
Subhash Suri UC Santa Barbara

Intersection Problems

• Determine pairs of intersecting objects?

A

B

C

D

E

• Complex shapes formed by boolean
operations: intersect, union, diff.

• Collision detection in robotics and motion
planning.

• Visibility, occlusion, rendering in graphics.

• Map overlay in GISs: e.g. road networks
on county maps.



Subhash Suri UC Santa Barbara

Line Segment Intersection

• The most basic problem: intersections
among line segments in R2.

• General enough to capture polygons, 2D
projections of 3D scenes.

• Naive algorithm: Check all pairs. O(n2).

• If k intersections, then ideal will be
O(n log n + k) time.

• We will describe a O((n + k) log n) solution.
Also introduce a new technique : plane
sweep.



Subhash Suri UC Santa Barbara

Primitive Operation

d

c

a

b

• How to decide if two line segments ab and
cd intersect?

• Write the equations of each segment in
parametric form:

p(s) = (1− s)a + sb for 0 ≤ s ≤ 1

q(t) = (1− t)c + sd for 0 ≤ t ≤ 1

• An intersection occurs if for some values
of s, t, we get p(s) = q(t).

• In terms of x, y , we get:

(1− s)ax + sbx = (1− t)cx + tdx

(1− s)ay + sby = (1− t)cy + tdy

• Solve for s, t and see if they lie in [0, 1].



Subhash Suri UC Santa Barbara

Plane Sweep Algorithm

• Input S = {s1, s2, . . . , sn}; each segment
given by pair of endpoints.

• Report all intersecting segment pairs.

• We move an imaginary vertical line from
left to right.

• Maintain vertical order of segments
intersecting the sweep line; order changes
only at discrete times.

f
gc

a

b e

d

• Intersections among S inferred by looking
at localized information along sweep line.



Subhash Suri UC Santa Barbara

Simplifying Assumptions

• In order to avoid dealing with technical
special cases, which obscure the main
ideas, we assume:

1. No segment is vertical.
2. Any two segments intersect in at most

one point.
3. No three or more lines intersect in a

common point.



Subhash Suri UC Santa Barbara

Data Structures

• Sweep Line Status: Maintain the
segments intersecting the sweep line ` in
sorted order, from top to bottom.

1. Balanced binary tree.
2. Insert, delete, search in O(log n).
3. The choice of the key? The y-position of

s ∩ ` changes as ` moves.
4. Use “variable” key, the equation of the

line: y = mx + c.
5. Plugging in x fixes y coordinate.
6. All order-comparisons among segments

done for a fixed x-position of `.

f
gc

a

b e

d



Subhash Suri UC Santa Barbara

Data Structures

• Event Queue: Events represent instants
when sweep line order changes.

1. While the y-coordinates of segments
along ` change continuously, their
ordering changes only at discrete steps.

f
gc

a

b e

d

2. Order changes when a segment begins, a
segment ends, or two segments
intersect.

3. Segments begin/end events known in
advance; the intersection events
generated dynamically.

4. Maintain events in x-sorted order, in a
balanced binary tree.



Subhash Suri UC Santa Barbara

What’s the Idea?

• The algorithm requires knowing the
intersection points (for event queue).

• But that’s whole problem we are trying to
solve!

• We don’t need all intersections up front;
only before the sweep line reaches them.

f
gc

a

b e

d

• Plane sweep’s idea is to maintain only the
“most immediate” intersections.

• At any time, the Event Queue schedules
only those intersections that are between
two neighboring segments in the sweep
line order.



Subhash Suri UC Santa Barbara

Algorithm

1. Initialize Event Queue with endpoints of
S, in sorted order.

2. While queue non-empty, extract the next
event. Three cases:

3. [Left endpoint of a segment si]

• Insert si into sweep line status tree;
• If si intersects its above or below

neighbors, add those intersections to
Event Queue.

4. [Right endpoint of a segment si]

• Delete si from sweep line status tree;
• If si’s neighbors intersect, add that

intersection to Event Queue.

5. [Intersection of si and sj]

• Swap the order of si and sj;
• Delete intersection events involving si

and sj from the Event Queue.
• Possibly add new intersection events

between si, sj and their new neighbors.



Subhash Suri UC Santa Barbara

Illustration

f
gc

a

b e

d



Subhash Suri UC Santa Barbara

Illustration

d

c

b

a a

b

c

d

d
c
b
a

d
b

a
c

Sweep Line Status Sweep Line Status



Subhash Suri UC Santa Barbara

Correctness

1. Algorithm only checks intersections
between segments that are adjacent along
sweep line at some point.

2. The algorithm obviously doesn’t report
false intersections.

3. But can it miss intersections?

4. No. If segments si and sj intersect at
point p, then si and sj are neighbors just
before the sweep line reaches p.

f
gc

a

b e

d



Subhash Suri UC Santa Barbara

Proof

si

sj

p

q

• No three or more segments intersect at
one point, so only si and sj intersect at p.

• For sweep line placed just before p, there
cannot be any segment between si and sj;
otherwise, there must be another event
before p.

• Let q be the event before p. Then, the
order of segments along sweep line after q
and before p must remain unchanged.

• Thus, si and sj are adjacent in the sweep
line status tree when p is processed.



Subhash Suri UC Santa Barbara

Complexity

f
gc

a

b e

d

• Number of events processed is 2n + k.

• Number of events scheduled and
descheduled can be larger.

• But each intersection processing creates
at most 2 new events, and deletes at most
2 old events, so O(k) events handled.

• Handling an event require O(1) changes to
the status tree, and O(1) insert/delets in
Event Queue.

• Thus, processing cost per event is O(log n).

• Time complexity is O((n + k) log(n + k)).



Subhash Suri UC Santa Barbara

Subdivision Representation

• How do we organize a planar subdivision
for easy access to useful information?

A

B

C

D

E

• E.g. how to tell that objects A,B, E create
a hole? Which edge bound that hole?

• The planar subdivision, or planar straight
line graph, is the embedding of a
geometric graph.



Subhash Suri UC Santa Barbara

Planar Subdivision

• A natural partition of the plane into
regions (faces), bounded by cycles of line
segments (edges), with points as their
endpoints (vertices).

• Using a general topological notation, these
are also called 2- 1-, and 0-dimensional
faces.

face

edge

vertex

• Planar subdivision are quite important:
triangulations, Voronoi diagrams etc.

• Develop a data structure that provides
primitives like “list the edges bounding a
face”, “list the edges that surround a
vertex.”



Subhash Suri UC Santa Barbara

Planar Graphs

• Planar subdivisions have attractive
properties because they are embeddings of
planar graphs.

• A graph is planar if it can be drawn in the
plane so that no two edges cross. An
embedding is any such drawing.

• One of the most famous properties of
planar graphs is the Euler’s Formula,
linking the number of vertices, edges, and
faces.

V − E + F = 2

• If the graph has multiple, C, disconnected
pieces, then

V − E + F − C = 1

face

edge

vertex



Subhash Suri UC Santa Barbara

DCEL Representation

• Euler’s formula can be used to show that
E ≤ 3V − 6 F ≤ 2V − 4.

• Thus, the number of vertices, edges, and
faces are all linearly related.

• DCEL (Doubly Connected Edge List) is
one of the most commonly used
representations. For simplicity, we now
assume faces do not have holes in them.

• DCEL is an edge-based structure, which
links together the three sets of records:
vertex records, edge records, and face
records.



Subhash Suri UC Santa Barbara

Details

1. A vertex v stores its coordinates, and a
pointer to one of its incident edges,
v.inc-edge, for which v is the origin.

2. Each undirected edge split into two
oppositely directed edges, called twins,
each pointing to the other.

3. Directed edge e points to its origin vertex,
e.org. Note that e.dest = e.twin.org

4. Edge e also has a pointer to its left face,
e.left. Finally, e.next and e.prev point to
the next and previous edges of this face,
in counterclockwise order.

Alternative viewDCEL

e

e.twin
e.org

e.prev

e.left

e.next



Subhash Suri UC Santa Barbara

Example

1. Each face f stores a pointer, f.inc-edge, to
one of its edges. (Read the book for
complete description of how to handle
various special cases.

2. Figure shows two ways to visualize DCEL.

Alternative viewDCEL

e

e.twin
e.org

e.prev

e.left

e.next

3. How do we use this data structure?

4. Consider overlaying two subdivisions. Or,
constructing the segment intersection
subdivision.



Subhash Suri UC Santa Barbara

Merging Subdivisions

1. Two subdivisions S1 and S2, stored as
DCELs. Compute the DCEL of S1 ∪ S2.

2. Use plane sweep to find segment
intersections, and update DCEL.

3. Many small but tedious details. Book
describes them. I will explain the most
interesting case: intersection event.

4. Merge (a1, b1)

• Create new vertex v at the intersection
point.

• Split the two intersecting edges.
Let a2 and b2 be the new edge pieces.

• Link them together Splice(a1, a2, b1, b2).



Subhash Suri UC Santa Barbara

Split and Splice

• Split(edge &a1, edge &a2)

a2 = new edge(v, a1.dest());
a2.next = a1.next; a1.next.prev = a2;
a1.next = a2; a2.prev = a1; a1t = a1.twin; a2t = a2.twin;
a2t.prev = a1t.prev; a1t.prev.next = a2t;

a1t.prev = a2t; a2t.next = a1t;

• Splice(&a1, &a2, &b1, &b2)

a1.next = b2; b2.prev = a1; b2t.next = a2; a2.prev = b2t;
a2t.next = b1t; b1t.prev = a2t; b1.next = a1t; a1t.prev =
b1;

b1

b1t a2t

a2

b2t

b2a1

a1t

b1

b1t

a1

a1t

b1

b1t a2t

a2

b2t

b2a1

a1tsplit

splice


