Arrangements and Duality

Computational Geometry

Lecture 9: Arrangements and Duality

Question: In a set of *n* points, are there 3 points on a line?

Question: In a set of *n* points, are there 3 points on a line?

Naive algorithm: tests all triples in $O(n^3)$ time

Question: In a set of *n* points, are there 3 points on a line?

Naive algorithm: tests all triples in $O(n^3)$ time **Faster algorithm:** uses duality and arrangements

Question: In a set of *n* points, are there 3 points on a line?

Naive algorithm: tests all triples in $O(n^3)$ time **Faster algorithm:** uses duality and arrangements

Note: other motivation in chapter 8 of the book

Duality

Note:

Duality

Note:

Duality

Duality

Note: does not handle vertical lines

Duality

duality preserves vertical distances

Duality

duality preserves vertical distances \Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^* \in p^*$

Duality

duality preserves vertical distances

 \Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^* \in p^*$

 \Rightarrow order preserving: $p\, {\rm lies}$ above ℓ if and only if ℓ^* lies above p^*

Duality

can be applied to other objects, e.g. segments

primal plane

Duality

can be applied to other objects, e.g. segments

dual of a segment is a double wedge

Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point primal plane dual plane

Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point primal plane <u>dual plane</u>

next we use arrangements

Arrangements of Lines

Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L.

- consists of *faces*, *edges* and *vertices* (some unbounded)
- also arrangements of other geometric objects,
 e.g., segments, circles,
 higher-dimensional objects

Arrangements of Lines

Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L.

- consists of *faces*, *edges* and *vertices* (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects

Arrangements of Lines

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^n i = n(n+1)/2 + 1$
- equality holds in simple arrangements

Arrangements of Lines

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^n i = n(n+1)/2 + 1$
- equality holds in simple arrangements

Arrangements of Lines

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^n i = n(n+1)/2 + 1$
- equality holds in simple arrangements

Arrangements of Lines

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^n i = n(n+1)/2 + 1$
- equality holds in simple arrangements

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^n i = n(n+1)/2 + 1$
- equality holds in simple arrangements

overall $O(n^2)$ complexity

Incremental Construction

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection: $O((n+k)\log n) = O(n^2\log n)$
- faster: incremental construction

Introduction Duality <u>Arrangements</u>

Incremental Construction

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 O((n+k) log n) = O(n² log n)
- faster: incremental construction

Incremental Construction

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection: $O((n+k)\log n) = O(n^2\log n)$
- faster: incremental construction

Incremental Construction

Incremental Construction

Algorithm CONSTRUCTARRANGE-MENT(*L*) *Input.* Set *L* of *n* lines.

Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Algorithm CONSTRUCTARRANGEMENT(*L*)

Input. A set L of n lines in the plane.

- *Output.* DCEL for subdivision induced by $\mathcal{B}(L)$ and the part of $\mathcal{A}(L)$ inside $\mathcal{B}(L)$, where $\mathcal{B}(L)$ is a suitable bounding box.
- 1. Compute a bounding box $\mathcal{B}(L)$ that contains all vertices of $\mathcal{A}(L)$ in its interior.
- 2. Construct DCEL for the subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** Find the edge e on $\mathcal{B}(L)$ that contains the leftmost intersection point of ℓ_i and \mathcal{A}_i .
- 5. $f \leftarrow$ the bounded face incident to e
- 6. while f is not the unbounded face, that is, the face outside $\mathcal{B}(L)$
- 7. **do** Split *f*, and set *f* to be the next intersected face.

Incremental Construction

Incremental Construction

Face split:

Incremental Construction

Runtime analysis:

Algorithm CONSTRUCTARRANGE-MENT(L) Input. Set L of n lines. Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Runtime analysis:

1. $O(n^2)$

Algorithm CONSTRUCTARRANGE-MENT(L) Input. Set L of n lines. Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$. 1. Compute bounding box $\mathcal{B}(L)$.

- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Runtime analysis:

- 1. $O(n^2)$
- 2. constant

Algorithm CONSTRUCTARRANGE-MENT(L) Input. Set L of n lines. Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Runtime analysis:

- 1. $O(n^2)$
- 2. constant
- 3. ?

Algorithm CONSTRUCTARRANGE-MENT(L) Input. Set L of n lines. Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Zone Theorem

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ .

Incremental Construction

Zone Theorem

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ .

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1; trivially true m > 1; only at most 3 news edges if $\ell_{\rm P}$ is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1 : trivially true
 m > 1 : only at most 3 new edges if ℓ₁ is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1 : trivially true
 m > 1 : only at most 3 new edges if ℓ₁ is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1 : trivially true
 - m > 1 : only at most 3 new edges if ℓ₁ is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1 : trivially true
 - m > 1 : only at most 3 new edges if ℓ₁ is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on *m* that this at most 5*m*:
 - m = 1 : trivially true
 - m > 1: only at most 3 new edges if ℓ_1 is unique, at most 5 if ℓ_1 is not unique. 5(m-1)+5=5m

Incremental Construction

Run time analysis:

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Run time analysis:

1. $O(n^2)$

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Run time analysis:

- 1. $O(n^2)$
- 2. constant

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Run time analysis:

- 1. $O(n^2)$
- 2. constant

3.
$$\sum_{i=1}^{n} O(i) = O(n^2)$$

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

Run time analysis:

- 1. $O(n^2)$
- 2. constant
- 3. $\sum_{i=1}^{n} O(i) = O(n^2)$

in total $O(n^2)$

- 1. Compute bounding box $\mathcal{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Incremental Construction

3 Points on a Line

3 Points on a Line

Algorithm:

- run incremental construction algorithm for dual problem
- stop when 3 lines pass through a point

Run time: $O(n^2)$