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1 Problem Categories

Type One

e Fixed Dimension

Partially Metric Space

Exact Realization (usually no distortion)

e Generic or Nongeneric

Embedding in Euclidian/Projective/Informal Hyperbolic Space

General or Specail (especially for nongeneric)

Special Regular Input or General Input

Combinatorial or Algebraic

Type Two

e Min Dimension
e Complete Metric Space

Distortion Allowed

Embedding in LP Space or other Metric Space

Symmetric Input or General Input

Combinatorial or Analytic

2 Five Questions

1. Given graph G, characterize d for which (G, d) has a realization.
Here d are constraints, for example distance constraints.



2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

e It has finite number of realizations.

— One realization

— Many realizations

e It has infinite number of realizations.
4. Given G, generically characterize the realization space.

5. Given nongeneric G, with fixed or restricted d, answer question
3 and 4. Give the classification and description of its realization space.

3 Working on these Five Questions

3.1 Question 1
Problem: G is a complete distance graph, find {d : (G, d) has a realization in R¥space}.

Theorem: Cayley-Menger conditions are the necessary and sufficient
conditions that (G, d) has a realization in R*space.

Proof:

3.1.1 Cayley-Menger conditions are the necessary conditions for (G, d)
has a realization in RFspace.

First let’s look at the following fact.

The following (n+1) x (n+1) matrix is a distance matrix in Rfspace,

0 1 1 1 1

1 0 dig diz - din

Lodn 0 dyz - ,volume of k + 2 simplex is 0.
1 dyy dpg - - 0

The above statement is equivalent to the following formula:

Cayley-Condition: The volume of k + 2 simplex is 0.
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Menger-Condition: The volume of smaller or equal to £+ 1 simplex
is not negetive.

0 1 1 1 1 cee

1 0 dig diz  --- dlj
Vi<k41V0lj simpiea(P1 - - Pj) = Lodn 0 doy o o | >

1 djy djp - o 0

Cayley-Menger conditions are the necessary conditions for d such
that (G,d) has a realization in R space. !

3.1.2 Cayley-Menger conditions are also the sufficient condition for
(G, d) has a realization in R* space.
Let’s first look at the following two definitions:
Take n + 1 points vy ---v, in a metric? space, put one point vy at
the origin.
Def 1. Gram matrix G;; =< v, v; > ford,j > 0.

Def 2. Metric matrix M;; = %(d%i + dgj — dfj),
Theorem

A set of n + 1 points in a metric space is realized in R* space iff
the metric matrix M;; is symmetric; has positive eigenvalues and has
rank < k.

=Proof: If n+ 1 points lie in R*, let their coordinate k x n matrix
vl .. vn

= V. Then G = VTV turns out to be exactly the

metric matrix M.

LCayley condition itself is the necessary condition that (G,d) is realizable in (Ckspace.
2it satisfies Cayley-Menger conditions, positive distances and triangle inequality.



We can verify that G is symmetric and has positive eigen values
from its definition, and G has rank at most k£ because V has rank of

k.

<Proof: We will take a metric matrix of n+1 points in some metric
space and using the fact that it is symmetric, has positive eigen values
and rank k to generate a realization in R* of M.

Step 1: We first generate a set of points in R* with coordinate
matrix X in such a way that its gram matrix will equal to M. To do
this, diagonalize M using an orthogonal matrix Y such that L = Y MY T
has the eigen value of M in its first k£ diagonal entries and zeros
elsewhere. Now take X = L2Y

Step 2: We show that X’s gram matrix G = XTX is in fact M.
G=XTX=XTX =YT(L2)(L2)Y =YTLY =M

So from proof = it will follow that metric matrix of X is in fact
M. O

More Discussion:

Proof < gives a linear algebra method for finding realization X
from metric matric M. Can our traditional method of realization
achieve the same complexity? in terms of the following two aspect:

e Defeat the combinatorial exploration of SRCC caused by 2 possible solu-
tions at each step of solving.

e Has to avoid having nested radicals of square roots

We have showed that Cayley-Menger conditions are necessary for
embeddibility in dimension K in 3.1.1, now we show that Cayley-
Menger condition(which enforce low rank, symmetric and positive
eigen values) are in fact sufficient for embedding.

O

3.2 Question 4

Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.



3.2.1 Observation: Since we only care about euclidian invariants® of
a realization, not the actual (z,y) coordinates, we can identify
completely a realization of (G, d) with sufficiently many of dis-
tance dg, i.e. a set s of distance C ds such that s|Jdg generates
the entire ring of euclidian invariants or |G| points.

Def: If polynomial P, --- P, generate ¢, if dpolynomials q1 - - - ¢, such

that Z q; P = q.
Example: for the following graph G
2

dg = {di2,da3,d14,d34} dg = {d24,d13}
di3 € [d12 — da3, d13 + das] ([d14a — d13, d1a + d3]

Let’s identify a realization with a value of d;3, while it is not com-
plete, because dg | J{d13}dose not generate all Euclidian invariants,i.e.
the map from I;,, — R?>** /euclidian group is not a real map, however,
either di3 or doy is representation of realization space that is sufficient
to decide emptyness.

3.2.2 Facts: For many applications, they need only sufficiently many
Q@ C dg constraints, so that given (Q|Jdg) forces only finitely
many possibilities for dz\ (@ in order for a realization to exist.

Ex. Decide emptyness of realization space

Ex. “Walking” or sampling configuration space, for instance of
molecules in molecular dynamics.

If the realization space represented by the distance value for (@ is
“simple”, Eg. a linear polytope, “Walking” is easy.

3distance



