Range Searching

- Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

- Depends on type of objects and queries. Consider basic data structures with broad applicability.
- Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query.
- Consider data structures with (nearly) linear space.

Orthogonal Range Searching

- Fix a n-point set P. It has 2^{n} subsets. How many are possible answers to geometric range queries?

- Efficiency comes from the fact that only a small fraction of subsets can be formed.
- Orthogonal range searching deals with point sets and axis-aligned rectangle queries.
- These generalize 1-dimensional sorting and searching, and the data structures are based on compositions of 1-dim structures.

1-Dimensional Search

- Points in 1D $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
- Queries are intervals.

- If the range contains k points, we want to solve the problem in $O(\log n+k)$ time.
- Does hashing work? Why not?
- A sorted array achieves this bound. But it doesn't extend to higher dimensions.
- Instead, we use a balanced binary tree.

Tree Search

- Build a balanced binary tree on the sorted list of points (keys).
- Leaves correspond to points; internal nodes are branching nodes.
- Given an interval $\left[x_{l o}, x_{h i}\right]$, search down the tree for $x_{l o}$ and $x_{h i}$.
- All leaves between the two form the answer.
- Tree searches takes $2 \log n$, and reporting the points in the answer set takes $O(k)$ time; assume leaves are linked together.

Canonical Subsets

- $S_{1}, S_{2}, \ldots, S_{k}$ are canonical subsets, $S_{i} \subseteq P$, if the answer to any range query can be written as the disjoint union of some S_{i} 's.
- The canonical subsets may overlap.
- Key is to determine correct S_{i} 's, and given a query, efficiently determine the appropriate ones to use.
- In 1D, a canonical subset for each node of the tree: S_{v} is the set of points at the leaves of the subtree with root v.

1D Range Query

- Given query $\left[x_{l o}, x_{h i}\right]$, search down the tree for leftmost leaf $u \geq x_{l o}$, and leftmost leaf $v \geq x_{h i}$.
- All leaves between u and v are in the range.
- If $u=x_{l o}$ or $v=x_{h i}$, include that leaf's canonical set (singleton) into the range.
- The remainder range determined by maximal subtree lying in the range $[u, v)$.

Query Processing

- Let z be the last node common to search paths from root to u, v.
- Follow the left path from z to u. When path goes left, add the canonical subset of right child. (Nodes 7, 3, 1 in Fig.)
- Follow the right path from z to v. When path goes right, add the canonical subset of left child. (Nodes 20, 22 in Fig.)

Analysis

- Since search paths have $O(\log n)$ nodes, there are $O(\log n)$ canonical subsets, which are found in $O(\log n)$ time.
- To list the sets, traverse those subtrees in linear time, for additional $O(k)$ time.
- If only count is needed, storing sizes of canonical sets at nodes suffices.
- Data structure uses $O(n)$ space, and answers range queries in $O(\log n)$ time.

Multi-Dimensional Data

- Range searching in higher dimensions?
- kD-trees [Jon Bentley 1975]. Stands for k-dimensional trees.
- Simple, general, and arbitrary dimensional. Asymptotic search complexity not very good.
- Extends 1D tree, but alternates using x -y-coordinates to split. In k-dimensions, cycle through the dimensions.

$k D$-Trees

- A binary tree. Each node has two values: split dimension, and split value.
- If split along x, at coordinate s, then left child has points with x-coordinate $\leq s$; right child has remaining points. Same for y.
- When $O(1)$ points remain, put them in a leaf node.
- Data points at leaves only; internal nodes for branching and splitting.

Splitting

- To get balanced trees, use the median coordinate for splitting-median itself can be put in either half.
- With median splitting, the height of the tree guaranteed to be $O(\log n)$.
- Either cycle through the splitting dimensions, or make data-dependent choices. E.g. select dimension with max spread.

Space Partitioning View

- $k D$-tree induces a space subdivision-each node introduces a x - or y-aligned cut.
- Points lying on two sides of the cut are passed to two children nodes.
- The subdivision consists of rectangular regions, called cells (possibly unbounded).
- Root corresponds to entire space; each child inherits one of the halfspaces, so on.
- Leaves correspond to the terminal cells.
- Special case of a general partition BSP.

Construction

- Can be built in $O(n \log n)$ time recursively.
- Presort points by x and y-coordinates, and cross-link these two sorted lists.
- Find the x-median, say, by scanning the x list. Split the list into two. Use the cross-links to split the y-list in $O(n)$ time.
- Now two subproblems, each of size $n / 2$, and with their own sorted lists. Recurse.
- Recurrence $T(n)=2 T(n / 2)+n$, which solves to $T(n)=O(n \log n)$.

Searching $k D$-Trees

- Suppose query rectangle is R. Start at root node.
- Suppose current splitting line is vertical (analogous for horizontal). Let v, w be left and right children nodes.
- If v a leaf, report $\operatorname{cell}(v) \cap R$; if $\operatorname{cell}(v) \subseteq R$, report all points of $\operatorname{cell}(v)$; if $\operatorname{cell}(v) \cap R=\emptyset$, skip;
otherwise, search subtree of v recursively.
- Do the same for w.
- Procedure obviously correct. What is the time complexity?

Search Complexity

- When $\operatorname{cell}(v) \subseteq R$, complexity is linear in output size.
- It suffices to bound the number of nodes v visited for which the boundaries of $\operatorname{cell}(v)$ and R intersect.
- If $\operatorname{cell}(v)$ outside R, we don't search it; if $\operatorname{cell}(v)$ inside R, we enumerate all points in region of v; a recursive call is made only if $\operatorname{cell}(v)$ partially overlaps R; the $k D$-tree height is $O(\log n)$.
- Let ℓ be the line defining one side of R.
- We prove a bound on the number of cells that intersect ℓ; this is more than what is needed; multiply by 4 for total bound.

Search Complexity

- How many cells can a line intersect?
- Since splitting dimensions alternate, the key idea is to consider two levels of the tree at a time.
- Suppose the first cut is vertical, and second horizontal. We have 4 cells, each with $n / 4$ points.
- A line intersects exactly two cells; the others cells will be either outside or entirely inside R.
- The recurrence is

$$
Q(n)= \begin{cases}1 & \text { if } n=1 \\ 2 Q(n / 4)+2 & \text { otherwise }\end{cases}
$$

Search Complexity

- The recurrence $Q(n)=2 Q(n / 4)+2$ solves to

$$
Q(n)=O(\sqrt{n})
$$

- kD-Tree is an $O(n)$ space data structure that solves 2 D range query in worst-case time $O(\sqrt{n}+m)$, where m is the output size.

d-Dim Search Complexity

- What's the complexity in higher dimensions?
- Try 3D, and then generalize.
- The recurrence is

$$
Q(n)=2^{d-1} Q\left(n / 2^{d}\right)+1
$$

- It solves to

$$
Q(n)=O\left(n^{1-1 / d}\right)
$$

- $k D$-Tree is an $O(d n)$ space data structure that solves d-dim range query in worst-case time $O\left(n^{1-1 / d}+m\right)$, where m is the output size.

Orthogonal Range Trees

- Generalize 1D search trees to dimension d.
- Each search recursively decomposes into multiple lower dimensional searches.
- Search complexity is $O\left((\log n)^{d}+k\right)$, where k is the answer size.
- Space \& time complexity $O\left(n(\log n)^{d-1}\right)$.
- Fractional cascading eliminates one $\log n$ factor from search time.
- We focus on $2 D$, but ideas readily extend.

2D Range Trees

- Suppose $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ set of points in the plane.
- The generic query is $R=\left[x_{l o}, x_{h i}\right] \times\left[y_{l o}, y_{h i}\right]$.
- We first ignore the y-coordinates, and build a 1D x-range tree on P.

- The set of points that fall in $\left[x_{l o}, x_{h i}\right]$ belong to $O(\log n)$ canonical sets.
- This is a superset of the final answer. It can be significantly bigger than $|R \cap P|$, so we can't afford to look at each point in these canonical sets.

Level 2 Trees

- Key idea is to collect points of each canonical set, and build a y-range tree on them.
- E.g., the canonical set $\{9,12,14,15\}$ is organized into a 1D range tree using those points' y-coordinates.

- We search each of the $O(\log n)$ canonical sets that include points for x-range $\left[x_{l o}, x_{h i}\right]$ using their y-range trees for range $\left[y_{l_{o}}, y_{h i}\right]$.
- The y-range searches list out the points in $R \cap P$. (No duplicates.)

Canonical Sets

Analysis

- Time complexity for 2D is $O\left((\log n)^{2}\right)$.

1. $O(\log n)$ canonical sets for x-range.
2. Each set's y-range query takes $O(\log n)$ time.

- Space complexity is $O(n \log n)$.

1. What is the total size of all canonical sets in x-tree?
2. Number of nodes \equiv number of leaves.
3. One set of size n. Two of size $n / 2$, etc.
4. Total is $O(n \log n)$.
5. Each canonical set of size m requires $O(m)$ space for the y-range tree.
6. So, overall space is $O(n \log n)$.

Construction

- The x-tree can be built in $O(n \log n)$ time.
- Naively, since total size of all y-trees is $O(n \log n)$, it will take $O\left(n(\log n)^{2}\right)$ time to build them.
- By building them bottom-up, we can avoid sorting cost at each node.
- Once y-trees for the children nodes are built, we can merge their y-lists to get the parent's y-list in linear time.
- The cost of building the 1D range tree is linear after sorting.
- Thus, total time is linear in $O(n \log n)$, the total sizes of all y-tree.s

d-Dim Range Trees

- The multi-level range tree idea extends naturally to any dimension d.
- Build the x-tree on first coordinate.
- At each node v of this tree, build the (d-1)-dimensional range tree for canonical set of v on the remaining $d-1$ dimensions.
- Search complexity grows by one $\log n$ factor for each dimension-each dimensional increases the number of canonical sets by $\log n$ factor.
- So, search cost is $O\left((\log n)^{d}\right)$.
- Space and time complexity is
$O\left(n(\log n)^{d-1}\right)$.

Fractional Cascading

- A technique that improves the range tree search time by log factor. 2D search can be done in $O(\log n)$ time.
- Basic idea: Range tree first finds the set of points lying in $\left[x_{l o}, x_{h i}\right]$ as union of $O(\log n)$ canonical sets.
- Next, each canonical set is searched using the y-tree for range $\left[y_{l o}, y_{h i}\right]$. We locate $y_{l o}$; then read off points until $y_{h i}$ reached.
- Since each set is searched for the same key, $y_{l o}$, we can improve the search to $O(1)$ per set.
- In effect, we do the first search in $O(\log n)$ time, but then use that information to search other structures more efficiently.
- The key is to place smart hooks linking the search structures for the canonical sets.

Basic Idea

- To understand the basic idea, consider a simple example.
- We have two sets of numbers, A_{1}, A_{2}, both sorted.
- Given a range $\left[x, x^{\prime}\right]$, want to report all keys in A_{1}, A_{2} that lie in the range.
- Straightforward method takes $2 \log n+k$, if k is the answer size; separate binary searches in A_{1}, A_{2} to locate x.
- For example, range $[20,65]$.

Fractional Cascading Idea

- Suppose $A_{2} \subset A_{1}$. Add pointers from A_{1} to A_{2}.
- If $A_{1}[i]=y_{i}$, store ptr to entry in A_{2} with smallest key $\geq y_{i}$. (Nil if undefined.)

- Suppose we want keys in range $\left[y, y^{\prime}\right]$.
- Search A_{1} for y, and walk until past y^{\prime}. Time $O\left(\log n+k_{1}\right)$.
- If A_{1} search for y ended at $A_{1}[i]$, use its pointer to start search in A_{2}. This takes $O\left(1+k_{2}\right)$ time.
- Example [20, 65].

FC in Range Trees

- Key observation: canonical subsets $S(\ell(v))$ and $S(r(v))$ are subsets of $S(v)$.
- The x-tree is same as before. But instead of building y-trees for canonical subsets, we store them as sorted arrays, by y-coordinate.
- Each entry in $A(v)$ stores two pointers, into arrays $A(\ell(v))$ and $A(r(v))$.
- If $A(v)[i]$ stores point p, then ptr into $A(\ell(v))$ is to entry with smallest y-coordinate $\geq y(p)$. Same for $(r(v))$.

Range Tree FC

- Only some pointers shown to avoid clutter.

FC Search

- Consider range $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$.
- Search for x, x^{\prime} in the main x-tree.
- Let $v_{\text {split }}$ be the node where the two search paths diverge.
- The $O(\log n)$ canonical subsets correspond to nodes that lie below $v_{\text {split }}$, and are the right (left) child of a node on search path to x (resp. x^{\prime}) where the path goes left (resp. right).

FC Search

- At $v_{\text {split }}$, do binary search to locate y in $A\left(v_{\text {split }}\right)$. $O(\log n)$ time.
- As we search down the x-tree for x, x^{\prime}, keep track of the entries in the associated arrays for smallest keys $\geq y$, at $O(1)$ cost per node.

- Let $A(v)$ be one of the $O(\log n)$ canonical nodes that is to be searched for $\left[y, y^{\prime}\right]$ range.
- We just need to find the smallest entry in $A(v) \geq y$.

FC Search

- We can find this in $O(1)$ time because $\operatorname{parent}(v)$ is on the search path, and we know smallest entry $\geq y$ in $A(\operatorname{parent}(v))$, and have a pointer from that to v 's array.

- So we can output all points in $A(v)$ that lie in range $\left[y, y^{\prime}\right]$ in time $O\left(1+k_{v}\right)$, where k_{v} is the answer size.
- For 2D range search, the final time complexity is $O(\log n+k)$, and space $O(n \log n)$.
- d-dim range search takes $O\left((\log n)^{d-1}+k\right)$ time with fractional cascading.

