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1 Schoenberg’s Theorem (1935)

Problem 1 Given an n× n matrix ∆ = (δij)n×n,

1. Does there exists a Euclidean realization, i.e., a set of points p1, p2, . . . , pn
∈ Rd for some d, s.t. ∀i, j, ||pi − pj ||2 = δij?

2. find such a realization;

3. when d is given, does there exist a Euclidean realization? If so, find one.

It is not hard to show the following condition is necessary for the existence
of a Euclidean realization: δij should form a metric, i.e., satisfy the triangle
inequality: ∀i, j, k, δij + δjk ≥ δik. A necessary and sufficient condition was due
to Schoenberg ( [1, 2, 3]):

Theorem 1 A Euclidean realization exists if and only if matrix ∆ is negative
semidefinite.
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Proof: A Euclidean realization exists means we can find the coordinates of
p1, p2, . . . , pn ∈ Rd for some d. Without loss of generality, we can assume d = n,
since the affine span of n points cannot be of dimension higher than n. Let P =
(p1, p2, . . . , pn), then the Gram matrix would be Γ = PTP . The Gram matrix
is an n×n matrix and P exists if and only if Γ is positive semidefinite. Next we
will show the relationship between ∆ and Γ. Suppose the centroid of the points
is the origin, then we have

∑

i gij =
∑

i p
T
i pj = 0 and

∑

j gij =
∑

i p
T
i pj = 0.

Since δij = ||pi − pj ||2, we have:

δij = ||pi||2 + ||pj ||2 − 2pTi pj

= pTi pi + pTj pj − 2pTi pj

= gii + gjj − 2gij

Hence

∑

i

δij =
∑

i

gii +
∑

i

gjj − 2
∑

i

gij

=
∑

i

gii + n · gjj ,

∑

j

δij =
∑

j

gii +
∑

j

gjj − 2
∑

j

gij

=
∑

j

gjj + n · gii,

and

∑

i,j

δij =
∑

j

∑

i

gii + n · gjj

= 2n
∑

i

gii.

Thus

gij = 1/2[1/n
∑

i

δij + 1/n
∑

j

δij − δij − 1/n
∑

i,j

δij ]

Hence Γ = −1/2[I − 1/nJT ]∆[I − 1/nJ ], where I is the identity matrix and
J is the all 1 matrix. Thus P exists if and only if Γ is positive semidefinite, if
and only if ∆ is negative semidefinite. (In some papers, ∆ is defined to have
entries that are negative squared distances. Then we should say ∆ is positive
semidefinite.)

In fact, Schoenberg’s theorem with additional condition that rank is at most
d is exactly Euclidean realizability in d-dimensions[3].

Theorem 2 A Euclidean realization in d-space exists if and only if matrix ∆
is negative semidefinite and rank(∆) ≤ d+ 1.

Proof: From the proof of Theorem 1, we know a Euclidean realization in
d-space exists if and only if we can find the coordinates of p1, p2, . . . , pn ∈ Rd,
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if and only if rank(P ) = d, if and only if Γ is positive semidefinite with rank at
most d, if and only if ∆ is negative semidefinite with rank at most d+ 1.

With that, we have the following definition of Euclidean distance matrix
(EDM).

Definition 1 An n × n symmetric matrix ∆ is a Euclidean distance matrix
(EDM), if D is negative semidefinite.

Thus we have Algorithm 1 to compute a Euclidean realization from a Eu-
clidean distance matrix ∆.

Algorithm 1 Using SVD

Use Γ = −1/2[I − 1/nJT ]∆[I − 1/nJ ] to find Γ
Apply Singular Value Decomposition (SVD) on Γ to get Γ = USV , where

V = UT =









p11 p12 . . . p1d 0 . . . 0
p21 p22 . . . p2d 0 . . . 0

. . . . . . . . .
pn1 p22 . . . pnd 0 . . . 0









and S = Diag{λ1, λ2, . . . , λd, 0, . . . , 0} is a diagonal matrix with eigenvalues of
∆ on the diagonal. Then U is the matrix of the coordinates of p1, p2, . . . , pn,
where each column corresponds to the coordinate of a point.

2 Cayley-Menger Condition: alternate equiva-

lent condition for Euclidean realizability

In Section 1, we find the realization of Euclidean distance matrix ∆ from its
Gram matrix Γ = PTP . Γ is associated with ∆: Γ = 1/2[I−1/nJT ]∆[I−1/nJ ].
From this we derived Schoenberg’s theorem, that is,

∆ has Euclidean realization [in dimension d]
⇐⇒ Γ is symmetric PSD [of rank d]

⇐⇒ ∆ is symmetric Negative Semi-Definite [of rank d+ 1].

Here, we introduce a different method, Algorithm 2, to find the Euclidean
realization of Γ.

(0,0) (d01,0)
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p2

d02 d12

p0 p1

axis-1

axis-2

axis-1

axis-2

axis-3

p2
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d03 d13

d23

(a) place p2 (b) place p3

Figure 1: A figure demonstrating the algorithm to realize a complete inner
product matrix
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Algorithm 2 Solving quadratics

If we are given a Euclidean distance matrix ∆ or inner product matrix Γ, then
when the dimension d is fixed, we can just solve a system of polynomial equations
one for each inner product entry of Γ where the variables are the coordinates
of each point p1, . . . , pn in the desired dimension d. When d is not fixed, we
simply solve for one point at a time. Each time we add a point pk, we solve for
its coordinates using its distances to all previously placed points, p0 to pk−1. In
this way, pk can be represented by at most k − 1 coordinate values. Thus we
keep the dimension and the complexity of the algorithm as low as possible.

Note: there is a unique placement of pk modulo rotations and reflections if one
exists. See Figure 1 for an illustration.

Example 2 Let point pk have coordinates
{

p1k, p
2
k, ...

}

First we show an example of placing three vertices. They can be placed on a
2D plane.

1. Put p0 at the origin: p0 = {0, 0, ...}

2. Put p1 on the first axis: p1 = {δ01, 0, 0, ...}

3. To place p2:
{

(p10 − p12)
2 + (p20 − p22)

2 = δ202
(p11 − p12)

2 + (p21 − p22)
2 = δ212

=⇒







p12 =
δ2
01

+δ2
02

−δ2
12

2δ01

p22 =

√
(δ20+δ21+δ01)(δ20+δ21−δ01)(δ20−δ21+δ01)(−δ20+δ21+δ01)

2δ01

Now we can formalize this question.

Question 2 What geometric conditions are necessary and sufficient for a Eu-
clidean realization?

In 2D, the condition is seen intuitively to be relatively simple. We only
require the Gram matrix Γ = PTP to be a metric space. This is equivalent to
requiring the discriminant of the distance quadratic system to be positive, so
that real solutions exist. It is also equivalent to letting △p0p1p2 have positive
volume (area), or determinant of the volume matrix to be greater than or equal
to 0.

Definition 3 Given an n×n matrix ∆ = (δij)n×n, the volume matrix ∆̂ is the
(n+1)×(n+1) matrix obtained from ∆ by bordering ∆ with a top row (0, 1, ..., 1)
and a left column (0, 1, ..., 1)T . Now det ∆̂ is called the Cayley-Menger determi-
nant [4].

V 2
n−1 =

(−1)n

2n−1(n− 1!)2
det(M̂),

where Vn−1 equals the volume of the n − 1 dimension simplex formed by the n
vertices.
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Example 4 We are going to place another point p3 to Example 2.The Cayley-
Menger determinant of ∆ is:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 δ201 δ202 δ203
1 δ210 0 δ212 δ213
1 δ220 δ221 0 δ223
1 δ231 δ232 δ233 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This gives the volume of the tetrahedron formed by the four points.
In addition, every k × k submatrix of ∆ gives the volume matrix of a k − 1

dimension simplex contained in the tetrahedron. The metric space condition is
the Cayley-Menger condition for k = 3, i.e., we want the area of all triangles to
be nonnegative. This discussion leads to the following theorem.

Theorem 3 ( Cayley-Menger condition) A complete matrix ∆ = (δij)n×n (n×
n) has a Euclidean realization if and only if for all k × k(k ≤ n) submatrices S

of ∆, det(δ̂S) ≥ 0.
Here δS = δi∈S,j∈S , S ⊆ 1, ..., n, |S| = k.
For ∆ to have Euclidean realization in dimension d, we need the additional

condition that when |S| = k ≥ d+ 2, det(δ̂S) = 0.

Note: the Cayley-Menger condition is equivalent to Theorem 2.

3 Partial matrices and linkages

Definition 5 A partial distance matrix is a matrix with some entries specified
that has an extension to a Euclidean distance matrix.

Definition 6 A linkage is a pair L = (G, δ) consisting of a graph G = (V,E)
and a function δ : E(G) → R≥0 assigning nonnegative lengths to the edges.
Often the edges of G are referred as bars.

Now let us consider Algorithms 1 and 2 for linkages (G, δ).

Algorithm 3 modified Algorithm 1

The Gram matrix Γ is incomplete and hence SVD cannot directly work. A
semidefinite programming approach can be used to complete Γ and find the
realization at the same time. This is called the Euclidean Distance Matrix
Completion Problem(EDMCP) and has been well studied in the literature ([16]).
Positive semidefiniteness of Γ is a convex condition, hence the feasible region
for (the entries of) Γ is a convex region, making it easier to search.

4 Triangularizable multivariate quadratic systems

In this section, we provide a general algebraic viewpoint for Algorithm 2. As
mentioned earlier, realizing a Euclidean distance matrix ∆ is the same as solving
a system of quadratics. Some of these quadratic systems can be triangularized,
which is an analogy of “triangulating” a linear system.
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Algorithm 4 modified Algorithm 2

Algorithm 2 may not work because while placing each point, there is more than 1
placing (non-equivalent modulo Euclidean motions), resulting in a combinatorial
explosion of paths, most of which may not find a successful realization. In fact,
the problem of existence of Euclidean realization for linkage (G, δ) is NP-hard
(a reduction from 3-SAT can be found in [17]).
But for a special class of graphs called “trilateralizations” (in 2D, see Figure 2)
and the corresponding “k-lateralizations” (in (k−1)-space) the above algorithm
still works. For these graphs, the algorithm gives a unique solution at each step.
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(a) trilateralization graph (b) 4-lateralization graph

Figure 2: k-lateralizations

Example 7 Suppose a quadratic system has n equations. After triangulariza-
tion, we have:

• The first equation is a quadratic equation of x1, x2, ..., xn.

• The second equation is a quadratic equation of x2, x3, ..., xn.

...

• The (n− 1)th equation is a quadratic equation of xn−1, xn.

• The nth equation is a quadratic equation of xn.

Suppose all coefficients are in Q. To solve this system, we

1. Compute xn from the nth equation. This takes one square root, and xn is
one extension field of Q with one square root.

2. Substitute xn in the (n − 1)th equation, and solve xn−1. xn−1 is the ex-
tension field of Q with two square roots.

3. Substitute xn and xn−1 in the (n− 2)th equation ... ...

Proceeding in this way, all variables lie in an extension field of Q obtained by
nested square roots, i.e., nested quadratic extensions, which is also called tower
field of the rationals. In complexity terms, triangularizable quadratic systems
(while still NP-hard as pointed out before due to two possible solutions for each
equation) are less complex than general quadratic systems for which the only
know algorithms have double exponential complexity.

Definition 8 A triangularizable quadratic system is oriented if the solution of
each equation is fixed by the addition of further (consistently dependent) quadrat-
ics.
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Note: oriented triangularizable quadratic system can be solved by a linear time
algorithm.

Putting together Algorithm 1 and Algorithm 2, i.e., Theorem 2 and Theorem
3, we have the following observation:

Observation 4 Solving an oriented triangularizable quadratic system has the
same complexity as factorizing the negative semidefinite matrix ∆.

For partial matrices, or linkages (G, δ), the corresponding quadratic systems
may not be triangularizable, except in rare cases. Such linkages are called ruler
and compass constructible.

Note: the k-lateralization graphs are not only ruler and compass constructible,
i.e., their corresponding quadratic systems are not just triangularizable, but also
oriented and hence they can be solved in linear time.

5 Geometric embedding problems

The problem mentioned in Section 1 is a geometric embedding problem. More
specifically, it is a structure preserving optimal geometric embedding problem.
I.e., we want to find an embedding as a geometric structure in a minimal di-
mensional space while preserving distances as close as possible. The problem
has many applications, such as molecular distance constraint system, sensor
network localization, and structural problem in computer aided design, etc.

Note: we can use many different metrics, such as the shortest-distance metric,
the tree metric and the cut metric etc. as entries of ∆. All these metrics rep-
resent the same idea that we are trying to convert a combinatorial structure by
embedding it as a geometric structure in an optimized dimension that preserves
the metric.

Several questions arise here:

Problem 3 Given a complete matrix ∆,

(a) find EDM ∆̃ s.t. ||∆ − ∆̃|| is minimized. This problem can be solved with
convex programming, since the feasible region of the EDM matrix ∆̃ is con-
vex. More specifically, we can use semidefinite programming to solve this
constraint optimization problem.

(b) find EDM ∆̃ with rank(∆̃) ≤ d s.t. ||∆ − ∆̃|| is minimized. The feasible
region here is no longer convex, but we can use PCA to find ∆̃. (∆ is the
set of vectors we want to approximate, ∆̃ is the set of vectors obtained by
PCA, and d is the number of principal components.)

(c) find EDM ∆̃ with minimum rank s.t. ||∆− ∆̃|| ≤ ǫ.

Here, the norm is not specified. We can use operator norm, Frobenius norm,
etc.

Question 4 If ∆ is a Euclidean distance matrix , how many realizations are
there modulo translations and rotations in a d-dimensional space?

The answer to Question 4 is as follows: Let rank(∆) = r, then
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• if r > d+ 1, then there is no realization;

• if r = d+ 1, then there is one realization;

• if r < d+ 1, then there are infinitely many realizations.

Homework 1 Show that the dimension of the space of the possible realizations
is equal to r − d− 1.

We already discussed algorithms for realizing special classes of partial ma-
trices, i.e., linkages, the question is: can we formalize algorithms for realizing
(as efficiently as possible) a general partial matrix ([18, 19]. Another related
question that has been studied is to give characterizations of classes of partial
matrices that have efficient realizations ([20, 21]).

We know that graphs, via linkages, correspond to the “pattern” of nonzero
entries of partial matrices. Hence in the following, we use linkages and their
corresponding partial matrices interchangeably.

Problem 5 Given a linkage L = (G, δ),

(a) Does there exist an EDM ∆̃ s.t.∆̃|G = L?

(b) find EDM ∆̃ s.t. ||∆̃− L||G is minimized.

(c) find EDM ∆̃ with rank(∆̃) ≤ d s.t. ||L− ∆̃||G is minimized.

(d) find EMM ∆̃ with minimum rank s.t. ||L− ∆̃||G ≤ ǫ.

In some of the previous work, researchers have transformed Problem 5 to
Problem 3 by completing L with shortest path metric or other metric. If we
know L is realizable, we cah ask the following question.

Question 6 Which partial matrices are uniquely completable ( or completable
in at most finitely many ways) with or without specifying Euclidean dimension?
For linkages, the question is : for which linkages does there exist a unique
(finitely many) realization(s) in dimension d (for some distance assignment)?

Question 6 is highly related to rigidity theory.

• a rigid linkage has finitely many realizations in a fixed dimension;

• a globally rigid linkage has a unique realization in a fixed dimension;

• a universally rigid linkage has a unique realization in all dimensions.

6 Introduction to Genericity

Question 7 Given a matrix ∆ = (δij)n×n, we are trying to find whether it has
a certain property. Do we need to know the distance values? Or we only need
to know the graph G?

Question 7 is related to “generic” property. There are many different ways
to define genericity. The following is an attempt.

Definition 9 (attempt) A property is generic if it holds for all δij assignments
to G, or it does not hold for any δij assignment to G.
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This is a rather strong genericity condition and very few properties can
satisfy it.

Example 10 Convex configuration space (a property that we will discuss in
Section 7) satisfies strong genericity condition.

Let us try another definition of genericty.

Definition 11 (another attempt) A property is generic if it holds for almost
all δij assignments to G, or it does no hold for almost all δij assignments to G.

This is the definition more commonly used. Figure 3 and Figure 4 demon-
strate this definition of genericity.

property holds

property does not hold

prop G

G1

non-degenerate (bulk)

degenerate (few)how to define?

Q

prop G

G2

generic ("typical")

non-generic ("atypical)

Q

Figure 3: Generic Property

property holds

property does not hold

prop G

Q

Figure 4: Non-generic Property

However, we still have some issues to address.

Question 8 How should we define “almost all linkages”? Which are the “non-
generic(degenerate) linkages”?

Question 9 How should we define non-generic (degenerate) linkages with re-
spect to some property?

Remark: we not only have to define generic properties (of linkages) but also
generic linkages with respect to a given property.

Remark: if a property of linkages is nongeneric, it means there are some graphs
for which some large number of generic linkages (corresponding to that graph)
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have the property, and some equally large number do not. We can still charac-
terize and study those graphs, for which all corresponding linkages are generic
with respect to that property.

The exact definition of genericity varies under different situations. We must
take into consideration the property under discussion. We usually choose a
definition of genericity that is more natural to the given property and makes it
more convenient for theorem proving.

One example of a definition of genericity is the following:

Definition 12 Let P be a set of points in Rd. Let L be a partial matrix, i.e.,
a linkage (G, δ). As mentioned before, G the pattern or support of entries of
L. Then P is a realization of L if ∆|G = L, where ∆ is the Euclidean distance
matrix corresponding to P .

Example of a “property” of realization (P,L)

• (P,L) is such that “P is the unique realization satisfying ∆|G = L”.

• (P,L) is such that “P is one of the finitely many realizations satisfying
∆|G = L”.

Thus we can give a definition of generic linkages.

Definition 13 P is generic w.r.t. a property, if prop(P ) ⇔ prop(P ′), for all
P ′ in the neighborhood of P . A property is generic if for all generic P , prop(P )
or ¬prop(P ). A linkage L is generic for a property if it has at least 1 generic
realization for that property.

7 Related characterization problems

The problems mentioned in Section 5 have a set of corresponding characteri-
zation problems in rigidity theory. Those characterization problems lie on the
interface of convex analysis, algebraic geometry and graph theory.

Problem 10 Consider the following property of linkages L = (G, δ), “L : ∃
EDM ∆̃ s.t. L = ∆̃|G”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), s.t. ∃ EDM
∆̃ s.t. L = ∆̃|G. This is equivalent to ∀ generic L = (G, δ), ∃ EDM ∆̃ s.t.
L = ∆̃|G, since the property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), s.t. ∃
EDM ∆̃ s.t. L = ∆̃|G.

Problem 10 is completely open.

Remark: Problem 10 cannot use the notion of generic linkages that we have
in Section 6, since the current genericity of linkages is defined when there is a
realization. To make Problem 10 well-defined, we need to develop a different
notion of generic linkage.
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Problem 11 Consider the following property of linkages L = (G, δ), “ L : ∃
finitely many EDM ∆̃ s.t. L = ∆̃|G.”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), ∃ finitely
many EDM ∆̃ s.t. L = ∆̃|G. This is equivalent to ∀ generic L = (G, δ), ∃
finitely many EDM ∆̃ s.t. L = ∆̃|G, since the property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), ∃ finitely
many EDM ∆̃ s.t. L = ∆̃|G.

Problem 11 is completely open.

Problem 12 Consider the following property of linkages L = (G, δ), “ L : ∃ a
unique EDM ∆̃ s.t. L = ∆̃|G”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), ∃ a unique
EDM ∆̃ s.t. L = ∆̃|G. This is equivalent to ∀ generic L = (G, δ), ∃ a
unique EDM ∆̃ s.t. L = ∆̃|G, since the property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), s.t. ∃ a
unique EDM ∆̃ s.t. L = ∆̃|G.

The property in Problem 12 is universal rigidity. It has been proved that the
property is not generic by Görtler, Thurston, et al ([11]).

Problem 13 Consider the following property of linkages L = (G, δ), “ L : ∃
finitely many EDM ∆̃ of rank d s.t. L = ∆̃|G.”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), ∃ finitely
many EDM ∆̃ of rank d s.t. L = ∆̃|G. This is equivalent to ∀ generic
L = (G, δ), ∃ finitely many EDM ∆̃ of rank d s.t. L = ∆̃|G, since the
property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), ∃ finitely
many EDM ∆̃ of rank d s.t. L = ∆̃|G.

The property in Problem 13 is rigidity. Rigidity is a generic property and
Laman’s Theorem([5]) gives a characterization in 2D. But there is no known
combinatorial characterization for d ≥ 3. If we do not fix the rank here, the
problem becomes Problem 11 and is completely open.

Problem 14 Consider the following property of linkages L = (G, δ), “L: ∃ a
unique EDM ∆̃ of rank d s.t. L = ∆̃|G.”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), ∃ a unique
EDM ∆̃ of rank d s.t. L = ∆̃|G. This is equivalent to ∀ generic L = (G, δ),
∃ a unique EDM ∆̃ of rank d s.t. L = ∆̃|G, since the property now is
generic.
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(c) If not, then characterize graph G for which ∀ generic L = (G, δ), ∃ a unique
EDM ∆̃ of rank d s.t. L = ∆̃|G.

The property in Problem 14 is global rigidity. It has been proved that the
property is generic by Görtler, Thurston, et al ([6]). But there is no known
combinatorial characterization for d ≥ 3.

Problem 15 Consider the following property of linkages L = (G, δ), “ L : ∃
EDM ∆̃ s.t. L = ∆̃|G ⇒ ∃ EDM ∆̃ of rank d s.t. L = ∆̃|G”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), s.t.∃ EDM
∆̃ s.t. L = ∆̃|G ⇒ ∃ EDM ∆̃ of rank d s.t. L = ∆̃|G. This is equivalent to
∀ generic L = (G, δ), ∃ EDM ∆̃ s.t. L = ∆̃|G ⇒ ∃ EDM ∆̃ of rank d s.t.
L = ∆̃|G, since the property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), s.t. ∃
EDM ∆̃ s.t. L = ∆̃|G ⇒ ∃ EDM ∆̃ of rank d s.t. L = ∆̃|G.

The property in Problem 15 is d-realizability.

Definition 14 A graph G is d-realizable if for all δij assigned to edges of G, G
has realization implies there exists a realization in d-dimension. I.e., if there is
a way of realizing a set of bar lengths in any dimension, there is a realization of
the same set of bar lengths in d-dimension. (To not be confused with Euclidean
realizability in d dimensions, we should all G d-flattenable.)

For d-realizability, a commonly explored characterization is the forbidden
minor characterization.

Definition 15 A class C of graphs G has a finite forbidden minor character-
ization, if there exists a fixed, finite set M of minors, such that G ∈ C if and
only if G doesn’t contain any K ∈ M as a minor.

Example 16 Kuratowski’s planarity theorem: A graph G is planar if and only
if it contains no K3,3 or K5 minor [13].

Existence of finite forbidden minor characterization guarantees a polynomial
time graph algorithm ([14]). We can find characterization of 1-realizable and
2-realizable graphs in [22, 23] and characterizing of 3-realizable graphs is still
open in [15]. But characterizing of d-realizable graphs for d > 3 is still open.

Problem 16 Consider the following property of linkages L = (G, δ), “L : { ∆̃
is an EDM : L = ∆̃|G } is convex”.

(a) Is this property generic?

(b) If so, then characterize graph G for which ∃ generic L = (G, δ), { ∆̃ is an
EDM : L = ∆̃|G } is convex. This is equivalent to ∀ generic L = (G, δ), {
∆̃ is an EDM : L = ∆̃|G } is convex, since the property now is generic.

(c) If not, then characterize graph G for which ∀ generic L = (G, δ), { ∆̃ is an
EDM : L = ∆̃|G } is convex.

We do not know whether the property in Problem 16 is generic. Again, there
are still only partial results for d = 3 ([12]).
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8 More on characterization Problems

Problem 17 For each of the following property, we want to answer:

1. Is this property generic?

2. If so, then characterize graph G for which ∃ generic L = (G, δ), s.t. the
property is satisfied.

3. If the property is not generic, then characterize graph G for which ∀
generic L = (G, δ), the property is satisfied.

1. Rigidity [partial EDM has finitely many realizations in dimension d ]

• Generic in any dimension d (with an intuitive way to define generic-
ity). Hence rigidity is a property of graphs.
—————————Ruijin

• d = 2, Laman’s theorem (1970) characterizes rigidity of graphs [5]
—————————Ruijin

• d = 3, OPEN.

Partial results: natural extension of Laman’s theorem fails (Cheng
& Sitharam &Streinu [8])
—————————Nam

2. Global rigidity [partial EDM has unique realization in dimension d ]

• Generic in any d [6]
—————————Jialong

• d = 2: Genericity and characterization of graphs [7]
—————————Menghan

3. Universal rigidity [partial EDM has unique realization]

• Not generic ([9] [10] [11])
—————————Liqian

• Polynomial algorithms to find the unique realization if there is one
—————————-Liqian

4. Space of d-dimension realizations has a convex parametrization (draw from
a specified clan)

• Generic, 2d characterization ([12])
—————————Aysegul

• Higher dimension: convexity of d-dimension configuration space equiv-
alent to d-realizability (Gao, Cheng, Sitharam [12])
—————————Aysegul

5. d-realizability characterization

• 2-realizability
A graph is 2-realizable ⇐⇒ ∄ a K4 graph (series parallel graph, 2-
width trees, partial 2-trees)
—————————Vildan

• 3-realizability: 4 forbidden minors ([15])
—————————Vildan
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9 Introduction to Laman’s theorem

Problem 18 Characterize G for which ∃ generic L = (G, δ), ∃ finitely many
EDM ∆̃ of rank d s.t. L = ∆̃|G This is called linkage rigidity. Such a charac-
terization is possible only if the property is generic. Therefore, we also have to
define an appropriate notion of genericity.

Laman’s theorem [5] solves this problem for d = 2.

Theorem 5 A graph G = (V,E) is rigid if and only if there exists E′ ⊆ E s.t.
(1) ∀S ⊆ V , 2|VS | − |E′

S | ≥ 3
(2) 2|V | − |E′| = 3

The only if direction has been demonstrated by Maxwell in 1864 [27].
First we have to define genericity, s.t. we can show rigidity of G is generically

independent of the actual entries in ∆. In other words, we want to show that
rigidity is a “generic” property.

There exists several different Proofs for Laman’s theorem by: 1. Laman ([5];
2. Lovasz & Yemini ([24]); 3.Tay ([25]); 4. Theran & Streinu ([26]).

We will show Laman’s original proof.

Sketch of Proof:

• Step 1: Prove that G has (1) & (2) if and only if G has a Henneberg con-
struction (a Henneberg construction is a graph theoretical construction,
not realization)

The if direction is simple.

• Step 2: Prove that G has a Henneberg construction if and only if it has a
generic rigid realization.

We will first show that G has a Henneberg construction if and only if G has
a generic infinitesimally rigid (will be defined when we introduce the proof
of Laman’s Theorem) realization. Then we will show that infinitesimal
rigidity implies rigidity and generic rigidity implies infinitesimal rigidity.

• Step 3: (show rigidity is generic) Prove that G has one generic rigid real-
ization if and only if all generic realizations of G are rigid.

Here, rigid means this realization is the only realization locally(in a neigh-
borhood of that same realiztion). It is called framework rigidity (or local
rigidity).

• Step 4: Prove that there are only finitely many realizations for any generic
∆ corresponding to G. In other words, prove that generic framework
rigidity implies generic linkage rigidity.

Equivalently, ∃ finitely many realizations of G / G is generically rigid ⇐⇒
all generic realizations of G are infinitesimally rigid.

Remark: infinitesimal rigidity always implies rigidity. On the other hand,
rigidity only implies infinitesimal rigidity for generic frameworks with respect
to infinitesimal rigidity.
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Henneberg-constructible graphs H
Henneberg-constructible graph is a inductive (incremental, iterative) definition
of a class of graphs.

Definition 17 A Henneberg constructible graph G is defined inductively.

• Base case: a single point ∈ H1; a line segment ∈ H2

• Induction: Given Gk ∈ Hk, we can construct Gk+1 ∈ Hk+1 with one step
of Henneberg construction from Gk.

Type I construction: for any two vertices u, w in Gk, add a vertex v with
two edges (u, v), (w, v). See Figure 5.

Gk Gk

u w u w

v

Gk+1

(a) (b)

Figure 5: Henneberg-I construction

Type II construction: for any three vertices u, w, t in Gk with at least one
edge e among them, add a vertex v with three edges (u, v), (w, v), (t, v),
and remove e. See Figure 6.

Gk Gk

u

w

Gk+1

(a) (b)

t

e
u

w

t

v

Figure 6: Henneberg-II construction

Homework 2 Come up with an algorithm to determine whether a given
graph G is Henneberg-constructible.

For further reading, please refer to http://www.convexoptimization.com/
dattorro/cone_of_euclidean_distance_matrices.html.
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