Arrangements and Duality

Computational Geometry

Lecture 9: Arrangements and Duality

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in $O\left(n^{3}\right)$ time

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in $O\left(n^{3}\right)$ time Faster algorithm: uses duality and arrangements

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in $O\left(n^{3}\right)$ time Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book

Duality

$$
\begin{aligned}
& \ell: y=m x+b \\
& \bullet p=\left(p_{x}, p_{y}\right)
\end{aligned}
$$

Duality

primal plane

dual plane

$$
p^{*}: y=p_{x} x-p_{y}
$$

$$
\text { - } \ell^{*}=(m,-b)
$$

- $p=\left(p_{x}, p_{y}\right)$
point $p=\left(p_{x}, p_{y}\right) \mapsto$ line $p^{*}: y=p_{x} x-p_{y}$
line $\ell: y=m x+b \mapsto$ point $\ell^{*}=(m x,-b)$

Duality

primal plane

$$
\text { - } p=\left(p_{x}, p_{y}\right) \quad \bullet \ell^{*}=(m,-b)
$$

point $p=\left(p_{x}, p_{y}\right) \mapsto$ line $p^{*}: y=p_{x} x-p_{y}$
line $\ell: y=m x+b \mapsto$ point $\ell^{*}=(m x,-b)$
Note: self inverse $\left(p^{*}\right)^{*}=p, \quad\left(\ell^{*}\right)^{*}=\ell$

Duality

primal plane

point $p=\left(p_{x}, p_{y}\right) \mapsto$ line $p^{*}: y=p_{x} x-p_{y}$
line $\ell: y=m x+b \mapsto$ point $\ell^{*}=(m x,-b)$
Note: does not handle vertical lines

Duality

primal plane

dual plane

duality preserves vertical distances

Duality

primal plane

dual plane

duality preserves vertical distances
\Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^{*} \in p^{*}$

Duality

primal plane

dual plane

duality preserves vertical distances
\Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^{*} \in p^{*}$
\Rightarrow order preserving: p lies above ℓ if and only if ℓ^{*} lies above p^{*}

Duality

can be applied to other objects, e.g. segments

primal plane

Duality

can be applied to other objects, e.g. segments

primal plane

dual plane

dual of a segment is a double wedge

Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point
primal plane

dual plane

Why use Duality?

It gives a new perspective!
E.g. 3 points on a line dualize to 3 lines intersecting in a point
primal plane

dual plane

next we use arrangements

Arrangements of Lines

Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L.

- consists of faces, edges and vertices (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects

Arrangements of Lines

Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L.

- consists of faces, edges and vertices (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1) / 2$ vertices

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1) / 2$ vertices
- $\leq n^{2}$ edges

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1) / 2$ vertices
- $\leq n^{2}$ edges
- $\leq n^{2} / 2+n / 2+1$ faces: add lines incrementally $1+\sum_{i=1}^{n} i=n(n+1) / 2+1$
- equality holds in simple arrangements

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1) / 2$ vertices
- $\leq n^{2}$ edges
- $\leq n^{2} / 2+n / 2+1$ faces: add lines incrementally $1+\sum_{i=1}^{n} i=n(n+1) / 2+1$
- equality holds in simple arrangements

Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1) / 2$ vertices
- $\leq n^{2}$ edges
- $\leq n^{2} / 2+n / 2+1$ faces: add lines incrementally $1+\sum_{i=1}^{n} i=n(n+1) / 2+1$
- equality holds in simple arrangements

overall $O\left(n^{2}\right)$ complexity

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection: $O((n+k) \log n)=O\left(n^{2} \log n\right)$

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:

$$
O((n+k) \log n)=O\left(n^{2} \log n\right)
$$

- faster: incremental construction

Constructing Arrangements

Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:

$$
O((n+k) \log n)=O\left(n^{2} \log n\right)
$$

- faster: incremental construction

Incremental Construction

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. \quad for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Algorithm ConstructArrangement(L)

Input. A set L of n lines in the plane.
Output. DCEL for subdivision induced by $\mathcal{B}(L)$ and the part of $\mathcal{A}(L)$ inside $\mathcal{B}(L)$, where $\mathcal{B}(L)$ is a suitable bounding box.

1. Compute a bounding box $\mathcal{B}(L)$ that contains all vertices of $\mathcal{A}(L)$ in its interior.
2. Construct DCEL for the subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do Find the edge e on $\mathcal{B}(L)$ that contains the leftmost intersection point of ℓ_{i} and \mathcal{A}_{i}.
5. $\quad f \leftarrow$ the bounded face incident to e
6. while f is not the unbounded face, that is, the face outside $\mathcal{B}(L)$
7. do Split f, and set f to be the next intersected face.

Incremental Construction

Face split:

Incremental Construction

Runtime analysis:

Algorithm ConstructArrangeMENT(L)
 Input. Set L of n lines.
 Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.
 1. Compute bounding box $\mathcal{B}(L)$.
 2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
 3. for $i \leftarrow 1$ to n
 4. do insert ℓ_{i}.

Incremental Construction

Runtime analysis:

1. $O\left(n^{2}\right)$

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Runtime analysis:

1. $O\left(n^{2}\right)$
2. constant

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Runtime analysis:

1. $O\left(n^{2}\right)$
2. constant
3.?

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Zone Theorem

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ.

Zone Theorem

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ.

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of
left-bounding edges.

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5 m :

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
- $m=1$: trivially true

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
- $m=1$: trivially true
- $m>1$: only at most 3 new
edges if ℓ_{1} is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most $5 m$:
- $m=1$: trivially true
- $m>1$: only at most 3 new edges if ℓ_{1} is unique,

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5 m :
- $m=1$: trivially true
- $m>1$: only at most 3 new edges if ℓ_{1} is unique, at most 5 if ℓ_{1} is not unique.

$$
5(m-1)+5=5 m
$$

Incremental Construction

Run time analysis:
Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Run time analysis:

1. $O\left(n^{2}\right)$

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Run time analysis:

1. $O\left(n^{2}\right)$
2. constant

Algorithm ConstructArrange$\operatorname{MENT}(L)$
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Run time analysis:

1. $O\left(n^{2}\right)$
2. constant
3. $\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)$

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. \quad for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Incremental Construction

Run time analysis:

1. $O\left(n^{2}\right)$
2. constant
3. $\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)$
in total $O\left(n^{2}\right)$

Algorithm ConstructArrangeMENT(L)
Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. \quad for $i \leftarrow 1$ to n
4. do insert ℓ_{i}.

Arrangements

3 Points on a Line

3 Points on a Line

Algorithm:

- run incremental construction algorithm for dual problem
- stop when 3 lines pass through a point

Run time: $O\left(n^{2}\right)$

