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Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n3) time
Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book
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Duality

` : y = mx + b

p = (px, py)

point p = (px,py) 7→ line p∗ : y = pxx−py

line ` : y = mx+b 7→ point `∗ = (mx,−b)

Note:
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` : y = mx + b

p = (px, py)

primal plane dual plane

p∗ : y = pxx− py

`∗ = (m,−b)

point p = (px,py) 7→ line p∗ : y = pxx−py

line ` : y = mx+b 7→ point `∗ = (mx,−b)

Note: self inverse (p∗)∗ = p, (`∗)∗ = `
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` : y = mx + b

p = (px, py)

primal plane dual plane

p∗ : y = pxx− py

`∗ = (m,−b)

point p = (px,py) 7→ line p∗ : y = pxx−py

line ` : y = mx+b 7→ point `∗ = (mx,−b)

Note: does not handle vertical lines
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primal plane dual plane

` : y = mx + b

p = (px, py)

mpx + b− py

p∗ : y = pxx− py

`∗ = (m,−b)

pxm− py + b

duality preserves vertical distances

⇒ incidence preserving: p ∈ ` if and only if `∗ ∈ p∗

⇒ order preserving: p lies above ` if and only if `∗ lies abovep∗
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can be applied to other objects, e.g. segments

primal plane

s
p

q`

dual of a segment is a double wedge
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primal plane

s
p

q`

dual plane

s∗

p∗ q∗

`∗

dual of a segment is a double wedge
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Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point

x

y

x

y

primal plane dual plane

`

`∗
p1

p2

p3
p4 p2

∗

p4
∗

p1
∗ p3

∗

next we use arrangements
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Arrangements of Lines

Arrangement A(L): subdivision induced by a set of lines L.

consists of faces, edges
and vertices (some
unbounded)

also arrangements of
other geometric objects,
e.g., segments, circles,
higher-dimensional objects

edge

vertex

face
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Arrangements of Lines

Combinatorial Complexity:

≤ n(n−1)/2 vertices

≤ n2 edges

≤ n2/2+n/2+1 faces:
add lines incrementally
1+∑

n
i=1 i = n(n+1)/2+1

equality holds in simple
arrangements

overall O(n2) complexity

edge

vertex

face
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Constructing Arrangements

Goal: Compute A(L) in bounding box in DCEL representation

plane sweep for line segment intersection:
O((n+ k) logn) = O(n2 logn)
faster: incremental construction
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Incremental Construction

`i

Algorithm ConstructArrange-
ment(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).
3. for i← 1 to n
4. do insert `i.
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Incremental Construction

Algorithm ConstructArrangement(L)
Input. A set L of n lines in the plane.
Output. DCEL for subdivision induced by B(L) and the part of

A(L) inside B(L), where B(L) is a suitable bounding box.
1. Compute a bounding box B(L) that contains all vertices

of A(L) in its interior.
2. Construct DCEL for the subdivision induced by B(L).
3. for i← 1 to n
4. do Find the edge e on B(L) that contains the

leftmost intersection point of `i and Ai.
5. f ← the bounded face incident to e
6. while f is not the unbounded face, that is, the

face outside B(L)
7. do Split f , and set f to be the next intersected

face.
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Face split:

f

`i

=⇒

`i
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Incremental Construction

Runtime analysis:

1. O(n2)
2. constant

3. ?

Algorithm ConstructArrange-
ment(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).
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Zone Theorem

The zone of a line ` in an arrangement A(L) is the set of
faces of A(L) whose closure intersects `.

`

Theorem: The complexity of the zone of a line in an
arrangement of m lines is O(m).
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Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:

We can assume ` horizontal and
no other line horizontal.

We count number of
left-bounding edges.

We show by induction on m that
this at most 5m:

m = 1 : trivially true
m > 1 : only at most 3 new
edges if `1 is unique,

at most 5 if `1 is not unique.
5(m−1)+5 = 5m

`
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v

`2`1

Computational Geometry Lecture 9: Arrangements and Duality



Introduction
Duality

Arrangements
Incremental Construction

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:

We can assume ` horizontal and
no other line horizontal.

We count number of
left-bounding edges.

We show by induction on m that
this at most 5m:

m = 1 : trivially true
m > 1 : only at most 3 new
edges if `1 is unique,
at most 5 if `1 is not unique.
5(m−1)+5 = 5m

`w

v

`2`1

Computational Geometry Lecture 9: Arrangements and Duality



Introduction
Duality

Arrangements
Incremental Construction

Incremental Construction

.

Run time analysis:

1. O(n2)
2. constant

3. ∑
n
i=1 O(i) = O(n2)

in total O(n2)

Algorithm ConstructArrange-
ment(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).
3. for i← 1 to n
4. do insert `i.
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3 Points on a Line

Algorithm:

run incremental construction algorithm for dual problem

stop when 3 lines pass through a point

Run time: O(n2)
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