ) has generalized roundness p if ∀n∀a1 · · · anb1 · · · bn ∈
X,

∑
δ(aiaj)p+
1≤i<j≤n

δ(bibj)p ≤
∑

1≤i,j≤n

δ(aibj)p

Def2: Given a tree T = (V,E),tree metric space is de�ned as (X =
V, δ), δ(v1, v2) = path length between(v1, v2)

Cor: For any given p > 1, not all tree metrics are embeddable into
Lp.

3.1.2.2.1 Proof:

For any p > 1, need a tree T = (V,E), with mpnodes & an n & a
double simplex a1 · · · anb1 · · · bn ∈ V , s.t∑

δ(aiaj)p+
1≤i<j≤n

δ(bibj)p ≥
∑

1≤i,j≤n

δ(aibj)p
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Take , δ(aiaj) = 2, δ(aibj) =

1, δ(bibj) = 0, then
(
n
2

)
2p ≥ n2 · 1p⇒ n ≥ 1

1−2−ε , here ε = p− 1

Conjecture: Any tree metric of n points is embeddable in Lpfor
p = 1 + ε(n)

3.1.2.3 Theorem: Every �nite metric space of n points has general-

ized roundness ≥ p(n), where p(n) = log2(1+ υ2

4 ) ≈ log( n
n−1 ), υ = 2

(2n)ψ(n) ,

where ψ(1) = ψ(2) = 1, ψ(k) = ψ(k − 1) + ψ(k − 2) + 1

Fact: This bound is quite tight.

3.1.2.3.1 Proof:

Proposition (base case of induction)

If (X, δ)is a 4− point metric space then generalized roundness of it
≥ 1
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case 1: , a1 = a2 =
· · · am = x, b1 = b2 = · · · bq = z

am+1 = · · · an = y ,bq+1 = · · · bn = w
0 < m, q < n

2 , m(n−m) · d+ q(n− q) · c ≤ mqu+ (n−m)qe+m(n− q)f +
(n−m)(n− q)v (this is true because of triangle inequality)

case2:

a1 = a2 = · · · an1 = z

an1+1 = · · · an2 = x

an1+n2+1 = · · · an3 = y

b1 = b2 = · · · bn = w
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Lemma1: n ≥ 2, 0 ≤ p ≤ log2( n
n−1 ) and [ai, bi]

n
i=1 ⊆ (X, δ) is a given

double simplex ordered s.t δ(a1b1) ≤ δ(aibj),∀i, j ,then for ∀j, 2 ≤ j ≤
n δ(a1, aj)p ≤ δ(a1b1)

p

2(n−1) + δ(b1aj)p

Lemma2: consider a double simplex [ai, bi]
n
i=1 ⊆ (X, δ) arranged so

that δ(a1b1) ≤ δ(aibj),∀i, j. if0 ≤ p ≤ log2( n
n−1 ) and p ∈ g.r [ai, bi]

n
i=2 (internal edge)p ≤

(external edge)pfor this particular simplex then p ∈ g.r [ai, bi]
n
i=1

Theorem: If [ai, bi]
n
i=1 ⊆ (X, δ) is a given double − n − simplex, then

p ∈ g.r [ai, bi]
n
i=1 ∀p, w.t. 0 ≤ p ≤ log2(1 + 1

2(n−1) )

3.1.2.4 Theorem: ∀p > 1, ∃tree metrics not embeddable in Lp.

∀p > 1,∃ tree metrics which do not have p− negative type, for (1 ≤
p ≤ 2),⇔not embeddable in Lp.

Conjecture: ∃p(n) ≥ 1, s.t all tree metrics of n points have negative type
≥ p(n)

∀p > 0, ∃metrics spaces whose generalized roundness & negative
type < p ⇔∃p(n) depending only on n s.t all metric spaces of n points
have generalized roundness & negative type ≥ p(n)

Theorem2: ∀p > 2, Ld
p(even for d = 3) does not have negative type q ∀q > 0

OpenQuestion: construct the �nite double simplex that shows this. i.e that
L3

p does not have generalized roundness or negative type q.

Fact: Lq does not have q negative type for q > 2. (We know Lq has q−negative
type between 1 ≤ q ≤ 2)

Theorem: ∃ an isometric embedding of L2 in Lp ∀1 ≤ p ≤ ∞

OpenQuestion: construct versions even for �nite subsets of L2.

Theorem 1 does not imply tree metrics are not embeddable in Lp

for p > 2. How about embeddability in L∞?

Theorem: every metric space n is embeddable in Ln
∞, where ‖x‖∞ = max

i
|xi|.

Proof: set

xi → d [xix1] , d [xix2] · · · d [xixi] · · · d [xixj ] · · · d [xixn]

xj → d [xjx1] , d [xjx2] · · · d [xjxi] · · · d [xjxj ] · · · d [xjxn], i < j

d [xixj ] → max(d [xixk]−d [xjxk] , d [xixj ]) = d [xixj ] because triangle inequality
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3.2 Realizability of Graphs

3.2.1 Main Theorem: A graph is 3 − realizable ⇔it has no minor

.

Def: d−realizability⇔a constraint system has an embedding in x−dim⇒embeddable
in d− dim.

G is d − realizable if ∀δ(E) [(G,E) has embedding in m − dim⇒G has an
embedding in d− dim]

Def [Minor]: A minor of a graph G is the graph that transformed from a
subgraph of G by:

• Edge deletion

• Edge contraction

Def [k − tree]: A graph is a k − tree if it can be obtained through a sequence
of k − sum of K ′

k+1s.

Def [partial k − tree]: subgraph of k − tree.

Theorem1: partial d(3)− tree is d(3)− realizable.

Theorem2: Forbidden minors of partial 3− tree is
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Theorem3: If G has a minor ⇒G is not 3− realizable

Conjecture: If a graph has e edges and e < (d+1)(d+2)
2 , then G is partial

d− tree. Furthermore, if G has e = (d+1)(d+2)
2 , and G is not the complete

graph Kd+1, then a is still a d− tree.
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