
Subhash Suri UC Santa Barbara

Point Location

• Preprocess a planar, polygonal subdivision
for point location queries.

p = (18, 11)

• Input is a subdivision S of complexity n,
say, number of edges.

• Build a data structure on S so that for a
query point p = (x, y), we can find the face
containing p fast.

• Important metrics: space and query
complexity.

Subhash Suri UC Santa Barbara

The Slab Method

• Draw a vertical line through each vertex.
This decomposes the plane into slabs.

• In each slab, the vertical order of line
segments remains constant.

A

B

C

D

A

B

C

D

s1

s2

s3

s4

s5

Slab 1Partition into slabs

• If we know which slab p = (x, y) lies, we
can perform a binary search, using the
sorted order of segments.

Subhash Suri UC Santa Barbara

The Slab Method

• To find which slab contains p, we perform
a binary search on x, among slab
boundaries.

• A second binary search in the slab
determines the face containing p.

A

B

C

D

A

B

C

D

s1

s2

s3

s4

s5

Slab 1Partition into slabs

• Thus, the search complexity is O(log n).

• But the space complexity is Θ(n2).

Subhash Suri UC Santa Barbara

Optimal Schemes

• There are other schemes (kd-tree,
quad-trees) that can perform point
location reasonably well, they lack
theoretical guarantees. Most have very
bad worst-case performance.

• Finding an optimal scheme was
challenging. Several schemes were
developed in 70’s that did either O(log n)
query, but with O(n log n) space, or
O(log2 n) query with O(n) space.

• Today, we will discuss an elegant and
simple method that achieved optimality,
O(log n) time and O(n) space [D.
Kirkpatrick ’83].

• Kirkpatrick’s scheme however involves
large constant factors, which make it less
attractive in practice.

• Later we will discuss a more practical,
randomized optimal scheme.

Subhash Suri UC Santa Barbara

Kirkpatrick’s Algorithm

• Start with the assumption that planar
subdivision is a triangulation.

• If not, triangulate each face, and label
each triangular face with the same label as
the original containing face.

• If the outer face is not a triangle, compute
the convex hull, and triangulate the
pockets between the subdivision and CH.

• Now put a large triangle abc around the
subdivision, and triangulate the space
between the two.

a b

c

Subhash Suri UC Santa Barbara

Modifying Subdivision

• By Euler’e formula, the final size of this
triangulated subdivision is still O(n).

• This transformation from S to
triangulation can be performed in
O(n log n) time.

a b

c

• If we can find the triangle containing p,
we will know the original subdivision face
containing p.

Subhash Suri UC Santa Barbara

Hierarchical Method

• Kirkpatrick’s method is hierarchical:
produce a sequence of increasingly coarser
triangulations, so that the last one has
O(1) size.

• Sequence of triangulations T0, T1, . . . , Tk,
with following properties:

1. T0 is the initial triangulation, and Tk is
just the outer triangle abc.

2. k is O(log n).
3. Each triangle in Ti+1 overlaps O(1)

triangles of Ti.

• Let us first discuss how to construct this
sequence of triangulations.

Subhash Suri UC Santa Barbara

Building the Sequence

• Main idea is to delete some vertices of Ti.

• Their deletion creates holes, which we
re-triangulate.

Vertex deletion and re−triangulation

u

v

• We want to go from O(n) size subdivision
T0 to O(1) size subdivision Tk in O(log n)
steps.

• Thus, we need to delete a constant
fraction of vertices from Ti.

• A critical condition is to ensure each new
triangle in Ti+1 overlaps with O(1)
triangles of Ti.

Subhash Suri UC Santa Barbara

Independent Sets

• Suppose we want to go from Ti to Ti+1, by
deleting some points.

• Kirkpatrick’s choice of points to be
deleted had the following two properties:

[Constant Degree] Each deletion candidate
has O(1) degree in graph Ti.

• If p has degree d, then deleting p leaves
a hole that can be filled with d− 2
triangles.

• When we re-triangulate the hole, each
new triangle can overlap at most d
original triangles in Ti.

Vertex deletion and re−triangulation

u

v

Subhash Suri UC Santa Barbara

Independent Sets

[Independent Sets] No two deletion
candidates are adjacent.

• This makes re-triangulation easier; each
hole handled independently.

Vertex deletion and re−triangulation

u

v

Subhash Suri UC Santa Barbara

I.S. Lemma

Lemma: Every planar graph on n vertices
contains an independent vertex set of size
n/18 in which each vertex has degree at most
8. The set can be found in O(n) time.

• We prove this later. Let’s use this now to
build the triangle hierarchy, and show how
to perform point location.

• Start with T0. Select an ind set S0 of size
n/18, with max degree 8. Never pick a, b, c,
the outer triangle’s vertices.

• Remove the vertices of S0, and
re-triangulate the holes.

• Label the new triangulation T1. It has at
most 17

18n vertices. Recursively build the
hierarchy, until Tk is reduced to abc.

• The number of vertices drops by 17/18
each time, so the depth of hierarchy is
k = log18/17 n ≈ 12 log n

Subhash Suri UC Santa Barbara

Illustration

T2

T3

T4

T1

T0

(not shown)

n
k o

gh
i

j

c d f

eb

y
z

vxT
w u

t

srq
p

G

F

C
D

B

E

A

T
J

IH

T

T

0 1

23

4

T m

a

l

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

Subhash Suri UC Santa Barbara

The Data Structure

• Modeled as a DAG: the root corresponds
to single triangle Tk.

• The nodes at next level are triangles of
Tk−1.

• Each node for a triangle in Ti+1 has
pointers to all triangles of Ti that it
overlaps.

• To locate a point p, start at the root. If p
outside Tk, we are done (exterior face).
Otherwise, set t = Tk, as the triangle at
current level containing p.

T2

T3

T4

T1

T0

(not shown)

n
k o

gh
i

j

c d f

eb

y
z

vxT
w u

t

srq
p

G

F

C
D

B

E

A

T
J

IH

T

T

0 1

23

4

T m

a

l

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

Subhash Suri UC Santa Barbara

The Search

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

J

IH

G

F

C
D

BA

E

y

vx
u

t

srq
p

z

w

a

m

n

gh
i

j

c d f

eb

o
k

l

• Check each triangle of Tk−1 that overlaps
with t—at most 6 such triangles. Update
t, and descend the structure until we
reach T0.

• Output t.

Subhash Suri UC Santa Barbara

Analysis

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

J

IH

G

F

C
D

BA

E

y

vx
u

t

srq
p

z

w

a

m

n

gh
i

j

c d f

eb

o
k

l

• Search time is O(log n)—there are O(log n)
levels, and it takes O(1) time to move from
level i to level i− 1.

• Space complexity requires summing up
the sizes of all the triangulations.

• Since each triangulation is a planar graph,
it is sufficient to count the number of
vertices.

• The total number of vertices in all
triangulations is

n
(
1 + (17/18) + (17/18)2 + (17/18)3 + · · ·) ≤ 18n.

• Kirkpatrick structure has O(n) space and
O(log n) query time.

Subhash Suri UC Santa Barbara

Finding I.S.

• We describe an algorithm for finding the
independent set with desired properties.

• Mark all nodes of degree ≥ 9.

• While there is an unmarked node, do

1. Choose an unmarked node v.
2. Add v to IS.
3. Mark v and all its neighbors.

• Algorithm can be implemented in O(n)
time—keep unmarked vertices in list, and
representing T so that neighbors can be
found in O(1) time.

v

Subhash Suri UC Santa Barbara

I.S. Analysis

• Existence of large size, low degree IS
follows from Euler’s formula for planar
graphs.

• A triangulated planar graph on n vertices
has e = 3n− 6 edges.

• Summing over the vertex degrees, we get∑
v

deg(v) = 2e = 6n− 12 < 6n.

• We now claim that at least n/2 vertices
have degree ≤ 8.

• Suppose otherwise. Then n/2 vertices all have degree ≥ 9.
The remaining have degree at least 3. (Why?)

• Thus, the sum of degrees will be at least 9n
2 + 3n

2 = 6n,
which contradicts the degree bound above.

• So, in the beginning, at least n/2 nodes are unmarked. Each
chosen v marks at most 8 other nodes (total 9 counting
itself.)

• Thus, the node selection step can be repeated at least n/18
times.

• So, there is a I.S. of size ≥ n/18, where each node has degree

≤ 8.

Subhash Suri UC Santa Barbara

Trapezoidal Maps

• A randomized point location scheme, with
(expected) query O(log n), space O(n), and
construction time O(n log n).

• The expectation does not depend on the
polygonal subdivision. The bounds holds
for any subdivision.

• It appears simpler to implement, and its
constant factors are better than
Kirkpatrick’s.

• The algorithm is based on trapezoidal
maps, or decompositions, also encountered
earlier in triangulation.

s1

s2

Subhash Suri UC Santa Barbara

Trapezoidal Maps

• Input a set of non-intersecting line
segments S = {s1, s2, . . . , sn}.

• Query: given point p, report the segment
directly above p.

• The region label can be easily encoded
into the line segments.

• Map is created by shooting a ray
vertically from each vertex, up and down,
until a segment is hit.

• In order to avoid degeneracies, assume
that no segment is vertical.

• The resulting rays plus the segments
define the trapezoidal map.

s1

s2

Subhash Suri UC Santa Barbara

Trapezoidal Maps

• Enclose S into a bounding box to avoid
infinite rays.

• All faces of the subdivision are trapezoids,
with vertical sides.

• Size Claim: If S has n segments, the map
has at most 6n+4 vertices and 3n+1 traps.

s1

s2

• Each vertex shoots one ray, each resulting in two new
vertices, so at most 6n vertices, plus 4 for the outer box.

• The left boundary of each trapezoid is defined by a segment
endpoint, or lower left corner of enclosing box.

• The corner of box acts as leftpoint for one trap; the right

endpoint of any segment also for one trap; and left endpoint

of any segment for at most 2 trapezoids. So total of 3n + 1.

Subhash Suri UC Santa Barbara

Construction

• Plane sweep possible, but not helpful for
point location.

• Instead we use randomized incremental
construction.

• Historically, invented for randomized
segment intersection. Point location an
intermediate problem.

• Start with outer box, one trapezoid.
Then, add one segment at a time, in an
arbitrary, not sorted, order.

s1

s2

/ / /

s1

s2

s

Before After inserting s

i

Subhash Suri UC Santa Barbara

Construction

• Let Si = {s1, s2, . . . , si} be first i segments,
and Ti be their trapezoidal map.

• Suppose Ti−1 built, and we add si.

• Find the trapezoid containing the left
endpoint of si. Defer for now: this is point
location.

• Walk through Ti−1, identifying trapezoids
that are cut. Then, “fix them up”.

• Fixing up means, shoot rays from left and
right endpoints of si, and trim the earlier
rays that are cut by si.

s1

s2

/ / /

s1

s2

s

Before After inserting s

i

Subhash Suri UC Santa Barbara

Analysis

• Observation: Final structure of trap map
does not depend on the order of segments.
(Why?)

• Claim: Ignoring point location, segment
i’s insertion takes O(ki) time if ki new
trapezoids created.

• Proof:

– Each endpoint of si shoots two rays.
– Additionally, suppose si interrupts K existing ray shots,

so total of K + 4 rays need processing.
– If K = 0, we get exactly 4 new trapezoids.
– For each interrupted ray shot, a new trapezoid created.
– With DCEL, update takes O(1) per ray.

After

s1

s2

s1

s2

Before

Subhash Suri UC Santa Barbara

Worst Case

• In a worst-case, ki can be Θ(i). This can
happen for all i, making the worst-case
run time

∑n
i=1 i = Θ(n2).

• Using randomization, we prove that if
segments are inserted in random order,
then expected value of ki is O(1)!

• So, for each segment si, the expected
number of new trapezoids created is a
constant.

• Figure below shows a worst-case example.
How will randomization help?

1 n/2

n

n/2 + 1

Subhash Suri UC Santa Barbara

Randomization

• Theorem: Assume s1, s2, . . . , sn is a random
permutation. Then, E[ki] = O(1), where ki

trapezoids created upon si’s insertion, and
the expectation is over all permutations.

• Proof.

1. Consider Ti, the map after si’s insertion.
2. Ti does not depend on the order in which segments

s1, . . . , si were added.
3. Reshuffle s1, . . . , si. What’s the probability that a

particular s was the last segment added?
4. The probability is 1/i.
5. We want to compute the number of trapezoids that would

have been created if s were the last segment.

The trapezoids that depend on s
The segments that the trapezoid
depends on.

s

Subhash Suri UC Santa Barbara

Proof

• Say trapezoid ∆ depends on s if ∆ would be created by s if s
were added last.

• Want to count trapezoids that depend on each segment, and
then find the average over all segments.

• Define δ(∆, s) = 1 if ∆ depends on s; otherwise, δ(∆, s) = 0.

The trapezoids that depend on s
The segments that the trapezoid
depends on.

s

• The expected complexity is

E[ki] =
1

i

X
s∈Si

X
∆∈Ti

δ(∆, s)

• Some segments create a lot of trapezoids; others very few.

• Switch the order of summation:

E[ki] =
1

i

X
∆∈Ti

X
s∈Si

δ(∆, s)

Subhash Suri UC Santa Barbara

Proof

The trapezoids that depend on s
The segments that the trapezoid
depends on.

s

• Now we are counting number of segments each trapezoid
depents on.

E[ki] =
1

i

X
∆∈Ti

X
s∈Si

δ(∆, s)

• This is much easier—each ∆ depends on at most 4 segments.

• Top and bottom of ∆ defined by two segments; if either of
them added last, then ∆ comes into existence.

• Left and right sides defined by two segments endpoints, and
if either one added last, ∆ is created.

• Thus,
P

s∈Si
δ(∆, s) ≤ 4.

• Ti has O(i) trapezoids, so

E[ki] =
1

i

X
∆∈Ti

4 =
1

i
4|Ti| =

1

i
O(i) = O(1).

• End of proof.

Subhash Suri UC Santa Barbara

Point Location

• Like Kirkpatrick’s, point location
structure is a rooted directed acyclic
graph.

• To query processor, it looks like a binary
tree, but subtree may be shared.

• Tree has two types of nodes:

– x-node: contains the x-coordinate of a
segment endpoint. (Circle)

– y-node: pointer to a segment. (Hexagon)

• A leaf for each trapzedoid.

p
1

p
2

q1s1

q2

s2

A

B

C D

F

E G

1s

2s

2s

1p
q

2q

2p

C

D F

GB

A
1

E

Subhash Suri UC Santa Barbara

Point Location

• Children of x-node correspond to points
lying to the left and right of x coord.

• Children of y-node correspond to space
below and above the segment.

• y-node searched only when query’s
x-coordinate is within segment’s span.

• Example: query in region D.

p
1

p
2

q1s1

q2

s2

A

B

C D

F

E G

1s

2s

2s

1p
q

2q

2p

C

D F

GB

A
1

E

• Encodes the trap decomposition, and
enables point location during the
construction as well.

Subhash Suri UC Santa Barbara

Building the Structure

• Incremental construction, mirroring the
trapezoidal map.

• When a segment s added, modify the tree
to account for changes in trapezoids.

• Essentially, some leaves will be replaced
by new subtrees.

• Like Kirkpatrick’s, each old trapezoid will
overlap O(1) new trapezoids.

p
1

p
2

q1s1

q2

s2

A

B

C D

F

E G

1s

2s

2s

1p
q

2q

2p

C

D F

GB

A
1

E

• Each trapezoid appears exactly once as a
leaf. For instance, F .

Subhash Suri UC Santa Barbara

Adding a Segment

• Consider adding segment s3.

p
1

p
2

q1s1

q2

s2

A

B

C D

F

E G

1s

2s

2s

1p
q

2q

2p

C

D F

GB

A
1

E

p
1

q1s1

q2

s2

p
2

p
3

s3

q3

A

B

FH

N
M

K

I

J

L

A

1p
q1

1s

B
2p

2s

2s

2q

F
H

I J K

3s3s

3p 3s 3s

3q

L

M

N

Subhash Suri UC Santa Barbara

Adding a Segment

• Changes are highly local.

• If segment s passes entirely through an
old trapezoid t, then t is replaced by two
traps t′, t′′.

– During search, we need to compare
query point to s to decide above/below.

– So, a new y-node added which is the
parent of t′ and t′′.

• If an endpoint of s lies in t, then we add a
x-node to decide left/right and a y-node
for the segment.

p
1

q1s1

q2

s2

p
2

p
3

s3

q3

A

B

FH

N
M

K

I

J

L

A

1p
q1

1s

B
2p

2s

2s

2q

F
H

I J K

3s3s

3p 3s 3s

3q

L

M

N

Subhash Suri UC Santa Barbara

Analysis

• Space is O(n), and query time is O(log n),
both in expectation.

• Expected bound depends on the random
permutation, and not on the choice of
input segments or the query point.

• The data structure size ∝ number of
trapezpoids, which is O(n), since O(1)
expected number of traps created when a
new segment inserted.

• In order to analyze query bound, fix a
query q.

• We consider how q moves incrementally
through the trapezoidal map as new
segments are inserted.

• Search complexity ∝ number of trapezoids
encountered by q.

Subhash Suri UC Santa Barbara

Search Analysis

• Let ∆i be trapezoid containing q after
insertion of ith segment.

• If ∆i = ∆i−1 then new insertion does not
affect q’s trapezoid. (E.g. q ∈ B and s3’s
insertion.)

• If ∆i 6= ∆i−1, then new segment deleted q’s
trapezoid, and q needs to locate itself
among the (at most 4) new traps.

• q could fall 3 levels in the tree. E.g. q ∈ C
falling to J after s3’s insertion.

p
1

q1s1

q2

s2

p
2

p
3

s3

q3

A

B

FH

N
M

K

I

J

L

A

1p
q1

1s

B
2p

2s

2s

2q

F
H

I J K

3s3s

3p 3s 3s

3q

L

M

N

Subhash Suri UC Santa Barbara

Search Analysis

• Let Pi be probability that ∆i 6= ∆i−1, over
all random permutation.

• Since q can drop ≤ 3 levels, expected
search path length is

∑n
i=1 3Pi.

• We will show that Pi ≤ 4/i. That will
imply that expected search path length is

3
n∑

i=1

4
i

= 12
n∑

i=1

1
i

= 12 ln n

• Why is Pi ≤ 4/i? Use backward analysis.

• The trapezoid ∆i depends on at most 4
segments. The probability that ith
segment is one of these 4 is at most 4/i.

p
1

p
2

q1s1

q2

s2

A

B

C D

F

E G

1s

2s

2s

1p
q

2q

2p

C

D F

GB

A
1

E

Subhash Suri UC Santa Barbara

Final Remarks

• Expectation only says that average search
path is small. It can still have large
variance.

• The trapezoidal map data structure has
bounds on variance too. See the textbook
for complete analysis.

Theorem: For any λ > 0, the probability
that depth of the randomized seach
structure exceeds 3λ ln(n + 1) is at most

2
(n + 1)λ ln 1.25−3

• More careful analysis can provide better
constants for the data structure.

