ε-Nets and VC Dimension

- Sampling is a powerful idea applied widely in many disciplines, including CS.
- There are at least two important uses of sampling: estimation and detection.
- CNN, Nielsen, NYT etc use polling to estimate the size of a particular group in the larger population.
- By sampling a small segment of the population, one can predict the winner of a presidential election (with high confidence). How many prefer Bush to Gore; how many will use a new service etc.
- In detection, the goal is to sample so that any group with large probability measure will be caught with high confidence.
- Random traffic checks, for example. Frequent speeders (drinkers) are likely to get caught.

Sampling

- A network monitoring application.
- Want to detect flows that are suspiciously big, in terms of fraction of total packets.
- Set a threshold of $\theta \%$. Any flow that accounts for more than $\theta \%$ of traffic at a router should be flagged.
- Keeping track of all flows is infeasible; millions of flows and billions of packets per second.
- By taking a number of samples that depends only on θ, we can detect offending flows with high probability.
- Track only sampled flows.

Basic Sampling Theorem

- U is a ground set (points, events, database objects, people etc.)
- Let $R \subset U$ be a subset such that $|R| \geq \varepsilon|U|$, for some $0<\varepsilon<1$.
- Theorem: A random sample of $\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ points from U intersects R with probability at least $1-\delta$.
- Proof: A particular sample point is in R with prob ε, and not in R with prob. $1-\varepsilon$. Prob. that none of the sampled points is in R is

$$
\leq(1-\varepsilon)^{\frac{1}{\varepsilon} \ln \frac{1}{\delta}} \leq e^{-\ln \frac{1}{\delta}}=\delta .
$$

Universal Samples

- Sample size is independent of $|U|$.
- Basic sampling theorem guarantees that for a given set R, a random sample set works.
- If we want to hit each of the sets R_{1}, R_{2}, \ldots, R_{m}, then this idea is too limiting. It requires a separate sample for each R_{i}.
- Can we get a single universal sample set, which hit all the R_{i} 's?

- ε-Nets and VC dimension characterize when this is possible.

ε-Nets

- Let $(\mathcal{U}, \mathcal{R})$ be a finite set system, and let $\varepsilon \in[0,1]$ be a real number.
- A set $N \subseteq \mathcal{U}$ is called an ε-net for $(\mathcal{U}, \mathcal{R})$ if $N \cap R \neq \emptyset$ for all $R \in \mathcal{R}$ whenever $|R| \geq \varepsilon|\mathcal{U}|$.

- A more general form of ε-net can be defined using probability measures. Think of this as endowing points of \mathcal{U} with weights.

Shatter Function

- A set system $(\mathcal{U}, \mathcal{R})$, where \mathcal{U} is the ground set and \mathcal{R} is a family of subsets.
- $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$, with $R_{i} \subset \mathcal{U}$, are ranges that we want to hit.
- A subset $X \subset \mathcal{U}$ is shattered by \mathcal{R} if all subsets of X can be obtaind by intersecting X with members of \mathcal{R}.
- That is, for any $Y \subseteq X$, there is some $A \in \mathcal{R}$ such that $Y=X \cap A$.
- Examples: $\mathcal{U}=$ points in the plane. $\mathcal{R}=$ half-spaces.

(ii)

(iii)

VC Dimension

(i)

Shattered by \mathbf{R}

(ii)

(iii)

Not Shattered by R

- The shatter function measures the complexity of the set system.
- If instead of half-spaces, we used ellipses, then (ii) and (iii) can be shattered as well.
- So, the set system of ellipses has higher complexity than half-spaces.

VC Dimension: The VC dimension of a set system $(\mathcal{U}, \mathcal{R})$ is the maximum size of any set $X \subset \mathcal{U}$ shattered by \mathcal{R}.

- Thus, the half-spaces system has VC dimension 3.

Other Examples

- Set system where $\mathcal{U}=$ points in d-space, and $\mathcal{R}=$ half-spaces, has VC-dimension $d+1$.
- A simplex is shattered, but no $(d+2)$-point set is shattered (by Radon's Lemma).
- Set system where $\mathcal{U}=$ points in the plane, and $\mathcal{R}=$ circles, has VC-dimesion 4.

Convex Set System

- Consider $(\mathcal{U}, \mathcal{R})$, where \mathcal{U} is set of points in the plane, and \mathcal{R} is family of convex sets.
- Members of \mathcal{R} are subsets that can be obtained by intersecting \mathcal{U} with a convex polygon.

Set system of convex polygons

- Any subset $X \subseteq \mathcal{U}$ can be obtained by intersecting \mathcal{U} with an appropriate convex polygon.
- Thus, entire set \mathcal{U} is shattered.
- VC dimension of this set system is ∞.

ε-Net Theorem

- Suppose $(\mathcal{U}, \mathcal{R})$ is a set system of VC dimension d, and let ε, δ be real numbers, where $\varepsilon \in[0,1]$ and $\delta>0$.
- If we draw

$$
O\left(\frac{d}{\varepsilon} \log \frac{d}{\varepsilon}+\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)
$$

points at random from \mathcal{U}, then the resulting set N is an ε-net with probability $\geq \delta$.

- Size of ε-Net is independent of the size of U.
- Example: Consider set system of points in the plane with half-space ranges. It has VC-dim $=3$. Assuming ε, δ constant, we have an ε-net of $O(1)$ size.

Consequences

- We will not prove the ε-net theorem, but look at some applications, and prove a related result, bounding the size of the set system.
- Suppose the set system $(\mathcal{U}, \mathcal{R})$, where $|\mathcal{U}|=n$, has VC dimension d. How many sets can be in the family \mathcal{R} ?
- Naively, the best one can say is that $|\mathcal{R}| \leq 2^{n}$.
- We will show that

$$
|\mathcal{R}| \leq\binom{ n}{0}+\binom{n}{1}+\cdots+\binom{n}{d} \leq n^{d}
$$

- This is the best bound one can prove in general, but it's not necessarily the best for individual set systems.
- E.g., for points and half-spaces in the plane, this theorem gives n^{3}, while we can see that the real bound is n^{2}.

Proof

- Define $g(d, n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}$.
- Proof by induction. Base case trivial: $n=d=0$ and $\mathcal{U}=\mathcal{R}=\emptyset$.
- Choose an arbitrary point $x \in \mathcal{U}$, and consider $\mathcal{U}^{\prime}=\mathcal{U}-\{x\}$.
- Let \mathcal{R}^{\prime} be the projection of \mathcal{R} onto \mathcal{U}^{\prime}. That is. $\mathcal{R}^{\prime}=\left\{A \cap \mathcal{U}^{\prime} \mid A \in \mathcal{R}\right\}$.
- VC-dim of $\left(\mathcal{U}^{\prime}, \mathcal{R}^{\prime}\right)$ is at most d-if \mathcal{R}^{\prime} shatters a $(d+1)$-size set, so does \mathcal{R}.
- By induction, $\left|\mathcal{R}^{\prime}\right| \leq g(d, n-1)$.

System (U, R)

System ($\mathbf{U}^{\prime}, \mathbf{R}^{\prime}$)

Proof

- What's the difference between \mathcal{R} and \mathcal{R}^{\prime} ?
- Two sets $A, A^{\prime} \in \mathcal{R}$ map to same set in \mathcal{R}^{\prime} only if $A=A^{\prime} \cup\{x\}$ and $x \notin A^{\prime}$.
- Define a new set system $\left(\mathcal{U}, \mathcal{R}^{\prime \prime}\right)$ where

$$
\mathcal{R}^{\prime \prime}=\left\{A^{\prime} \mid A^{\prime} \in \mathcal{R}, \quad x \notin A^{\prime}, \quad A^{\prime} \cup\{x\} \in \mathcal{R}\right\}
$$

- $|\mathcal{R}|=\left|\mathcal{R}^{\prime}\right|+\left|\mathcal{R}^{\prime \prime}\right|-$ sets in $\mathcal{R}^{\prime \prime}$ are exactly those that are counted only once in \mathcal{R}^{\prime}.
- Claim: VC-dim of $\mathcal{R}^{\prime \prime}$ is $\leq d-1$.
- We show that whenever $\mathcal{R}^{\prime \prime}$ shatters Y, \mathcal{R} shatters $Y \cup\{x\}$.

System (U, R)

System ($\mathbf{U}^{\prime}, \mathbf{R}^{\prime}$)

Proof

- Two cases: Consider $A \subseteq Y \cup\{x\}$.

1. If $A \subseteq Y$, then since Y is shattered, \exists $S \in \mathcal{R}^{\prime \prime}$ so that $S \cap Y=A$.
2. Since $x \notin S$, but $S \in \mathcal{R}$, it follows that $S \cap(Y \cup\{x\})=A$.
3. If $x \in A$, then $\exists S \in \mathcal{R}^{\prime \prime}$ so that $S \cap Y=A-\{x\}$.
4. By definition of $\mathcal{R}^{\prime \prime}, S \cup\{x\} \in \mathcal{R}$, and so $(S \cup\{x\}) \cap(Y \cup\{x\})=A \cup\{x\}=A$.

- Thus, $Y \cup\{s\}$ is shattered.
- Thus, VC-dim of $\mathcal{R}^{\prime \prime}$ is at most $d-1$, and by induction, $\left|\mathcal{R}^{\prime \prime}\right| \leq g(d-1, n-1)$.

Proof

- Since $|\mathcal{R}|=\left|\mathcal{R}^{\prime}\right|+\left|\mathcal{R}^{\prime \prime}\right|$, we have

$$
\begin{aligned}
|\mathcal{R}| & \leq g(d, n-1)+g(d-1, n-1) \\
& =\sum_{i=0}^{d}\binom{n-1}{i}+\sum_{i=0}^{d-1}\binom{n-1}{i} \\
& =\binom{n-1}{0}+\sum_{i=1}^{d}\left(\binom{n-1}{i}+\binom{n-1}{i-1}\right) \\
& =\binom{n}{0}+\sum_{i=1}^{d}\binom{n}{i} \\
& =g(d, n)
\end{aligned}
$$

ε-Approximation

- Suppose $(\mathcal{U}, \mathcal{R})$ is a set system of VC dimension d, and let ε, δ be real numbers, where $\varepsilon \in[0,1]$ and $\delta>0$.
- A set $N \subseteq \mathcal{U}$ is called an ε-approximation for $(\mathcal{U}, \mathcal{R})$ if for any $A \in \mathcal{R}$,

$$
\left|\frac{|N \cap A|}{|N|}-\frac{|A|}{|\mathcal{U}|}\right| \leq \varepsilon
$$

- If we draw

$$
O\left(\frac{d}{\varepsilon^{2}} \log \frac{d}{\varepsilon}+\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}\right)
$$

points at random from \mathcal{U}, then the resulting set N is an ε-approximation with probability $\geq \delta$.

- An ε-approximation is also an ε-net, but not vice versa.

