
EXAM 3 (COT3100, Sitharam, Spring 2017)

NAME:last first:

UF-ID

Section

NOTE: You are not required to use induction. However, using induction
will help obtain systematic partial credit. Write down (1) what variable your
induction is on (2) induction basis (3) induction hypothesis (4) statement of
induction step (5) proof of induction step. All carry partial credit. You have
2 hours, please plan your time. Problems are not ordered by difficulty.

(1)

1. Show that any 2n × 2n checkerboard with any 1 × 1 square removed
can be exactly covered without overlaps by right triominoes (a right
triomino is an L-shaped piece with three 1× 1 squares).

2. Give and prove a recursive formula for the number of triominoes re-
quired.

Feel free to use pictures to illustrate your writing, but the key points of the
proof, especially of the induction step, have to be written very carefully.
Hint: This problem was done in class.

Solution This problem has been solved in the book. And in the Rosen-
provided lecture power point slides available to students.

(2) Show that
n∑

i=1
i3 = (

n∑
i=1

i)2. Hint: Use (or first derive) an explicit

formula for the RHS.

Solution
http://math.stackexchange.com/questions/996083/induction-proof-for-a-summation-sum-i-1n-i3-left-sum-i-1n-i-right#

996100

(3) Show by induction on n that the set of elements that belong to an odd
number of sets A1 . . . An is exactly A1 ⊕ A2 ⊕ . . . An, where A ⊕ B := (A ∩
B)∪(A∩B). Hint: A proof of this problem was sketched in class. To develop
intuition, start with n = 2. Work out how the statement for n = 3 follows
from the statement for n = 2. Notice that A1⊕. . .⊕An = (A1⊕. . . An−1)⊕An.

Solution. Basis step : when n=1,
1⊕

i=1
Ai is true if x ∈ A1 or is false other

wise.
IH : set of elements that belongs to an odd number of sets A1...An is given

by
n⊕

i=1
Ai, where A

⊕
B = (A ∩ B̄) ∪ (Ā ∩B)
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n+1⊕
i=1

Ai = (
n⊕

i=1
Ai ∩ Ān+1) ∪ (

¯n⊕
i=1

Ai ∩ An+1)

(
n⊕

i=1
Ai∩Ān+1)∪(

¯n⊕
i=1

Ai∩An+1) is true if an element belongs to odd number

of sets from A1...An and not belongs to An+1 or belongs to even number of
sets from A1...An and belongs to An+1. Both cases means element is belongs
to odd number of sets from A1...An+1.

(
n⊕

i=1
Ai ∩ Ān+1) ∪ (

¯n⊕
i=1

Ai ∩ An+1) is false if an element belongs to even

number of sets from A1...An and not belongs to An+1 or belongs to odd
number of sets from A1...An and belongs to An+1. Both cases means element
is belongs to even number of sets from A1...An+1.

(4) Show that the number of factors of n with prime decomposition n =
2c23c35c5 . . . is the product (c2 + 1)(c3 + 1)(c5 + 1).... Hint: A noninductive
proof of this problem was given in class. Use strong induction with inductive
hypothesis for a number m < n whose prime decomposition is identical to
that of n except that it omits the largest prime appearing in n.

Solution The hint tells you what to do. The base case is straight for-
ward. Take n = 2. For the induction hypothesis, let m = 2c23c35c5 . . . p

ck−1

k−1 ,
where pk−1 is the penultimate prime appearing in n, pk is the largest prime
appearing in n, with power cn and m = n/pckk . By strong induction, the
statement holds for m. Now for the induction step: what factors does n
have? For each factor of m, a factor of n can be created by multiplying with
p0k, p

1
k . . . p

cn
k . This is exactly the number of factors of m times ck +1, thereby

proving the induction step.
(5) Show the divisibility rule: ”a number m is divisible by 2n if and only

if the number formed by the last n digits of m, i.e, m mod 10n, is divisible
by 2n.”

Solution Without induction is easier: The number m = m1 ∗ 10n +
m mod 10n is 0 mod 2n if nd only if m mod 10n is 0 mod 2n since m1 ∗ 10n is
0 mod 2n.

(6) Show that n lines partition the plane into n(n + 1)/2 + 1 regions if
no three lines meet at common point and no two lines are parallel. Hint: A
proof of this problem was sketched in class. Build intuition with small values
of n. Consider how many new regions the nth line creates as it intersects the
previous n− 1 lines.

Solution Prove by induction.
Basis step: when n = 1, the plane is partitioned into n(n + 1)/2 + 1 = 2

regions, thus the statement holds.
Induction hypothesis: assume for some positive integer k, k lines partition

the plane into k(k + 1)/2 + 1 regions.
Inductive step: consider adding a (k+1)th line to the plane. Since no two

lines are parallel, the (k + 1)th line intersects with all the previous k lines,
creating k new intersection points as no three lines meet at common point.
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The k new intersection points give k + 1 segments on the new line, that is,
the new line cuts through k + 1 original regions, creating k + 1 new regions
on the plane. So k+1 lines partition the plane into k(k+1)/2+1+(k+1) =
(k + 1)((k + 1) + 1)/2 + 1 regions, thus the statement holds for k + 1 lines.

Bonus 1: Use Problem 4 to show that n planes partition 3 dimensional
space into (n3 + 5n + 6)/6 regions, if no more than 3 planes intersect at any
point, and every 3 planes intersect at a point. Hint: Consider the partition
of the nth plane by the lines of intersection of the nth plane with the previous
n− 1 planes.

Solution.
Proof by induction.
Basis step: when n = 1, the 3d space is partitioned into(n3+5n+6)/6 = 2

regions, thus the statement holds.
Induction hypothesis: assume for some positive integer i− 1, i− 1 planes

partition the 3d space into ((i− 1)3 + 5(i− 1) + 6)/6 regions.
Inductive step: Consider adding the ith plane and counting how many

new regions it creates. Two non parallel planes intersect along a line, so the
other i1 planes all produce intersection lines on ith plane. The conditions
that no two planes are parallel, any three have one point in common, and
no four have a common point imply that on ith plane, no intersection lines
are parallel and no three lines have a common point. Thus we can apply
the two-dimensional result and say that plane i is divided into i(i− 1)/2 + 1
regions by the i 1 lines produced from the intersections of the other planes.
Each region of ith divides one of the existing regions of 3-space created by
the first i 1 planes in two, so adding the ith plane adds i(i−1)/2+1 regions.

so the new total regions = ((i− 1)3 + 5(i− 1) + 6)/6 + i(i− 1)/2 + 1 =
(i3 + 5i + 6)/6

Bonus 2: Give and prove an expression for the sum of factors of n with
prime decomposition n = 2c23c35c5 . . .. Your expression can use pi’s and ci’s,
where pi is the ith prime and ci is the power with which it appears in n. Hint:
A noninductive proof of this problem was given in class. Use strong induction
with inductive hypothesis for a number m < n whose prime decomposition
is identical to that of n except that it omits the largest prime appearing in
n.

Solution The hint tells you what to do. A factor is a product of arbitrary
powers of pi (between 0 and ci) for each prime pi that appears in n. Sum of

these products can be expressed as a product of sums, so
k∏
i
(1 + p1i . . . p

ci
i ),

where pk is the largest prime appearing in n - is a good conjecture for the
expression for sum of factors of n. The base case is straight forward. Take
n = 2. Let m = 2c23c35c5 . . . p

ck−1

k−1 , where pk−1 is the penultimate prime
appearing in n, pk is the largest prime appearing in n, with power ck and
m = n/pckk . By strong induction, the statement holds for m. What factors
does n have? For each factor of m, a factor of n can be created by multiplying
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with each of p0k = 1, pk, . . . , p
ck
k . So the new sum of factors is the sum of factors

of m times (p0k + p1k . . . + pckk ). This proves the induction step.
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