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Introduction

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?
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Introduction

Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n?) time
Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book
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Duality

Duality

o D= (Pa:Dy)
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Duality

Duality

primal plane dual plane

L:y=mz+Db y
o P = (Pz,py) o U = (m,—D)

point p = (px,py) — line p* 1y =px—py
line £:y=mx+ b+ point £* = (mx,—b)
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Duality

Duality

primal plane dual plane

e D= (pzvpy) o "= (m, )

point p = (px,py) — line p* 1y = pxx—py
line £:y=mx+ b point £* = (mx,—b)

*

Note: self inverse (p*)* =p, (") =4
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Duality

Duality

primal plane dual plane

L:y=mz+Db y
o P = (Pz,py) o U = (m,—D)

point p = (px,py) — line p* 1y =px—py
line £:y=mx+ b+ point £* = (mx,—b)

Note: does not handle vertical lines
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Duality

Duality

primal plane

L:y=mzx+Db

mpm+b*py

P = (pz, py)

duality preserves vertical distances

dual plane

DY = PaT — Dy

pxm*perb

* = (m,—b)
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Duality

Duality

primal plane dual plane

C:y=mz+b PT Y = DaT Py

mpg + b — py Pz —py +0

P = (P2, 1y) £* = (m,—b)

duality preserves vertical distances
= incidence preserving: p € ¢ if and only if £* € p*
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Duality

Duality

primal plane dual plane

C:y=mz+b PT Y = DaT Py

mpg + b — py Pz —py +0

b= (pwapy) = (ma _b)
duality preserves vertical distances

= incidence preserving: p € ¢ if and only if £* € p*
= order preserving: plies above 7 if and only if £* lies above p*
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Duality

Duality

can be applied to other objects, e.g. segments

primal plane
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Duality

Duality

can be applied to other objects, e.g. segments

primal plane dual plane

dual of a segment is a double wedge
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Duality

Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point

primal plane dual plane
* p3*
y ¢ h y
*
p4s® 3 . p2
P4
P2
X 2 X
P1
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Duality

Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point

primal plane dual plane
* p3*
y ¢ h y
*
p4s® 3 . p2
P4
P2
X 2 X
P1

next we use arrangements
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Incremental Construction

Arrangements

Arrangements of Lines

Arrangement A(L): subdivision induced by a set of lines L.

@ consists of faces, edges
and vertices (some
unbounded)

vertex
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Incremental Construction

Arrangements

Arrangements of Lines

Arrangement A(L): subdivision induced by a set of lines L.

@ consists of faces, edges
and vertices (some
unbounded)

@ also arrangements of
other geometric objects,
e.g., segments, circles,
higher-dimensional objects vertex
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Incremental Construction

Arrangements

Arrangements of Lines

Combinatorial Complexity:
o <n(n—1)/2 vertices
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Incremental Construction

Arrangements

Arrangements of Lines

Combinatorial Complexity:
o <n(n—1)/2 vertices

o <n? edges
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Incremental Construction

Arrangements

Arrangements of Lines

Combinatorial Complexity:
o <n(n—1)/2 vertices
o <n? edges
o <n?/2+n/2+1 faces:

add lines incrementally
1+ i=nn+1)/2+1
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Incremental Construction

Arrangements

Arrangements of Lines

Combinatorial Complexity:

o <n(n—1)/2 vertices

o <n? edges

o <n?/2+n/2+1 faces:
add lines incrementally
1+ i=nn+1)/2+1

@ equality holds in simple
arrangements
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Incremental Construction

Arrangements

Arrangements of Lines

Combinatorial Complexity:

o <n(n—1)/2 vertices

o <n? edges

o <n?/2+n/2+1 faces:
add lines incrementally
1+ i=nn+1)/2+1

@ equality holds in simple
arrangements

overall O(n?) complexity
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Incremental Construction
Arrangements

Constructing Arrangements

Goal: Compute A(L) in boundingbox in DCEL representation
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Incremental Construction
Arrangements

Constructing Arrangements

Goal: Compute A(L) in boundingbox in DCEL representation

@ plane sweep for line segment intersection:
O((n+k)logn) = O(n*logn)
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Incremental Construction
Arrangements

Constructing Arrangements

Goal: Compute A(L) in boundingbox in DCEL representation

@ plane sweep for line segment intersection:
O((n+k)logn) = O(n*logn)

@ faster: incremental construction
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Incremental Construction

Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1.  Compute bounding box B(L).

2. Construct DCEL for subdivision
induced by B(L).

3. fori—1ton

do insert /;.

>
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGEMENT(L)
Input. A set L of n lines in the plane.

Output. DCEL for subdivision induced by B(L) and the part of
A(L) inside B(L), where B(L) is a suitable bounding box.
1. Compute a bounding box B(L) that contains all vertices

of A(L) in its interior.
2. Construct DCEL for the subdivision induced by B(L).

3. fori—1ton
4. do Find the edge ¢ on B(L) that contains the
leftmost intersection point of ¢; and A;.
5. f < the bounded face incident to e
6. while f is not the unbounded face, that is, the
face outside B(L)
7. do Split f, and set f to be the next intersected

face.
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Arrangements

Incremental Construction

Incremental Construction

Face split:

T
N/

Computational Geometry
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1.  Compute bounding box B(L).

2. Construct DCEL for subdivision

induced by B(L).

fori—1ton

4, do insert /.

Runtime analysis:

w
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1. 0(n?) 1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).

fori—1ton

4, do insert /.

Runtime analysis:

w
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1. 0(n?) 1. Compute bounding box B(L).

2. constant 2. Construct DCEL for subdivision

induced by B(L).

fori—1ton

4, do insert /.

Runtime analysis:

w
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1. 0(n?) 1. Compute bounding box B(L).

2. constant 2. Construct DCEL for subdivision

induced by B(L).

fori—1ton

4, do insert /.

Runtime analysis:

3.7

w
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Incremental Construction
Arrangements

Zone Theorem

The zone of a line £ in an arrangement A(L) is the set of
faces of A(L) whose closure intersects ¢.
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Incremental Construction
Arrangements

Zone Theorem

The zone of a line £ in an arrangement A(L) is the set of
faces of A(L) whose closure intersects ¢.

Theorem: The complexity of the zone of a line in an
arrangement of m lines is O(m).
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:

@ We can assume ¢ horizontal and
no other line horizontal.
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:

@ We can assume ¢ horizontal and
no other line horizontal.

@ We count number of
left-bounding edges.
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:
@ We can assume £ horizontal and
no other line horizontal.
@ We count number of
left-bounding edges.

@ We show by induction on m that
this at most 5m:
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).
Proof:
@ We can assume £ horizontal and
no other line horizontal.
@ We count number of
left-bounding edges.

@ We show by induction on m that
this at most 5m:
o m=1: trivially true
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).

Proof:
@ We can assume ¢ horizontal and
no other line horizontal.

@ We count number of
left-bounding edges.

@ We show by induction on m that
this at most 5m:

o m=1: trivially true W
e m>1: only at most 3 new
edges if £; is unique,
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Incremental Construction
Arrangements

Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement
of m lines is O(m).

Proof:

@ We can assume ¢ horizontal and

. } b %)
no other line horizontal.
@ We count number of
left-bounding edges. g

@ We show by induction on m that
this at most 5m:
o m=1: trivially true W :
e m>1: only at most 3 new
edges if £; is unique,
at most 5 if £; is not unique.
5(m—1)+5=>5m
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
Run time analysis: MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1. Compute bounding box B(L).

2. Construct DCEL for subdivision
induced by B(L).
fori—1ton
4, do insert /;.

w

Computational Geometry Lecture 9: Arrangements and Duality



Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
Run time analysis: MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).
1. 0(n?) 1.  Compute bounding box B(L).

2. Construct DCEL for subdivision
induced by B(L).
fori—1ton
4, do insert /;.

w
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
Run time analysis: MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).
1. 0(n?) 1.  Compute bounding box B(L).
2. constant 2. Construct DCEL for subdivision
induced by B(L).
fori—1ton
4, do insert /;.

w
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
Run time analysis: MENT(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).

1. 0(n?) 1.  Compute bounding box B(L).
2. constant 2. Construct DCEL for subdivision
induced by B(L).
3. Y, 0(i) = 0(n?) 3. fori—1ton
4, do insert /;.
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Incremental Construction
Arrangements

Incremental Construction

Algorithm CONSTRUCTARRANGE-
Run time analysis: MENT(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).

1. 0(n?) 1.  Compute bounding box B(L).
2. constant 2. Construct DCEL for subdivision
induced by B(L).
3. Y, 0(i) = 0(n?) 3. fori—1ton
4, do insert /;.

in total O(n?)

Computational Geometry Lecture 9: Arrangements and Duality



Incremental Construction
Arrangements

3 Points on a Line
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Incremental Construction
Arrangements

3 Points on a Line

Algorithm:
@ run incremental construction algorithm for dual problem
@ stop when 3 lines pass through a point

Run time: O(n?)
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