CS-235

Computational Geometry

Subhash Suri

Computer Science Department UC Santa Barbara

Fall Quarter 2002.

Computational Geometry

- Study of algorithms for geometric problems.
- Deals with discrete shapes: points, lines, polyhedra, polygonal meshes.
- Abstraction of problems in different applied areas.

- Occlusion, visibility, augmented reality, collision detection, motion or assembly planning, drug design, databases, GIS, layout, fluid dynamics, etc.

CG and Computer Science

- CG is a sub-discipline of algorithms and complexity.

Hilbert
Godel 1900-1940s
Turing

Algorithms
and
Complexity

Rabin 1950s-present
Cook/Levin/Karp
Knuth
Aho-Hopcropt-Ullman-Tar

Computational Geometry

Shamos' Thesis (1975)
1980-present

- Develops fundamental techniques and tools for geometric problems.
- Motivated by applications in other CS fields.
- Significant interaction with discrete mathematics.

Some Examples

- Range Searching Data Structures.

- Location Queries.

Some Examples

- Decomposition.

Geometric Scene

Partial Triangulation

- Is this always possible?
- In three dimension?
- Other examples: Shortest paths, geometric structures, visibility, pattern matching.

Some Examples

- Spatial Data Structures.

- Voronoi diagram, Delaunay triangulation.
- Robot motion planning.

Taste of Comb. Geometry

- Helly's Theorem: Let C_{1}, \ldots, C_{n} be a family of convex sets in the plane. If every triple intersects, then $\bigcap C_{i}$ is non-empty.
- Center Points: Given points $p_{1}, p_{2}, \ldots, p_{n}$ in the plane, a point x is called center point if any line through x contains at least $n / 3$ points on each side.
- Ham Sandwich Theorem: Take n red points and n blue points in the plane. There is a line simultaneously bisecting both red and blue points.
- Crossing Number Theorem: If G is a graph with n nodes and m edges, then every drawing of G in the plane contains at least $c\left(\frac{m^{3}}{n^{2}}\right)-n$ crossings.

Taste of Comb. Geometry

- Among any 5 points in the plane in general position, we can find 4 forming a convex polygon.
- Erdös-Szekeres Theorem: For every positive integer k, there exists a number F_{k}, such that every set of F_{k} points in the plane contains k that form a convex k-gon.
- Empty k-gon: How large must the set be to guarantee that we can find k points forming a convex polygon, which does not include any other point inside?
- Empty k-gon: Known values:
$G_{3}=3$.
$G_{4}=5$.
$G_{5}=10$.
$G_{6}=? ? ?$.
$G_{7}=\infty$!

Spirit of CG

1. CG is a product of marriage between classical geometry and computer science.
2. Emphasis on design of efficient algorithms and data structures.
3. In classical approach, reducing the complexity to a finite number of choices was enough.
4. Alas! 10^{100} is mathematically finite but computationally infinite.
5. Point of Reference: 1 Year $\approx 3.15 \times 10^{7}$ seconds.
6. 1 Century $\approx \pi \times 10^{9}$ seconds.
7. A 1-Giga flop computer does only 10^{20} ops in a century!

Model of Computation

1. Assume an abstract programming language model.
2. Traditionally, real-number extension of Random Access Machine (RAM).
3. Each memory cell can hold one int or real geometric coordinate. We will discuss later numerical precision issues.
4. Standard repertoire of operators:

- Arithmetic: $+,-, \div, *, \sqrt{ }$.
- Trigonometry: sin, cos, tan, exp, log.
- Comparators: $\leq, \geq,=$.
- Array indexing, pointers.

Elementary Objects

1. Point $p=(x, y)$, where x, y reals.
2. Line $\ell:=a x+b y=1$.
3. Line segment $s=[p, q]$.
4. Circle $C=(p, r)$. (Center, radius)
5. Polygon $<p_{1}, p_{2}, \ldots, p_{n}>$.

Elementary Operations

1. Algorithm receives algebraic input. It must perform computation to see the underlying geometric relationships.
2. Is point p on line ℓ ?
3. Is point p inside or outside circle C ?
4. Do segments s_{1} and s_{2} intersect?
5. Is point p inside or outside polygon P ?

Point on Line

Point in Circle

Point in Polygon

Overview of the Course

1. Convex Hulls.
2. Intersection Detection and Reporting.
3. Triangulation.
4. Range Searching.
5. Point Location.
6. Delaunay Triangulation.
7. Voronoi Diagrams.
8. Arrangements.
9. Binary Space Partitions.
10. Epsilon Net and VC Dimension.
11. Volume and paradoxes in higher dimensions.
12. Misc.
