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Point location

Point location problem: Preprocess a planar subdivision
such that for any query point q, the face of the subdivision
containing q can be given quickly (name of the face)

From GPS coordinates, find the region on a map where
you are located

Subroutine for many other geometric problems
(Chapter 13: motion planning, or shortest path
computation)
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Point location

Planar subdivision: Partition of the
plane by a set of non-crossing line
segments into vertices, edges, and
faces

non-crossing: disjoint, or at most a
shared endpoint

non-crossing

crossing
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Point location

Data structuring question, so interest
in

query time,

storage requirements, and

preprocessing time

Question: What is the
one-dimensional analogue?

Computational Geometry Lecture 5: Planar point location



Introduction
Vertical decomposition

Analysis
Simple Polygons

Planar point location
Strip-based structure

First solution

Idea: Draw vertical lines through all vertices, then do
something for every vertical strip that appears
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In one strip

Inside a single strip, there is a
well-defined bottom-to-top order on
the line segments

Use this for a balanced binary search
tree that is valid if the query point is
in this strip (knowing between which
edges we are is knowing in which
face we are)
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Solution with strips

search tree on
x-coordinate
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Solution with strips

To answer a query with q = (qx,qy), search in the main tree
with qx to find a leaf, then follow the pointer to search in the
tree that is correct for the strip that contains qx

Question: What are the storage requirements and what is
the query time of this structure?
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Solution with strips

n
4 strips

n
4
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Different idea

The vertical strips idea gave a refinement of the original
subdivision, but the number of faces went up from linear in n
to quadratic in n

Is there a different refinement whose size remains linear, but
in which we can still do point location queries easily?
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Vertical decomposition

Suppose we draw vertical extensions from every vertex up and
down, but only until the next line segment

Assume the input line segments are not vertical

Assume every vertex has a distinct x-coordinate

Assume we have a bounding box R that encloses all line
segments that define the subdivision

This is called the vertical decomposition or trapezoidal
decomposition
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Vertical decomposition

R
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Vertical decomposition faces

The vertical decomposition has triangular and trapezoidal
faces
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Vertical decomposition faces

Every face has a vertical left and/or right side that is a
vertical extension, and is bounded from above and below by
some line segment of the input

The left and right sides are defined by some endpoint of a line
segment

top(∆)

bottom(∆)

leftp(∆) rightp(∆)
∆

top(∆)

bottom(∆)

leftp(∆)
rightp(∆)∆
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Vertical decomposition faces

Every face is defined by no more than four line segments

For any face, we ignore vertical extensions that end on top(∆)
and bottom(∆)

∆
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Neighbors of faces

Two trapezoids (including triangles) are neighbors if they
share a vertical side

Each trapezoid has 1, 2, 3, or 4 neighbors
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Neighbors of faces

A trapezoid could have many neighbors if vertices had the
same x-coordinate
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Representation

We could use a DCEL to represent a vertical decomposition,
but we use a more direct & convenient structure

Every face ∆ is an object; it has fields for top(∆),
bottom(∆), leftp(∆), and rightp(∆) (two line segments
and two vertices)

Every face has fields to access its up to four neighbors

Every line segment is an object and has fields for its
endpoints (vertices) and the name of the face in the
original subdivision directly above it

Each vertex stores its coordinates
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Representation

R

f1

f1

f1

f1 f1

f1

f1

f1

f1

f2

f2
f3 f3
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Representation

Any trapezoid ∆ can find out the name of the face it is part of
via bottom(∆) and the stored name of the face
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Complexity

A vertical decomposition of n non-crossing line segments
inside a bounding box R, seen as a proper planar subdivision,
has at most 6n+4 vertices and at most 3n+1 trapezoids

leftp(∆1)

leftp(∆2)

leftp(∆3)
sisi
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Point location preprocessing

The input to planar point location is a planar subdivision, for
example in DCEL format

First, store with each edge the name of the face above it (our
structure will find the edge below any query point)

Then extract the edges to define a set S of non-crossing line
segments; ignore the DCEL otherwise
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Point location solution

We will use randomized incremental construction to build, for
a set S of non-crossing line segments,

a vertical decomposition T of S and R

a search structure D whose leaves correspond to the
trapezoids of T

The simple idea: Start with R, then add the line segments in
random order and maintain T and D
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Point location solution

Let s1, . . . ,sn be the n line segments in random order

Let Ti be the vertical decomposition of R and s1, . . . ,si, and
let Di be the search structure obtained by inserting s1, . . . ,si in
this order

R

R

T0 D0
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Point location solution

Let s1, . . . ,sn be the n line segments in random order

Let Ti be the vertical decomposition of R and s1, . . . ,si, and
let Di be the search structure obtained by inserting s1, . . . ,si in
this order

R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

T1 D1
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Point location solution

The search structure D has x-nodes, which store an endpoint,
and y-nodes, which store a line segment sj

For any query point t, we only test at an x-node: Is t left or
right of the vertical line through the stored point?

For any query point t, we only test at an y-node: Is t below or
above the stored line segment?

We will guarantee that the question at a y-node is only asked
if the query point t is between the vertical lines through pj

and qj, if line segment sj = pjqj is stored
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R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

T1 D1
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R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

s2

p2

q2

T1 D1
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Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3

s2

p2

q2

T1 D1
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R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3

s2

p2

q2
∆5

∆6

∆7

∆8

∆9

T2 D1
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Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7

∆8

∆9

p2

s2

q2

s2∆5

∆6∆7 ∆8

∆9

T2

D2
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Point location solution

We want only one leaf in D to correspond to each trapezoid;
this means we get a search graph instead of a search tree

It is a directed acyclic graph, or DAG, hence the name D
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R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7
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p2

s2

q2
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∆6∆7 ∆8
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D2
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Point location query

A point location query is done by following a path in the
search structure D to a leaf, then following its pointer to a
trapezoid of T, then accessing bottom(..) of this trapezoid,
and reporting the name of the face stored with it
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R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7

∆8

∆9

p2

s2

q2

s2∆5

∆6∆7 ∆8

∆9

T2

D2
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The incremental step

Suppose we have Di−1 and Ti−1, how do we add si?

Because Di−1 is a valid point location structure for
s1, . . . ,si−1, we can use it to find the trapezoid of Ti−1 that
contains pi, the left endpoint of si

Then we use Ti−1 to find all other trapezoids that intersect si
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Find intersected trapezoids

∆0

pi

si

qi
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Find intersected trapezoids

∆0

pi

si

qi
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Find intersected trapezoids

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

pi

si

qi
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∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

pi

si

qi
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Find intersected trapezoids

After locating the trapezoid that contains pi, we can
determine all k trapezoids that intersect si in O(k) time by
traversing Ti−1
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Updating the vertical decomposition

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7
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Updating the vertical decomposition

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7
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Updating the vertical decomposition

We can update the vertical decomposition in O(k) time as well
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Updating the search structure

The search structure has k leaves that are no longer valid as
leaves; they become internal nodes

We find these using the pointers from Ti−1 to Di−1

From the update of the vertical decomposition Ti−1 into Ti we
know what new leaves we must make for Di

All new nodes besides the leaves are x-nodes with pi and qi

and y-nodes with si
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Updating the search structure

∆8∆7

∆6∆5
∆4

∆3∆2∆1

∆0

∆9

Ti−1

Di−1
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Updating the search structure

∆8∆7

∆6∆5
∆4

∆3∆2∆1

∆0

∆9

Ti

Di−1

leaves for the new trapezoids in Ti
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Updating the search structure

Ti

Di−1

si

sisi

si

sisisi

si

leaves for the new trapezoids in Ti
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Updating the search structure

Ti

Di−1

si

sisi

si

sisisi

si

leaves for the new trapezoids in Ti

pi

qi

si

si
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Observations

For a single update step, adding si and updating Ti−1 and
Di−1, we observe:

If si intersects ki trapezoids of Ti−1, then we will create
O(ki) new trapezoids in Ti

We find the ki trapezoids in time linear in the search
path of pi in Di−1, plus O(ki) time

We update by replacing ki leaves by O(ki) new internal
nodes and O(ki) new leaves

The maximum depth increase is three nodes

Computational Geometry Lecture 5: Planar point location



Introduction
Vertical decomposition

Analysis
Simple Polygons

The search structure
Updating the vertical decomposition
Updating the search structure

Questions

Question: In what case is the depth increase three nodes?

Question: We noticed that the directed acyclic graph D is
binary in its out-degree, what is the maximum in-degree?
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A common but special update

∆0

pi

si

If pi was already an existing vertex, we search in Di−1 with a
point a fraction to the right of pi on si

Computational Geometry Lecture 5: Planar point location



Introduction
Vertical decomposition

Analysis
Simple Polygons

Order matters
Storage analysis
Query time analysis

Randomized incremental construction

Randomized incremental construction, where does it matter?

The vertical decomposition Ti is independent of the
insertion order among s1, . . . ,si

The search structure Di can be different for many orders
of s1, . . . ,si

The number of nodes in Di depends on the order

The depth of search paths in Di depends on the order
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Randomized incremental construction

p1

q1

s1 p2

q2

s2 p3

q5

s5

s1 s2 s3 s4 s5
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p1

q1

s1

p2

q2

s2 p3

q3

s3

p4

q4

s4 p5

q5

s5

s1s2 s3 s4 s5
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Randomized incremental construction

s1 s2 s3 s4

s5

s6

s7

s8

s1 s2 s3 s4

s5

s6

s7

s8
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Storage of the structure

The vertical decomposition structure T always uses linear
storage

The search structure D can use anything between linear and
quadratic storage

We analyse the expected number of new nodes when adding
si, using backwards analysis (of course)
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Storage of the structure

Backwards analysis in this case: Suppose we added si and
have computed Ti and Di. All line segments (existing in Ti)
had the same probability of having been the last one added
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Storage of the structure

For each of the i line segments, we can see how many
trapezoids would have been created if it were the last one
added

4

4
3

56

3

9
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added
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For each of the i line segments, we can see how many
trapezoids would have been created if it were the last one
added

4

4
3

56

3

9
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Storage of the structure

The number of created trapezoids is linear in the number of
deleted trapezoids (leaves of Di−1), or intersected trapezoids
by si in Ti−1; this is linear in ki

We will analyze

Ki =
i

∑
j=1

[no. of trapezoids created if sj were last]
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Storage of the structure

Consider Ki from the “trapezoid perspective”: For any
trapezoid ∆, there are at most four line segments whose
insertion would have created it ( top(∆), bottom(∆), leftp(∆),
and rightp(∆) )
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trapezoid ∆, there are at most four line segments whose
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and rightp(∆) )
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Storage of the structure

Consider Ki from the “trapezoid perspective”: For any
trapezoid ∆, there are at most four line segments whose
insertion would have created it ( top(∆), bottom(∆), leftp(∆),
and rightp(∆) )

∆
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Storage of the structure

We know: There are at most 3i+1 trapezoids in a vertical
decomposition of i line segments in R

Hence,

Ki = ∑
∆∈Ti

[no. of segments that would create ∆]

≤ ∑
∆∈Ti

4 = 12i+4
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Storage of the structure

Since Ki is defined as a sum over i line segments, the average
number of trapezoids in Ti created by si is at most
(12i+4)/i≤ 13

Since the expected number of new nodes is at most 13 in
every step, the expected size of the structure after adding n
line segments is O(n)

Computational Geometry Lecture 5: Planar point location



Introduction
Vertical decomposition

Analysis
Simple Polygons

Order matters
Storage analysis
Query time analysis

Query time of the structure

Fix any point q in the plane as a query point, we will analyze
the probability that inserting si makes the search path to q
longer
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Query time of the structure

Backwards analysis: Take the situation after si has been
added, and ask the question: How many of the i line
segments made the search path to q longer?

q
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Query time of the structure

Backwards analysis: Take the situation after si has been
added, and ask the question: How many of the i line
segments made the search path to q longer?

The search path to q only became longer if q is in a trapezoid
that was just created by the latest insertion!

At most four line segments define the trapezoid that contains
q, so the probability is 4/i
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Query time of the structure

We analyze

n

∑
i=1

[search path became longer due to i-th addition]

≤
n

∑
i=1

4/i = 4 ·
n

∑
i=1

1/i ≤ 4(1+ loge n)

So the expected query time is O(logn)
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Result

Theorem: Given a planar subdivision defined by a set of n
non-crossing line segments in the plane, we can preprocess it
for planar point location queries in O(n logn) expected time,
the structure uses O(n) expected storage, and the expected
query time is O(logn)
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Analysis

Vertical decomposition of a simple polygon

For a simple polygon we want to compute the vertical
decomposition faster.

Question: What is the bottleneck in the algorithm for planar
subdivisions?
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Speeding up point location

Idea: For certain values of i:

batch locate line segments of polygon in Ti (and Di) by
tracing the polygon in the vertical decomposition, i.e.,
traverse Ti following the polygon boundary

when inserting a line segment, use corresponding node in
Di as start.
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Speeding up queries

Fix any point q in the plane as a query point. Assume we
have located q in Dj. How long does it take to locate q in Dk?
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Speeding up queries

We analyze

k

∑
i=j+1

[search path became longer due to i-th addition]

≤
k

∑
i=j+1

4/i = 4 ·
k

∑
i=j+1

1/i ≤ 4loge(k/j)

So the expected query time is O(log(k/j))
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When to trace: Iterated logarithm

log(h) n := log log . . . log︸ ︷︷ ︸
h times

n

log∗ n := max{h : log(h) n≥ 1}
example: log∗(265536) = 5

N(h) :=
⌈

n

log(h) n

⌉
, 0≤ h≤ log∗ n
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Algorithm

Construct vertical decomposition as before, but

1.) for i = N(1), . . . ,N(log∗ n):
after inserting si trace the polygon in Ti

2.) locate new line segments by query starting at node of Di

found by tracing
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Analysis: Tracing

We already analyzed: tracing a random segment takes O(1)
expected time. Tracing the polygon in Ti takes O(n) expected

time, i = N(1), . . . ,N(log∗ n). Tracing log∗(n) times:

O(n log∗(n)) expected time
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Analysis: Query

Time needed for the queries for i = N(h−1)+1, . . . ,N(h)
together:

O

(
N(h)

∑
i=N(h−1)+1

log
i

N(h−1)

)
≤ O

(
N(h) log

n
d n

log(h−1) n
e

)
≤ O(N(h) logh n)

= O
(⌈

n

log(h) n

⌉
logh n

)
= O(n)

Summing over all i: O(n log∗ n) expected time.
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Result

Theorem: Given a simple polygon with n vertices, we can
preprocess it for planar point location queries in O(n log∗ n)
expected time, the structure uses O(n) expected storage, and
the expected query time is O(logn)

Corollary: We can compute a triangulation of a simple
polygon in O(n log∗ n) expected time using O(n) storage.
(Exercise)

Fact: There is a deterministic linear-time algorithm for
triangulating a simple polygon.
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