
EXAM 2 solutions (COT3100, Sitharam, Spring 2017)

NAME:last first:

UF-ID

Section

NOTE: You have 2 hours, please plan your time. Problems are not ordered
by difficulty.

(1) Are the following functions one-to-one (injective)? Onto (surjective)?
Fill in the table with T/F and give a 1 line argument below for
each ”F” answer:
R – the set of all real numbers
R+ – the set of all positive real numbers
N – the set of natural numbers {1, 2, 3, ...}
ZZ – the set of all integers {...− 3,−2,−1, 0, 1, 2, 3...}

Domain CoDomain function 0ne-to-one onto
f : R → R f(x) = 3 −− −−
f : ZZ → ZZ f(x) = x + 1 −− −−
f : N → N f(x) = x + 1 −− −−
f : R+ → R+ f(x) = x2 −− −−
f : N → N f(x) = x2 −− −−
f : N → R f(x) = log x −− −−

Solution.
One-to-one Onto Reason

F F Not one-to-one because f(1) = f(2). Not onto because no x maps to 1
T T
T F Not onto because there is no x ∈ N such that f(x) = 1
T T
T F Not onto because there is no x ∈ N such that f(x) = 2
T F No negative numbers are in the codomain

(2) Let f and g be functions such that f : A → B and g : B → A, where
A and B are finite sets. Show that the composition g ◦ f : A → A has
a nice property: it is onto(surjective) if and only if it is one-to-
one(injective).

Solution.
Notice that g ◦ f has A as both its domain and codomain.
If g ◦ f is not one-to-one, since A and B are finite sets, the size of the

image of g ◦ f will be less than the size of the domain A, that is, the image
of g ◦ f cannot be the entire codomain A. So g ◦ c cannot be onto.

1

If g ◦ f is one-to-one, since A and B are finite sets, the size of the image
of g ◦ f will equal to the size of the domain A, that is, the image of g ◦ f is
the entire codomain A. So g ◦ f is onto.

(3) Prove that the set of pairs (a, b) where a and b are rational is a
countable set.

Solution:
We know that N × N is countable. (Proved in the class with a picture –
linearly order or walk through the lattice of pairs (p, q)). We know the set of
rational numbers Q has at most the cardinality of N× N, and hence count-
able, because there is a surjective function mapping a rational number p/q
to (p, q) ∈ N× N.

Since Q is countable, define bijection f : N→ Q, and from it the bijection
F : N × N → Q × Q by F (n,m) = (f(n), f(m)). Therefore Q × Q is also
countable since N× N is.

(4) Prove the following using the definition of decimal representa-
tion of a number. For any 3 numbers a, b, c ∈ {0, 1, . . . , 9}, the decimal
numbers abcabc and abc – constructed from the digits a, b, c – satisfy:

abcabc

1001
= abc.

Solution.
abcabc÷ 1001 = (abc ∗ 1000 + abc)÷ 1001

= ((1000 + 1) ∗ abc)÷ 1001
= abc

(5) You are given 9 coins that look alike and you are told that one of them
is fake and that it is very slightly lighter than the others. You are given
a precision balance, using which you can weigh sets of coins against each
other: i.e., you can tell if the left side is heavier or lighter than the right
side but you are not given any standard weights or scales. What is the
minimum number of weighings with which you can find the fake
coin. Prove your answer. Hint: what is the maximum fraction of coins
can be eliminated in the worst case, after each weighing?

Solution.
This was explained in class.
The minimum number of weighings required is 2. First, pick any 6 coins

and weigh them on the balance, 3 on each side. If one side is lighter, the fake
is among the 3 coins on that side; if two sides balance, the fake is among the
remaining 3 coins; either way we eliminate 6 coins. Now weigh any 2 coins

2

from the remaining 3 on the balance, 1 on each side. If one of them is lighter,
that one is fake; if they balance, the remaining one is fake.

Proof of minimality: notice that in a weighing, we divide all coins under
consideration into three sets: the left side, the right side, and the remaining.
After the weighing we can possibly eliminate two of these sets. Since our
division is arbitrary, the fake coin can be in the set with the largest cardinality
which is at least 1/3. I.e., at least 1/3 of the coins will remain. In the end
one of the sets must have size 1 (the fake coin). In the first weighing, this
largest set cannot have size 1 as we have 9 coins to consider, therefore we
cannot guarantee to find the fake using only 1 weighing.

(6) Show that if coin denominations are k0, k1, k2, .., km, where k,m are pos-
itive integers, then the greedy algorithm for making change (finding a set
of coins of equal total value) for any input positive integer x guarantees the
smallest number of coins in the change. Hint: Start with k = 2 and m = 3,
prove it, then extend the proof to arbitrary k and m.

Solution:
This problem is directly from the assigned homework. One way to see this

problem is finding the base k representation of the input amount. Each digit
gives the number of coins needed of value km, where m is the place of the
digit. Clearly you can get this representation by using a greedy algorithm.
The algorithm begins by using as many coins of value km as it can. This
leaves a value n1 < km. Hence, we can use at most k − 1 coins of value
km−1 leading to a value n2 < km−1. Here the sum of the digits is the number
of coins needed. So the question is whether a nongreedy algorithm can get
fewer coins than the sum of the digits in base k representation. Suppose
to the contrary, and that it helps to take j fewer ki coin than the greedy
algorithm would. Now the difference jki has to be covered by fewer than j
coins of denominations ki−1 or less, which is impossible.

(4) Write an algorithm that merges two input sorted lists of size n into a
single sorted list of size 2n. The number of steps your algorithm executes
should be O(n). Prove that your algorithm is correct.

Solution:
This was explained in class.
For convenience pad the given sorted lists l1 and l2 into arrays of size

2n putting n copies of max(l1(n), l2(n)) + 1 into the last n entries of both
arrays. The padding takes no more than O(n) steps. From the pseudocode
below, you can see that those last n entries will never make their way into
l3. The pseudocode has a single for loop that uses n iterations of O(1) steps,
so the algorithm takes no more than O(n) steps.

Merge (l1, l2)

// Input: l1 and l2 are two sorted lists of size 2n

// Output: A sorted list l3 of elements in l1 and l2

3

top1 :=1; top2 := 1;

For i from 1 to 2n

if l1(top1) <= l2(top2)

then l3(i) := l1(top1)

top1 = top1+1

else

then l3(i) := l2(top2)

top2 = top2+1

return l3

(8) (8a) Show the following for n, m positive integers, with m ≥ n. gcd(m,n) =

1. m if m = n

2. 2*gcd(m/2, n/2) if m, n, both even

3. gcd(m/2, n), if m is even and n is odd

4. gcd(m− n, n) if m and n are odd.

(8b) Use (8a) to design a gcd algorithm for two input positive integers, using
only comparisons, subtractions, and shifts of binary numbers (i.e, division
by 2), without using any other divisions.
(8c) Give a complexity analysis of your algorithm in terms of m and n.

Solution.
(8a)

1. If m = n, gcd(m,m) = m, as m | m, and m is the maximum integer
that divides m.

2. If m,n are both even, 2 | gcd(m,n). Let m = 2s, n = 2t, gcd(c, d) =
2u for positive integers s, t and u. Now 2u is the maximum integer
dividing 2s and 2t, so u is the maximum integer dividing s and t, that
is, u = gcd(s, t), i.e. gcd(c,d)

2
= gcd(m

2
, n
2
).

3. If m is even and n is odd, 2 cannot be a factor of gcd(m,n). Therefore,
we can divide m by 2 without affecting the value of gcd.

4. gcd(m− n, n) = gcd(m,n) directly comes from Euclid’s algorithm.

(8b)

4

gcd (m, n)

// Input: m and n are two positive integers

// Output: gcd(m,n)

if m = n

return m

// &: bitwise and; >>: shift right; <<: shift left

if m & 1 = 0 and n & 1 = 0 // both m and n are even

t = gcd(m>>1, n>>1)

return t<<1

if m & 1 = 0 // only m is even

return gcd(m>>1, n)

if n & 1 = 0 // only n is even

return gcd(m, n>>!)

// both m and n are odd

if m < n

temp = m; m = n; n = temp

return gcd(m-n, n)

(8c) The time complexity of the algorithm is O(logm) assuming m ≥ n.
In each recursive calling of the procedure gcd, if at least one parameter is
even, at least one parameter is halved; if both parameters are odd, m−n will
be even and in the next recursive calling at least one parameter is halved.
So the time complexity is at most 2(logm + log n) which is O(logm).

(9) Show that
(9a) x2 = 1 mod p for p prime implies x = 1 mod p or x = −1 mod p.Hint:
recall that −1 = p− 1 mod p; factor a polynomial and use contrapositive.
(9b) Show that for p > 2 the set of numbers from 2 to p− 2 can be split into
a (p − 3)/2 pairs that are inverses of each other modp, i.e, pairs (a, b) such
that a.b = 1 mod p
(9c) Use (9a) and (9b) to show that the product (p−1)(p−2) . . . 1 = −1 mod
p.
(9d) Where did you use the fact that p is prime?

Solution.
(9a) x2 ≡ 1 (mod p) =⇒ p | (x2 − 1) =⇒ p | (x + 1)(x− 1). Since p is

a prime, p | (x+1) or p | (x−1), that is, x ≡ 1 (mod p) or x ≡ −1 (mod p).
(9b) Since p is prime, any integer 1 ≤ k ≤ p − 1 has a unique inverse k̄

modulo p. For k = 1 and k = p − 1, k̄ = k. Furthermore, we have k̄ 6= k
for any other k, since k2 ≡ 1 (mod p) implies k ≡ 1 (mod p) i.e. k = 1 or
k ≡ −1 (mod p) i.e. k = p− 1. Now there are p− 3 integers greater than 1
and less than p− 1, that is (p− 3)/2 pairs.

(9c) ((p− 1)! mod p) = (1 · 2 · · · · · (p− 1)) mod p. By (9b), we group the
integers between 2 and p−2 into (p−3)/2 pairs with each pair (a·b mod p) =
1. So ((p− 1)! mod p) = (1 mod p) · ((p− 1) mod p) = −1.

5

(9d) The fact that p is prime is used in (9a): p | mn =⇒ p | m or p | n,
and (9b): existence of unique inverse for 1 ≤ k ≤ p− 1.

(10) Show by induction that n3− n mod 6 = 0 whenever n is a non-negative
integer.

Solution. The statement is true for the base case n = 0, since 0mod6 = 0.
Now assume P (K) is true. which means (k3 − k)mod6 = 0
we must show that ((k + 1)3 − (k + 1))mod6 = 0
By expanding we obtain k3 + 3k2 + 3k + 1− k − 1 = (k3 − k) + 3(k + 1)k.
By inductive hypotheses 6 divides (k3 − k). Since one of k and k + 1 is even
6 divides 3(k + 1)k as well. This completes the proof.

Bonus 1: Given a countably infinite sequence of countable subsets S1, S2, . . .
of the natural numbers, show that there is a subset S∗ of the natural numbers
that is different from all of them. Give a construction/description of such an
S∗.

Solution:
We can use Cantor’s diagonalization proof to construct such an S∗.

1 2 3 4 5 . . .
S1 0 1 1 0 1 . . .
S2 1 1 1 0 1 . . .
S3 1 1 0 0 1 . . .
S4 0 1 0 1 1 . . .
S5 0 1 0 0 1 . . .
...

Each subset Si of natural numbers can be represented using an infinite 0-1
string, where the jth digit is 0 if j /∈ Si, 1 if j ∈ Si.

Since the sequence is countable, we can list the sets S1, S2, . . . as in the
above table. By inverting the diagonal (change 0 to 1 and 1 to 0), we obtain
a set S∗ which is different from every set Si in the sequence with respect to
at least one natural number.

Bonus 2: Show by induction on n that the set of elements that belong to an

odd number of sets A1 . . . An is exactly
n⊕

i=1

Ai, where A ⊕ B := (A ∩ B̄) ∪

(Ā ∩B).

Solution. Basis step : when n = 1, x ∈
1⊕

i=1

Ai is true if and only if x ∈ A1.

IH : set of elements that belongs to an odd number of sets A1...An is given

by
n⊕

i=1

Ai, where A
⊕

B = (A ∩ B̄) ∪ (Ā ∩B)

Induction step:

6

n+1⊕
i=1

Ai = (
n⊕

i=1

Ai ∩ Ān+1) ∪ (
¯n⊕

i=1

Ai ∩ An+1)

x ∈ (
n⊕

i=1

Ai ∩ Ān+1)∪ (
¯n⊕

i=1

Ai ∩An+1) is true if x belongs to odd number of

sets from A1...An and does not belong to An+1 or belongs to even number of
sets from A1...An and belongs to An+1. Both cases mean x belongs to odd
number of sets from A1...An+1.

x ∈
n⊕

i=1

Ai∩ Ān+1)∪ (
¯n⊕

i=1

Ai∩An+1) is false if x belongs to even number of

sets from A1...An and does not belong to An+1 or belongs to odd number of
sets from A1...An and belongs to An+1. Both cases mean x belongs to even
number of sets from A1...An+1.

7

