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1 Problem Categories
Type One

• Fixed Dimension

• Partially Metric Space

• Exact Realization (usually no distortion)

• Generic or Nongeneric

• Embedding in Euclidian/Projective/Informal Hyperbolic Space

• General or Specail (especially for nongeneric)

• Special Regular Input or General Input

• Combinatorial or Algebraic

Type Two
• Min Dimension

• Complete Metric Space

• Distortion Allowed

• Embedding in LP Space or other Metric Space

• Symmetric Input or General Input

• Combinatorial or Analytic

2 Five Questions
1. Given graph G, characterize d for which (G, d) has a realization.

Here d are constraints, for example distance constraints.
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2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

• It has �nite number of realizations.

� One realization
� Many realizations

• It has in�nite number of realizations.

4. Given G, generically characterize the realization space.

5. Given nongeneric G, with �xed or restricted d, answer question
3 and 4. Give the classi�cation and description of its realization space.

3 Working on these Five Questions
3.1 Question 1
Problem: G is a complete distance graph, �nd {d : (G, d) has a realization in Rkspace}.

Theorem: Cayley-Menger conditions are the necessary and su�cient
conditions that (G, d) has a realization in Rkspace.

Proof:

3.1.1 Cayley-Menger conditions are the necessary conditions for (G, d)
has a realization in Rkspace.

First let's look at the following fact.

The following (n+1)×(n+1) matrix is a distance matrix in Rkspace,


0 1 1 1 1 · · ·
1 0 d12 d13 · · · d1n

1 d21 0 d23 · · · · · ·
...

...
...

... . . . ...
1 dn1 dn2 · · · · · · 0



,volume of k + 2 simplex is 0.

The above statement is equivalent to the following formula:

Cayley-Condition: The volume of k + 2 simplex is 0.
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∀(k+2)Simplex spanned by(P1···Pk+2)V olk+2(P1 · · ·Pk+2) =




0 1 1 1 1 · · ·
1 0 d12 d13 · · · d1 k+2

1 d21 0 d23 · · · · · ·
...

...
...

... . . . ...
1 dk+2 1 dk+2 2 · · · · · · 0




=

0

Menger-Condition: The volume of smaller or equal to k+1 simplex
is not negetive.

∀j≤k+1V olj simplex(P1 · · ·Pj) =




0 1 1 1 1 · · ·
1 0 d12 d13 · · · d1j

1 d21 0 d23 · · · · · ·
...

...
...

... . . . ...
1 dj1 dj2 · · · · · · 0



≥ 0

Cayley-Menger conditions are the necessary conditions for d such
that (G, d) has a realization in Rk space. 1

3.1.2 Cayley-Menger conditions are also the su�cient condition for
(G, d) has a realization in Rk space.

Let's �rst look at the following two de�nitions:

Take n + 1 points v0 · · · vn in a metric2 space, put one point v0 at
the origin.

Def 1. Gram matrix Gij =< vi, vj > for i, j > 0.

Def 2. Metric matrix Mij = 1
2 (d2

0i + d2
0j − d2

ij).

Theorem

A set of n + 1 points in a metric space is realized in Rk space i�
the metric matrix Mij is symmetric; has positive eigenvalues and has
rank ≤ k.

⇒Proof: If n + 1 points lie in Rk, let their coordinate k × n matrix


v1 · · · vn

... . . . ...
. . . · · · · · ·


 = V . Then G = V T V turns out to be exactly the

metric matrix M .
1Cayley condition itself is the necessary condition that (G, d) is realizable in Ckspace.
2it satis�es Cayley-Menger conditions, positive distances and triangle inequality.

3



We can verify that G is symmetric and has positive eigen values
from its de�nition, and G has rank at most k because V has rank of
k.

⇐Proof: We will take a metric matrix of n+1 points in some metric
space and using the fact that it is symmetric, has positive eigen values
and rank k to generate a realization in Rk of M .

Step 1: We �rst generate a set of points in Rk with coordinate
matrix X in such a way that its gram matrix will equal to M . To do
this, diagonalize M using an orthogonal matrix Y such that L = Y MY T

has the eigen value of M in its �rst k diagonal entries and zeros
elsewhere. Now take X̃ = L

1
2 Y

Step 2: We show that X̃'s gram matrix G = X̃T X̃ is in fact M .

G = X̃T X̃ = XT X = Y T (L
1
2 )(L

1
2 )Y = Y T LY = M

So from proof ⇒ it will follow that metric matrix of X is in fact
M . ¤

More Discussion:

Proof ⇐ gives a linear algebra method for �nding realization X
from metric matric M . Can our traditional method of realization
achieve the same complexity? in terms of the following two aspect:

• Defeat the combinatorial exploration of SRCC caused by 2 possible solu-
tions at each step of solving.

• Has to avoid having nested radicals of square roots

We have showed that Cayley-Menger conditions are necessary for
embeddibility in dimension K in 3.1.1, now we show that Cayley-
Menger condition(which enforce low rank, symmetric and positive
eigen values) are in fact su�cient for embedding.

¤

3.2 Question 4
Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.
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3.2.1 Observation: Since we only care about euclidian invariants3 of
a realization, not the actual (x, y) coordinates, we can identify
completely a realization of (G, d) with su�ciently many of dis-
tance dḠ, i.e. a set s of distance ⊆ dḠ such that s

⋃
dG generates

the entire ring of euclidian invariants or |G| points.
Def: If polynomial P1 · · ·Pn generate q, if ∃polynomials q1 · · · qn such

that
∑

qiPi = q.
Example: for the following graph G

1

2

3

4

dG = {d12, d23, d14, d34} dḠ = {d24, d13}
d13 ∈ [d12 − d23, d13 + d23]

⋂
[d14 − d13, d14 + d13]

Let's identify a realization with a value of d13, while it is not com-
plete, because dG

⋃{d13}dose not generate all Euclidian invariants,i.e.
the map from Id13 → R2×4�euclidian group is not a real map, however,
either d13 or d24 is representation of realization space that is su�cient
to decide emptyness.

3.2.2 Facts: For many applications, they need only su�ciently many
Q ⊆ dḠ constraints, so that given (Q

⋃
dG) forces only �nitely

many possibilities for dḠ�Q in order for a realization to exist.
Ex. Decide emptyness of realization space

Ex. �Walking� or sampling con�guration space, for instance of
molecules in molecular dynamics.

If the realization space represented by the distance value for Q is
�simple�, Eg. a linear polytope, �Walking� is easy.

3distance
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