ε -Nets and VC Dimension

- Sampling is a powerful idea applied widely in many disciplines, including CS.
- There are at least two important uses of sampling: estimation and detection.
- CNN, Nielsen, NYT etc use polling to estimate the size of a particular group in the larger population.
- By sampling a small segment of the population, one can predict the winner of a presidential election (with high confidence). How many prefer Bush to Gore; how many will use a new service etc.
- In detection, the goal is to sample so that any group with large probability measure will be caught with high confidence.
- Random traffic checks, for example. Frequent speeders (drinkers) are likely to get caught.

Sampling

- A network monitoring application.
- Want to detect flows that are suspiciously big, in terms of fraction of total packets.
- Set a threshold of $\theta\%$. Any flow that accounts for more than $\theta\%$ of traffic at a router should be flagged.
- Keeping track of all flows is infeasible; millions of flows and billions of packets per second.
- By taking a number of samples that depends only on θ , we can detect offending flows with high probability.
- Track only sampled flows.

Basic Sampling Theorem

- U is a ground set (points, events, database objects, people etc.)
- Let $R \subset U$ be a subset such that $|R| \ge \varepsilon |U|$, for some $0 < \varepsilon < 1$.
- Theorem: A random sample of $(\frac{1}{\varepsilon} \ln \frac{1}{\delta})$ points from U intersects R with probability at least $1 - \delta$.
- Proof: A particular sample point is in R with prob ε, and not in R with prob. 1 - ε.
 Prob. that none of the sampled points is in R is

$$\leq (1-\varepsilon)^{\frac{1}{\varepsilon}\ln\frac{1}{\delta}} \leq e^{-\ln\frac{1}{\delta}} = \delta.$$

Universal Samples

- Sample size is independent of |U|.
- Basic sampling theorem guarantees that for a given set *R*, a random sample set works.
- If we want to hit each of the sets R_1 , R_2 , ..., R_m , then this idea is too limiting. It requires a separate sample for each R_i .
- Can we get a single universal sample set, which hit all the R_i 's?

• ε -Nets and VC dimension characterize when this is possible.

ε -Nets

- Let $(\mathcal{U}, \mathcal{R})$ be a finite set system, and let $\varepsilon \in [0, 1]$ be a real number.
- A set $N \subseteq \mathcal{U}$ is called an ε -net for $(\mathcal{U}, \mathcal{R})$ if $N \cap R \neq \emptyset$ for all $R \in \mathcal{R}$ whenever $|R| \ge \varepsilon |\mathcal{U}|$.

 A more general form of ε-net can be defined using probability measures. Think of this as endowing points of U with weights.

Shatter Function

- A set system $(\mathcal{U}, \mathcal{R})$, where \mathcal{U} is the ground set and \mathcal{R} is a family of subsets.
- $\mathcal{R} = \{R_1, \ldots, R_m\}$, with $R_i \subset \mathcal{U}$, are ranges that we want to hit.
- A subset $X \subset \mathcal{U}$ is shattered by \mathcal{R} if all subsets of X can be obtaind by intersecting X with members of \mathcal{R} .
- That is, for any $Y \subseteq X$, there is some $A \in \mathcal{R}$ such that $Y = X \cap A$.
- Examples: $U = \text{points in the plane. } \mathcal{R} = \text{half-spaces.}$

VC Dimension

- The shatter function measures the complexity of the set system.
- If instead of half-spaces, we used ellipses, then (ii) and (iii) can be shattered as well.
- So, the set system of ellipses has higher complexity than half-spaces.

VC Dimension: The VC dimension of a set system $(\mathcal{U}, \mathcal{R})$ is the maximum size of any set $X \subset \mathcal{U}$ shattered by \mathcal{R} .

• Thus, the half-spaces system has VC dimension 3.

Other Examples

- Set system where $\mathcal{U} = \text{points in } d\text{-space}$, and $\mathcal{R} = \text{half-spaces}$, has VC-dimension d+1.
- A simplex is shattered, but no (d+2)-point set is shattered (by Radon's Lemma).
- Set system where $\mathcal{U} = \text{points in the plane}$, and $\mathcal{R} = \text{circles}$, has VC-dimesion 4.

Convex Set System

- Consider $(\mathcal{U}, \mathcal{R})$, where \mathcal{U} is set of points in the plane, and \mathcal{R} is family of convex sets.
- Members of \mathcal{R} are subsets that can be obtained by intersecting \mathcal{U} with a convex polygon.

Set system of convex polygons

- Any subset $X \subseteq \mathcal{U}$ can be obtained by intersecting \mathcal{U} with an appropriate convex polygon.
- Thus, entire set \mathcal{U} is shattered.
- VC dimension of this set system is ∞ .

ε -Net Theorem

- Suppose $(\mathcal{U}, \mathcal{R})$ is a set system of VC dimension d, and let ε, δ be real numbers, where $\varepsilon \in [0, 1]$ and $\delta > 0$.
- If we draw

$$O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon} + \frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$$

points at random from \mathcal{U} , then the resulting set N is an ε -net with probability $\geq \delta$.

- Size of ε -Net is independent of the size of \mathcal{U} .
- Example: Consider set system of points in the plane with half-space ranges. It has VC-dim = 3. Assuming ε, δ constant, we have an ε-net of O(1) size.

Consequences

- We will not prove the ε-net theorem, but look at some applications, and prove a related result, bounding the size of the set system.
- Suppose the set system $(\mathcal{U}, \mathcal{R})$, where $|\mathcal{U}| = n$, has VC dimension d. How many sets can be in the family \mathcal{R} ?
- Naively, the best one can say is that $|\mathcal{R}| \leq 2^n$.
- We will show that

$$|\mathcal{R}| \leq \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} \leq n^d$$

- This is the best bound one can prove in general, but it's not necessarily the best for individual set systems.
- E.g., for points and half-spaces in the plane, this theorem gives n^3 , while we can see that the real bound is n^2 .

- Define $g(d,n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d}$.
- Proof by induction. Base case trivial: n = d = 0 and $\mathcal{U} = \mathcal{R} = \emptyset$.
- Choose an arbitrary point $x \in U$, and consider $U' = U \{x\}$.
- Let \mathcal{R}' be the projection of \mathcal{R} onto \mathcal{U}' . That is. $\mathcal{R}' = \{A \cap \mathcal{U}' | A \in \mathcal{R}\}.$
- VC-dim of $(\mathcal{U}', \mathcal{R}')$ is at most d—if \mathcal{R}' shatters a (d+1)-size set, so does \mathcal{R} .
- By induction, $|\mathcal{R}'| \leq g(d, n-1)$.

- What's the difference between \mathcal{R} and \mathcal{R}' ?
- Two sets $A, A' \in \mathcal{R}$ map to same set in \mathcal{R}' only if $A = A' \cup \{x\}$ and $x \notin A'$.
- Define a new set system $(\mathcal{U}, \mathcal{R}'')$ where

 $\mathcal{R}'' = \{ A' | A' \in \mathcal{R}, \quad x \notin A', \quad A' \cup \{ x \} \in \mathcal{R} \}$

- $|\mathcal{R}| = |\mathcal{R}'| + |\mathcal{R}''|$ —sets in \mathcal{R}'' are exactly those that are counted only once in \mathcal{R}' .
- Claim: VC-dim of \mathcal{R}'' is $\leq d-1$.
- We show that whenever \mathcal{R}'' shatters Y, \mathcal{R} shatters $Y \cup \{x\}$.

- Two cases: Consider $A \subseteq Y \cup \{x\}$.
 - **1.** If $A \subseteq Y$, then since Y is shattered, $\exists S \in \mathcal{R}''$ so that $S \cap Y = A$.
 - **2.** Since $x \notin S$, but $S \in \mathcal{R}$, it follows that $S \cap (Y \cup \{x\}) = A$.
 - **3.** If $x \in A$, then $\exists S \in \mathcal{R}''$ so that $S \cap Y = A \{x\}.$
 - 4. By definition of \mathcal{R}'' , $S \cup \{x\} \in \mathcal{R}$, and so $(S \cup \{x\}) \cap (Y \cup \{x\}) = A \cup \{x\} = A$.
- Thus, $Y \cup \{s\}$ is shattered.
- Thus, VC-dim of \mathcal{R}'' is at most d-1, and by induction, $|\mathcal{R}''| \leq g(d-1, n-1)$.

• Since $|\mathcal{R}| = |\mathcal{R}'| + |\mathcal{R}''|$, we have

$$\begin{aligned} |\mathcal{R}| &\leq g(d, n-1) + g(d-1, n-1) \\ &= \sum_{i=0}^{d} \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i} \\ &= \binom{n-1}{0} + \sum_{i=1}^{d} \left(\binom{n-1}{i} + \binom{n-1}{i-1} \right) \\ &= \binom{n}{0} + \sum_{i=1}^{d} \binom{n}{i} \\ &= g(d, n) \end{aligned}$$

ε -Approximation

- Suppose $(\mathcal{U}, \mathcal{R})$ is a set system of VC dimension d, and let ε, δ be real numbers, where $\varepsilon \in [0, 1]$ and $\delta > 0$.
- A set $N \subseteq \mathcal{U}$ is called an ε -approximation for $(\mathcal{U}, \mathcal{R})$ if for any $A \in \mathcal{R}$,

$$\left|\frac{|N \cap A|}{|N|} - \frac{|A|}{|\mathcal{U}|}\right| \leq \varepsilon$$

• If we draw

$$O\left(\frac{d}{\varepsilon^2}\log\frac{d}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right)$$

points at random from \mathcal{U} , then the resulting set N is an ε -approximation with probability $\geq \delta$.

• An ε -approximation is also an ε -net, but not vice versa.