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1 Problem Categories

2 Five Questions

1. Given graph G, characterize d for which (G, d) has a realization.
Here d are constraints, for example distance constraints.

2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

• It has �nite number of realizations.

� One realization

� Many realizations

• It has in�nite number of realizations.

4. Given G, generically characterize the realization space.

5. Given nongeneric G, with �xed or restricted d, answer question 3
and 4. Give the classi�cation and description of its realization space.

3 Working on these Five Questions

3.1 Question 1

Problem: G is a complete distance graph, �nd {d : (G, d) has a realization in Rkspace}.
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Theorem: Cayley-Menger conditions are the necessary and su�cient
conditions that (G, d) has a realization in Rkspace.

3.2 Question 4

Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.

3.3 Question 3

3.3.1 Leman's theorem: A graph G generically has only �nitely
many solutions i� the following two conditions hold:

1. ∀subgraph S ⊆ G, 2 |VS | − |ES | ≥ 3

2. 2 |VG| − |EG| = 3

3.3.1.1 General Leman theorem: A graph G = (V,E) generically has
at most �nitely many solutions i� ∃subgraph G′ = (V,E′) with E′ ⊆ E
such that

1. ∀subgraph S ⊆ G′, 2 |VS | − |ES | ≥ 3

2. 2 |VG′ | − |EG′ | = 3

3.3.1.2 De�nition of Generic

Embedding: can be understanded in the following three ways:

• (x1y1x2y2 · · ·xnyn) ⊆ R2n

• dḠ ⊆ R|VḠ|

• R2n�E2

Given (G, d) o/w dG

{(x1y1x2y2 · · ·xnyn) : (xv − xw)2 + (yv − yw)2 = d2
vw ∀(v, w) ∈ E(G)�E2}

↔
dḠ = {(xa − xb)2 + (ya − yb)2, · · · (a, b) /∈ E(G), : (xv − xw)2 + (yv − yw)2 =
d2

vw ∀(v, w) ∈ E(G)}

There is one to one map between these two sets.

Typical embedding: An embedding Q of G is generic if
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∃a small enough neighborhood of (dQ,G), dQ,G±ξ, all realization of (G, dQ,G±ξ) are rigid ⇔
Q is rigid.

Alternately, One can de�ne a small enough neighborhood of Q itself,
Require all corresponding realization to be ri�d for their correspond-
ing distance values.

3.3.1.3 Rigidity of Graph:

Def1: A Graph is rigid ∃a generic embedding that is rigid.

Def2: A Graph is rigid if all generic embeddings are rigid.

These two de�nitions turn out to be equivalent and we will give the
proof in the following notes.

Def3: A Graph is globally rigid if it is rigid &

∀generic embedding Q with distances dG,Q, Q is the unique generic realization of (G, dG,Q)

Def4: An embedding Q of G is rigid if

∃ a small enough R2n − neighborhood Qξ, such that for ∀Q′ ∈
Qξ, Q′ is a realization of (G, dQ,G) ⇔ Q′ is a rigid motion of Q.

Def5: An embedding Q of G is generic if

∃ a small enough R2n−neighborhood Qξ, such that ∀Q′ ∈ Qξ, Q′ is rigid ⇔
Q is rigid.

Question: Given a particular embedding Q ∈ R2n of G, Decide

1. is Q generic?

2. is Q rigid?

3.3.2 Jackson-Jordon theorem

for d = 2, G = (V,E) generically has an unique solution (globally rigid)
⇔G is redundantly rigid & 3-connected or it is a triangle.

Redundantly rigid: removal of any edge preserves rigidity of G.
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3.3.2.1 Hendrickson's theorem

G = (V,E) is globally rigid in d dimension ⇔G is reduntantly rigid for
d dimension & (d + 1) connected.

⇐proved

⇒Conely disproved for d ≥ 3

⇒proved (Jackson-Jordon theorem)

3.3.3 Owen's theorem

A graph is quadratically solvable ⇔it is not 3-connected.

Quadratically solving: A consraint system (G, d) is quadratically solvable if

it is triangularizable into quadratics.

⇐proved

⇒For planar graph, a graph is quadratically solvable ⇒it is not 3-
connected

⇒For general graph, open problem

4


