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1 Problem Categories

2 Five Questions

1. Given graph G, characterize d for which (G,d) has a realization.
Here d are constraints, for example distance constraints.

2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

e It has finite number of realizations.

— One realization

— Many realizations

e It has infinite number of realizations.
4. Given G, generically characterize the realization space.

5. Given nongeneric G, with fixed or restricted d, answer question 3
and 4. Give the classification and description of its realization space.

3 Working on these Five Questions

3.1 Question 1

Problem: G is a complete distance graph, find {d : (G, d) has a realization in R¥space}.



Theorem: Cayley-Menger conditions are the necessary and sufficient
conditions that (G, d) has a realization in R¥space.

3.2 Question 4

Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.

3.3 Question 3

3.3.1 Leman’s theorem: A graph G generically has only finitely
many solutions iff the following two conditions hold:

1. Vsubgraph S C G, 2|Vs| — |Es| >3
2. 2|\Vg| = |Eg] =3
3.3.1.1 General Leman theorem: A graph G = (V, E) generically has

at most finitely many solutions iff Isubgraph G’ = (V,E') with &' C E
such that

1. Vsubgraph S C G', 2|Vg| — |Es| > 3
2. 2|\Vg/|— |Eg| =3
3.3.1.2 Definition of Generic

Embedding: can be understanded in the following three ways:

b (wlyleyQ ce »Lnyn) - R2"
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Given (G,d) o/w dg
{(@1yizoye - 2ayn) + (20 = 20)® + (Yo — yu)* = &3, V(v w) € E(G)\E2}

<

dg = {(za — Ib)2 + (Yo — yb)27 <+ (a,b) ¢ BE(G), : (zy — 17111)2 + (Yo — yw)2 =
3, V(v,w) € E(G)}

There is one to one map between these two sets.

Typical embedding: An embedding @ of G is generic if



Ja small enough neighborhood of (dg,c), dg,c+e, all realization of (G,dg,q+¢) are rigid <
Q is rigid.

Alternately, One can define a small enough neighborhood of @ itself,

Require all corresponding realization to be rifid for their correspond-
ing distance values.

3.3.1.3 Rigidity of Graph:
Defl: A Graph is rigid da generic embedding that is rigid.

Def2: A Graph is rigid if all generic embeddings are rigid.

These two definitions turn out to be equivalent and we will give the
proof in the following notes.

Def3: A Graph is globally rigid if it is rigid &

Vgeneric embedding @ with distances dg,g, Q s the unique generic realization of (G,da,q)

Def4: An embedding @ of G is rigid if

3 a small enough R®" — neighborhood Q¢, such that for YQ' €
Qe, Q' is a realization of (G,dg,¢) < Q' is a rigid motion of Q.

Def5: An embedding @ of G is generic if

3 a small enough R*" —neighborhood Q¢, such that VQ' € Q¢, Q' is rigid <
Q is rigid.

Question: Given a particular embedding @ € R?" of G, Decide
1. is Q generic?
2. is Q rigid?

3.3.2 Jackson-Jordon theorem

for d =2, G = (V, E) generically has an unique solution (globally rigid)
<G is redundantly rigid & 3-connected or it is a triangle.

Redundantly rigid: removal of any edge preserves rigidity of G.



3.3.2.1 Hendrickson’s theorem

G = (V, E) is globally rigid in d dimension <G is reduntantly rigid for
d dimension & (d + 1) connected.

<proved

=Conely disproved for d > 3

=proved (Jackson-Jordon theorem)

3.3.3 Owen’s theorem
A graph is quadratically solvable <it is not 3-connected.

Quadratically solving: A consraint system (G, d) is quadratically solvable if
it is triangularizable into quadratics.

<proved

=For planar graph, a graph is quadratically solvable =it is not 3-
connected

=For general graph, open problem



