2.4. Infinitesimal and Generic Rigidity. For F C K, we define the de-
vendency number of E to be the number of independent relations among the
‘ows of R(p) corresponding to E or, equivalently, as the dimension of S(E); we
lenote it by dn(E). We define the degree of freedom of E to be the dimension
o V(E) minus the dimension of D(£) and denote it by df(E).

THEOREM 2.4.1. Let V, the general embedding p of V into R™ and E C K
je given.
a. dn(E) = 0, with equality if and only if E is independent.
b. df(E) = 0, with equality if and only if E is rigid.
c. If |VIE)| 2 m, then |E| =m|V(E)| - (m;'l’} +dn(E) — df(F).
AP IVCEN < (m 4+ 1), then du(E) = 0, (i.e. E is independent) and
di(E) = (V1B . |,

PROOF. Parts a and b follow at once from the delinitions of dn(£) and df(E).
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Assume |V (FE)| = n > m. By the corollaries to Theorems 2.3.1 and 2.3.2, we
have:

df{E) = dim(V(E))— dim(D(E))
= [nm - |E|+dn(E)] - [m(n — V(E)]) + (m: l)}

1
m|V(E)| — |E| - (’m: ) +dn(F).

Il

Now assume |V(E)| < m + 1. By Lemma 2.2.1c, E is independent and
dim(§) = 0. Thus, by Corollary 1 to Theorem 2.3.1, dim{V(E)) = nm — |E|.
Similarly, dim(D(£)) = dim(V(K(V(E))) = mn — (}) and part d follows by
direct computation. [

Theorem 2.4.1 can be used to produce most of the standard theoretical results
about infinitesimal rigidity. However, we will prove these results later in a more
general setting. Hence, we will not pursue this investigation beyond using this
result to prove the rigidity result parallel to Theorem 2.2.1 and to demonstrate,
with the following exercises, the relationship between stresses and infinitesimal
motions in working with specific examples.

CoOROLLARY 2.4.1. If a framework (V(E), E,p) is infinitestmally rigid for
some general embedding p of V into R™ then (V(E), E,q) is infinitesimally
rigid for all generic embeddings q of V' into R™.

PRroOF. Let df,(E), dfq(E), dup(E) and dng(F) denote the degree of free-
dom and dependency number of E with respect to the embeddings p and q, where
p is any general embedding of V' into R™ and q is any generic embedding of V into
R™. We wish to show that df;(£) = 0 implies that df4(E) = 0. If [V(E)| < m,
we have from Theorem 2.4.1d: df4(E) = [V(E)|(|V(E)| — 1)/2 — |E| = dfp(E).
Now assume that |V (E)| > m. Similarly, from Theorem 2.4.1c we get that

dng(E) — dfp(E) = dng(E) — dfy(E).

Since q is a generic embedding, dnp(E) > dng(F) (see Exercise 2.25 below).
Hence, df,(E) > df(E) > 0. O

This result leads us to define an edge set F to be generically rigid (for dimen-
sion m) if it is rigid with respect to all generic embeddings into m-space and to
reformulate the corollary:

COROLLARY 2.4.2. If a framework (V(E), E,p) is infinitesimally rigid for
some general embedding p of V' into R™ then F is generically rigid for dimension
m.



2.6. Isostatic Sets. In the next chapter, we will prove that any matroid is
uniquely determined by its collection of independent sets or its rank function.
We will also show that the abstract rigidity matroids are uniquely determined by
the collection of those independent sets which are rigid. Such edge sets are called
wostatic. In the next lemma we state some of the useful facts about isostatic
sets.

LeMMA 2.6.1. Let V be a given finite set, let E C K = K(V) and consider
an m-dimensional abstract rigidity matroid for V.
a. Assume that |V(E)| < (m-+1). Then E is independent; furthermore, F
is Tigid, and hence isostatic, if and only if E = K(V(E)).
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b. Assume that |V(E)| = (m + 1) and thet E is isostatic. Then:
() B = m|V (E)| - (")
(ii) Each vertex of (V(E), E) has valence at least m;
(iil) (V(F), F) has a vertex with valence less than 2m.
c. Assume that |V(E)| = (m+1). Then, if any two of the following con-
ditions hold, all three hold and E is isostatic.
) 1B = m|V(B)] - ("");
(ii) E is independent;
(iil) E is rigid.

Proor. Part a: Let |[V(E)| < (m + 1). By Lemma 2.5.6b, r(K(V(E)) =
|[K(V(E))|- By Lemma 2.5.5a K(V(E)) is independent; then by, Lemma 2.5.5¢,
E is independent. For any (4, 7) € (K(V(E))—E), EU{(Z, 7)} is also independent
and, hence, (¢, j) € (£). We conclude that (E) = E. It follows at once that E is
rigid, and hence isostatic, if and only if E = K(V(E)).

Part b: Now let |V (E)| be greater than m and assume that E is isostatic.
Since E is independent, |E| = r(E) (Lemma 2.5.5a). Since E is rigid, r({E)) =
r(K(V(E))) = m|V(E)| — (m;rl) (Lemma 2.5.6b). By Lemma 2.5.5f, r(F) =
7({£)). Combining these inequalities gives |E| = m|V(E)| — (™).

Suppose that (V(E), E) contained a vertex i of valence less than m. Let
U=V(E)-{i}; let F = E(U); let H=F —F. We have |H| < m and
U] = |[V(E)| —1 and V(F) C U. We have by Theorem 2.5.4 that |F| <
m|V(F)| = (™). Combining this and the fact that V(F) C U, we have:

El= 1P+t < v ()= (" )+ m-)
< - ("5 P+ -y

m—+ 1

v -1~ ("3 1+ m -

[m|V(E)| — (m; 1)} — 1, contradiction!

Thus E every vertex in E has valence at least m.
Finally, we note that the sum of the valences of the vertices in (V(E), F) is
2|E|. Hence, the average valence is:

mV(E)| - (") _, (7))

|E]
= =2m —
IV(E)|

V(E)| V(E)
Thus, the average valence is less than 2m and there must be a vertex of valence
less than 2m.
The proof of part ¢ is left as an exercise for the reader. [




THEOREM 2.6.1. Let the finite set V' and the positive integer m be given and
let A, be an m-dimensional abstract rigidity matroid for V. Let F C K = K(V)
be an isostatic set in A, and let E be a 0-extension of F with V(FE) C V. Then
E is isostatic in A,,. Conversely, if E is isostatic in A, and (V(E), FE) has a
vertex of valence m, then E is a 0-extension of some isostatic set in A,,.

ProoF. Let U be an m-subset of V(F'), i € (V-V(F))and E = FU{(#,j)|j €
U}. Assume that F' is isostatic. Since |V (F)| > m, we have, by Lemma. 2.5.6b,

|F| = r(F)=m|V(F)| - (m; 1),
By Lemma 2.5.6,
r(B) =r(F)+m=m(V(F)|+1) - (mgl) = m|V(E)| - (m; 1).

By direct computation,

Bl=1Fl+m=m(v()+0) - ("5 1) =mveen - (")

By Lemma 2.5.5a, E is independent and then, by Lemma 2.6.1c, F is isostatic.
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Conversely, if E is isostatic, then F as a subset of F is independent. But
then, by a direct count and Lemma 2.6.1c, we conclude that F is isostatic. O

COROLLARY 2.6.1. Let the finite set V and the positive integer m be gwen and
let A, be an m-dimensional abstract rigidity matroid for V. Let F C K = K(V)
be independent in A,, and let E be a 0-extension of F with V(E) C V. Then
E is independent in A,,. Conversely, if E is independent in A,, and (V(E), E)
has a vertez of valence m, then E is a 0-extension of some independent set in

Ay

COROLLARY 2.6.2. Let the positive integers m and h and the finite set V,
with [V| > m + h, be given and consider A,,, an abstract rigidity matroid for
V. Let Uy be an m-subset of V, let i1, ... i, be distinct vertices in V — Uy. Let
Ey = K(Up) and, forj =1,... ,h, let E; be a O-extension of Ej_1. Then, for
J=1,...,h, E; is isostatic in A,,.



THEOREM 3.11.3 (SEE LEMMA 2.6.1). Let V' be a finite set, let £ C K =
K(V) and consider an m-dimenstonal abstract rigidity matroid for V.
a. Assume that [V(E)| < (m+1). Then E is independent; furthermore, E
is rigid, and hence isostatic, if and only if B = K(V(E)).

b. Assume that |V(E)| 2 (m+ 1) and that £ is isostatic. Then:
() 1Bl = mlV(E)| - (")
(i1) Each verter of (V(E), E) has valence at least m;
(i) (V(E), E) has a vertex with valence less than 2m.
c. Assume that |V(E)| = (m + 1). Then, if any two of the following con-
ditions hold, all three hold and E is isostatic.
() B = mlV(B)| - ("F);
(ii) E is independent,
(iil) E s rigid.

This theorem has a useful corollary not included in Chapter 2, but included
here.

COROLLARY 3.11.1. Let the finite set V' be given, let E C K = K(V), and
consider an m-dimensional abstract rigidity matroid for V. Then E is rigid if
and only if either |V(E)| < m+1 and E = K(V(E)) or |V(E)| > m+1 and
r(E)=m|V(E)| - (’;’)



THEOREM 4.1.1. Let Ay be a 2-dimensional abstract rigidity matroid on n
vertices. The following are equivalent:
(i) Az = Ga(n);
(ii) Ap has the 1-extendability property;
(i) The independent sets of Aa are those sets which satisfy Laman’s condi-
tion;
(iv) Al eycles of As are rigid;
(v) For any closed set E of Ay with cliques E, ..., E, r(E£) = r(Ey) +
s r(Ey);
(vi) 7(E) = min Zfﬂ(Q\V(Ei” — 3), where the minimum is taken over all
collections {E,} of nonempty sets such that E = UE,.

While developing this theory of planar rigidity, we will also consider which
results about graph connectivity have analogous formulations in terms of rigidity
in dimension 2.

In the closing section of Chapter 3, we listed all of the results produced to
date about abstract rigidity matroids. Here we summarize those results as they
apply in dimension two. It is left to the reader to verify the accuracy of this
summary and to fill in a few missing, but elementary proofs.



4.2. Combinatorial Characterizations of Gy(n). In Exercise 4.3 above
we saw that the generic rigidity matroid is not the only 2-dimensional abstract
rigidity matroid. Our goal is to characterize generic rigidity in the plane and our
first step is to relate I-extendability to Laman’s condition.

LEMMA 4.2.1. Let V' be a finite set and let Ay be any 2-ditnensional abstract
rigidity matroid for V that satisfies the 1-extendability property. Then E C K is
independent in Ay if and only if E satisfies Laman’s condition for dimension 2.

Proor. By Theorem 2.5.4 we need only prove that every edge set £ which
satisfies Laman’s condition for dimension 2 is independent in 4,. We give a proof
by contradiction. Suppose that F is a vertex and edge minimal dependent set
which satisfies Laman’s condition. By minimality, £ has no vertex of valence 1 or
2, 50 £ has a vertex v of valence 3. Let F' = F—v and denote the set of neighbors
of v by N = {r,y,z}. We have K(N) ¢ F, since otherwise K(N 4 v) C E and
tetrahedra violate Laman’s condition. Moreover, K(N) C (F), since otherwise
we have I + (z,y), say, is independent and £ is a 1-extension of F + (z,y) and
s0 15 also independent. For e € K(N), define X, € F to be the minimal set such
that e € (X.). If X, # e, then e € X, and X, + ¢ is a minimal set violating
Laman’s Condition. So |X.| = 2|V(X,)| — 3, hence {X.) = K(V(X,)). Thus
(Xey UXe, UXe,) = (Xe, UX, UX,, U{er, e2,e3}) = K(V(X,, UX,,UX,,)) by
axiom C6. We conclude that (X., UX,, UX,,) is rigid. But, X, UX,, U X, is
also independent. Hence, we have |X,, UX,, UX,, | = 2|V (X,, UX., UX.,)|—3.
But then it follows that (X., U X., U X.,) + v violates Laman’s Condition, a
contradiction. [

The preceding lemma serves to characterize Go(n) combinatorially, and the
following theorems are immediate consequences.

THEOREM 4.2.1 (LAMAN’S THEOREM). Let V be a finite set and let Go(n) be
the 2-dimensional generic rigidity matroid for V. Then E C K is independent
(isostatic) in Go(n) if and only if E satisfies Laman’s condition for dimension 2
(and |E| = 2|V(E)| - 3).

THEOREM 4.2.2. Gy(n) is the unique mazimal 2-dimensional abstract rigidity
malroid on n vertices.

THEOREM 4.2.3. Let V' be a finite set and let Ay be any 2-dimensional abstract
rigidity matroid for V.. Then Ay is the 2-dimensional generic rigidity matroid
for Vif and only if Ay satisfies the 1-extendability condition.



