Characterizing graphs with convex
and connected Cayley
configuration spaces



GOAL : efficient representations of realization spaces (EDCS)
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* the set of realizable distance assignments
=> Cayley configuration space.




efficiency is based on;

* convexity of the Cayley configuration space

* connectedness of the Cayley configuration space
* sampling complexity

* realization complexity

* generic completeness



nonconvex, disconnected example
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(a) parameter is chosen to be the dashed non-edge

(b) the realization p(v,) can lie in either of the two solid arc segments

(c) disconnected 2D Cayley configuration space on the non-edge (v,,v;)



definitions

Euclidean Distance Constraint System (EDCS) (G, 6) :

graphG=(V,E) + an assignment of distances 6(e)

d-dimensional realization :
the assignment p
points in R => verticesin V s.t.

distance equality constraints are satisfied

6(u,v) = || p(u) = p(v) [



definitions

F: achoice of non-edges of G
67(f): distance value that the non-edge f € F can take
67(F): &67(f) tuples
augmented EDCS: ( GUF, &(E), 67(F))
¢9:(G, 8): set of 67(F) s.t. augmented EDCS has a realization in R¢

¢9:(G, 8): Cayley configuration space



1 '1 | Using the triangle (v1,v4,v5) inequalities:
..a, Ay :3 0 < 6*( f1_4) <

. 1 4.* Using the triangle (v2,v3,v4) inequalities:
& = 0<67(fyy)<2

In order to let augmented EDCS has a realization;
triangle (v1,v2,v4) inequalities should be satisfied:

6 (f,)+67(f,,)>1
&5 fia) - &5 f,4)<1
&5 f4) - &5 fia)<1




efficiency measure

generic completeness:

 GUFisrigid :
each configuration => at most finitely many Cartesian realizations
* GUF is not overconstrained :

full measure, at most as many parameters as DOF of G.

=> GUF is wellconstrained i.e., minimally rigid.



efficiency measure
sampling complexity:

 computing the set of non-edges F

* the description of the Cayley configuration space ¢¢.(G, 6)
the coefficients in the polynomial inequalities

* the descriptive algebraic complexity
number, terms, degree etc of the polynomial inequalities

sampling = walking through configurations in $9(G, 6)
$9-(G, 8) as a semi-algebraic set

polynomial inequalities to describe this semi-algebraic set



efficiency measure

realization complexity:

efficient map:
parametrized sample configuration => Cartesian realizations



graph-theoretic, forbidden minor characterizations
for 2D and 3D EDCS that capture :

* the class of graphs that always admit efficient
Cayley configuration spaces

* the possible choices of representation parameters
that yield efficient Cayley configuration spaces for a
given graph.



* Let G, and G, be two graphs, both containing a
K., as a sub-graph. The m-sum of G, and G, is the
graph obtained by identifying the two K_'s.

* A graph is m-tree if it can be obtained through
a sequence of m-sums of K__,’s.

* A graph is a partial m-tree if it is a sub graph of

a m-tree. P




solid edges is an underconstrained
partial 2-tree
with dashed edges is a 2-tree.

A 2-sum of five minimal 2-sum components

Middle 2-sum component is a partial 2-tree - ’ "Nt

but the entire graph is not a partial 2-tree

The union of the middle component with
any other component is also a 2-sum
component but not minimal.




characterization of graphs

Theorem 5.10

(a) For a graph G = (V,E), the following four statements are equivalent:
1. Fa non-empty set of F s.t. for all 6, $*-(G, &) is connected,

2. 3a non-empty set of F s.t. for all 6, $°.(G, &;) is convex;

3. Fa non-empty set of F s.t. for all 6, d*.(G, &;) is a linear polytope.

4. G has a 2-sum component that is an underconstrained partial 2-tree.

(b) An underconstrained graph G always admits a generically complete
linear polytope, connected or convex Cayley configuration space if and
only if every underconstrained 2-sum component of G is a partial 2-tree.



characterization of parameters

Theorem 5.11

Given a graph G = (V,E) and non-empty set of non-edges F, the 2D
Cayley configuration space ¢2:(G, 6;) is a linear polytope, connected
or convex for all 6 if and only if all the minimal 2-Sum components of
G UF containing any subset of F are partial 2-Trees.

Furthermore, the Cayley configuration space is generically complete if
and only if all the underconstrained minimal 2-sum components of G
are partial 2-trees and all the minimal 2-sum components of G UF
containing F are 2-trees.
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Theorem 5.1

Given a graph G = (V,E) and a non-edge f, the Cayley
configuration space $*-(G, 6;) is a single interval for all § if and
only if all the minimal 2-sum components of GU f that contain f
are partial 2-trees.



proof of Theorem 5.1

=> direction
A :  %(G, 6;) is a single interval for all 6
B : allthe minimal 2-sum components of GU f that contain f are
partial 2-trees.
C : Gcan bereduced to the base cases by edge contractions
Theorem 5.2:  IFFB, THEN C
Lemma 5.5 : IF C, THEN A

=> |FB, THEN A
=> |FA, THENB
=>direction of Theorem 5.1



Theorem 5.2

Given graph G = (V,E) and a non-edge f, G can be reduced to the base
cases below by a sequence of edge contractions (no edge removals) if
and only if there exists a minimal 2-Sum component of GU f
containing f that is not a partial 2-tree. W

Base Case 1 u,, Base Case 2

Lemma 5.5

In both base cases, there exists 6 s.t. $%(G, 6) is not connected.



proof of Theorem 5.2
=> direction
B : allthe minimal 2-sum components of GU f that contain f are

partial 2-trees.
C : Gcan bereduced to the base cases by edge contractions

=>direction of Theorem 5.2:  IFC, THEN B
= IFB, THEN C

Fact : partial 2-trees do not have K, minors
Observation : K, exists as a minor in both base cases.

edge contraction

minor is a graph that can be
obtained by zero or more edge
contractions on a subgraph of G.




proof of Theorem 5.2
<=direction

B : allthe minimal 2-sum components of GU f that contain f are
partial 2-trees.

C : Gcan bereduced to the base cases by edge contractions

<=direction of Theorem 5.2:  IFB, THEN C

Proof by induction:
- The statement is true for the 2 base cases.
- Assume the statement is true for |V| < n -1; prove it for |V| =n.

* GUf isa 2-sum component of GUf, 1<i<k  — ¢y

e assume G,Uf is not a partial 2-tree
,.qi‘if';.:.-:;.«t‘f".j T ek

*Case k> 1: e

by indUCtion G:[Uf iS redUCible tO any base cases.
then contract rest G; s.t. G falls into base case 2. il



Casek=1: -If G,Ufis not GUf, follows induction. W
- If G, Uf is GUf; == direction

| = the maximum number of disjoint paths between v1 and v2

[Subcase | £ 1]: .
-say G_U (v1, v3) is not a partial 2-tree Ca \ Cb
-follow induction
l;‘“'""'““'“""“‘“"(‘;‘1 ____________________ = U'Z

[Subcase | 2 2]:

this path has to exist since k=1

o ‘ _____ = contract the edges
“ s.t. it converts the graph below
i while preserving the non-edge
iy W S i




Lemma 5.6
If G = (V,E) is the 2-sum of G, = (V,, E, ), then for any &,

(G, 6) has a realization if and only if each (G;, 6), (6 restricted to the
edges in G;) has a realization.

Lemma 5.7

Take a graph G = (V,E) with 2-sum components G, = (V,, E; ), and a
non-edge set F that is entirely contained in an arbitrary one of the
G,=(V;, E;), say G,. Then for any 6,

either  $%(G, 8) = d%(G,, 8) if all the $*L(G., 6)’s are non-empty

or d%(G, 8) is empty.



Lemma 5.8

(a) If a graph G = (V,E) has a 2-sum component G'= (V' E’) that is an
underconstrained partial 2-tree,

then there exists a nonempty non-edge set F entirely in G' such that
forany 6, $2(G, 8) is a linear polytope.

Moreover, there is such a set F such that ¢*.(G', 6) is generically
complete for G',

(b) If a graph G = (V,E) is an underconstrained partial 2-tree,
then for any nonempty nonedge set F'that preserves (V, EUF') as a
partial 2-tree, and for all 5, &% (G, ) is a linear polytope.



proof of Lemma 5.8

(a)
e 2-tree is minimally rigid by Laman
find such an F that completes “partial 2-tree” to “2-tree”
e 2-tree can be written as the 2-sum of triangles
thus ¢%.(G', ) is a linear polytope.
by Lemma 5.7, %G, 6) is also linear polytope.
(b)

take any subset of F' of such an F

d?% (G, 6) is the projection of $%.(G, ) on F’



definitions
A graph H always admits universally inherent connected or convex
Cayley configuration spaces, if for every partition of the edges of H

into EUF, the graph G = (V,E) always admits a connected or convex
Cayley configuration space on F.

Fact: The class of 2-realizable graphs is exactly the partial 2-trees.

A nxn matrix M is a Euclidean square distance matrix (EDM)
if 3p, ..., p, ERY for some d such that | [pi—p;| |2 = M(i, j).

The set of all EDM’s is a convex cone. (Let this cone be EDMC)

EDMC = Uy &% GV, @), 845) = Uy &% D) V[ =n



d-flatenable

A graph is d-realizable if for every configuration of its vertices in EN,
there exist another corresponding configuration in E4 with the same
edge lengths.

In other words; a graph is d-realizable if it satisfies the following:
For any 6,

U, (G(V, E), §) has a realization => (G(V, E), §) has a realization in E¢

Hence d-realizable not only says:
For any 6,

Uy 9%e(G(V, E), 6) is nonempty => ¢, ((G(V, E), ) is nonempty

but also says:
For any 6/ Ud d)dH/E(G(\// E)/ 6) = ¢dH/E(G(\// E)/ 5)



Theorem 5.16 (updated for any d)

The following are equivalent for a graph H.
1. H is d-realizable.

2. H always admits universally inherent, connected, d-dimensional
Cayley configuration spaces.

3. H always admits universally inherent, convex, d-dimensional
squared Cayley configuration spaces.

Proof:
Lemma 5.14 proves (3)=(2)
Theorem 5.15 proves (1)=(3)



proof of Theorem 5.16
Lemma 5.14 ‘ 3)=(2) |

If a graph always admits universally inherent, convex, d-dimensional
squared Cayley configuration spaces, then it also always admits
universally inherent, connected, d-dimensional configuration spaces.

Proof:

the map ¢9%(G, 8) - (¢%)%G, 8) iscontinuous

the inverse map is well-defined and continuous over the positive reals.

the convexity of ($p9-)%(G, 8) implies its connectedness

continuity of inverse map implies the connectedness of $9.(G, 6)



Theorem 5.15 _ proof of Theorem 5.16

(1)=(3)
If a graph H is d-realizable, it admits universally
inherent, connected (resp. convex), d-dimensional (resp. squared)
Cayley configuration spaces.
Proof:
Since H is d-realizable then; foranyé, ¢9,(®@) = U, ¢9,(D)

U, ¢9,( @) is convex since EDMC is convex and its projection on H is
convex

For any partition of H into EUF, take the section of this projection,
obtained by fixing &” to be 6 over E:

d)dF(G(V; E); 5) = Uy (bdF(G(V/ E); 6)

Uy ¢9,(@) isconvex => U, ¢°%(G(V, E), &) is convex
since convexity is preserved by sections and projections.

Hence the Cayley configuration space ¢°.(G(V, E), §) is also convex.



proof of Theorem 5.16

Theorem (2)=(1) forany d

If a graph H always admits universally inherent,
connected, d-dimensional Cayley configuration spaces, then it is d-realizable.

Proof:
%, ( @) is rank-d stratum of EDMC

Fact: The convex hull of d-rank stratum of EDMC contains the convex hull
of 1-rank stratum of EDMC.
convexHull(dd,.,( D)) contains convexHull($l, (D))

The convex hull of 1-rank stratum of EDMC is equal to the EDMC.
convexHull(dY, (D)) = Uy o9, (D) = EDMC

This is because for EDM D, we have a realization X = (X, X5, X3, - . ., X)),
x; € R" and we know D;; = | [x; = x;| | .

Project the realization onto 1-dimensional space, we can get n realizations
X1, X2, ... ,X"where X'is the projection of X to i, axis.



Theorem proof of Theorem 5.16

(2)=(1) forany d
If a graph H always admits universally inherent,
connected, d-dimensional Cayley configuration spaces, then it is d-realizable.

Proof continuous:
Let D' be the corresponding EDM for X'

It is easy to see that D; = | |x;— x| |>= 3, D;*. Hence D = 3, D¥.

Fact: The convex hull of d-rank stratum of EDMC is contained in the EDMC.
convexHull( ¢4,,(@)) is contained in U, ¢,,(@)=EDMC

Thus the convex hull of d-rank stratum of EDMC is equal to the EDMC.
convexHull( ¢%,,(@)) = U, ¢%,, (D) = EDMC

We can project those two cones on the graph G, and we have the
projection of the convex hull of d-rank stratum of EDMC on G is equal to
the projection of the EDMC on G.

projection,, - ( convexHull( ¢%, (D)) ) = U, ¢4,( D)



Theorem proof of Theorem 5.16

(2)=(1) forany d
If a graph H always admits universally inherent,
connected, d-dimensional Cayley configuration spaces, then it is d-realizable.

Proof continuous:

Since the convex hull of the projection is equal to the projection

of the convex hull, we have the convex hull of the projection of

d-rank stratum of EDMC on G is equal to the projection of EDMC on G.

convexHull( d4.,(@)) = U, ¢4,( D)

Since we know the projection of d-rank stratum of EDMC on G is convex,
the convex hull of the projection of d-rank stratum of EDMC on G is
equal to the projection of d-rank stratum of EDMC on G.

since ¢4,( @) is convex, convexHull( ¢4,( D))= ( D)

Hence the projection of d-rank stratum of EDMC on G is equal to the
projection of EDMC on G. Thus G is d-realizable.

d4(B)=U, ¢9(D) => Gisd-realizable.
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Conjecture 6.2

Given a graph G that is not generically over-constrained and a
non-edge f, the Cayley configuration space ¢*.(G, 6) is a single
interval for all generic 6 (i.e., for 6 that admit a 2D generic
realization of (G, 6) ), if and only if all the minimal 2-sum
components containing f are 2-realizable and (partial 2-trees).

E ? minimal 2-sum component containing f is not 2-realizable

A=l generically globally rigid

N

\‘{ _____ ‘/ d%(G, 8) is single point



Conjecture 6.3

Let H be a 3-realizable graph on vertex set V. Take any partition of
the edge set of H into EUF, and consider the graph G = (V,E) and any
EDCS (G, 6). Then there is a O(|V|9) time algorithm to write down
the description of the Cayley configuration space $3.(G, 6) as a
semi-algebraic set of low degree (say, no more than 4).



Conjecture 6.4
Given graph G that is a partial 3-tree and non-edge f

* if GUf has no K; or K, , , minor, then G has a connected 3D Cayley
configuration space on f;

* if GUf has a K;or K, , , minor then G has a connected 3D Cayley
configuration space on f if and only if the 2 vertices of f must be
identified in order to get a K; or K, , , minor in G.



