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. Binary Trees and Parallel Scheduling Algorithms
ELIEZER DEKEL AND SARTAJ SAHNI

Abstract—This paper examines the use of binary trees in the design of ef-
ficient parallel algorithms. Using binary trees, we develop efficient algorithms
for several scheduling problems. The shared memory model for parallel com-
putation is used. Our success in using binary trees for parallel computations,
indicates that the binary tree is an important and useful design tool for parallel
algorithms.

Index Terms—Complexity, design methodologies, parallel algorithms,
scheduling, shared memory model.

I. INTRODUCTION

Algorithm design techniques for single processor computers have
been extensively studied. For example Horowitz and Sahni [15] extoll
the virtues of such design methods as divide-and-conquer, dynamic
programming, greedy method, backtracking, and branch-and-bound.
These methods generally lead to efficient sequential (i.e., single
processor) algorithms for a variety of problems. These algorithms,
however, are not very efficient for computers with a very large number
of processors. In this paper, we propose a design method that we have
found useful in the design of algorithms for computers that have many
processors. The method proposed here is called the binary tree
method. While this method has been used in the design of parallel
algorithms earlier, here we attempt to show its broad applicability
to the design of such algorithms. It is hoped that further research will
bring to light some other basic design tools for parallel algorithms.
One should note that trees have been used extensively in the design
of efficient sequential algorithms. In fact, divide-and-conquer,

backtracking, and branch-and-bound all use an underlying compu-,

tation tree [15]. The use of binary trees as proposed here is quite
different from the use of trees in sequential computation.

With the continuing dramatic decline in the cost of hardware, it
is becoming feasible to build computers with thousands of processors
economically. In fact, Batcher [5] describes a computer (MPP) with
16 384 processors that is currently being built for NASA. In coming
years, one can expect to see computers with a hundred thousand or
even a million processing elements. This expectation has motivated
the study of parallel algorithms. Since the complexity of a parallel
algorithm depends very much on the architecture of the parallel
computer on which it is run, it is necessary to keep the architecture
in mind when designing the algorithm. Several parallel architectures
have been proposed and studied. In this paper, we shall deal directly
only with the single instruction stream, multiple data stream (SIMD)
model. Our technique and algorithms readily adapt to the other
models (e.g., multiple instruction stream multiple data stream
(MIMD) and data flow models). SIMD computers have the following
characteristics: .

1) They consist of p processing elements (PE’s). The PE’s are
indexed 0, 1, -+, p — 1 and an individual PE may be referenced as in
PE(i). Each PE is capable of performing the standard arithmetic and
logical operations. In addition, each PE knows its index.

2) Each PE has some local memory.

3) The PE’s are synchronized and operate under the control of a
single instruction stream.

4) An enable/disable mask can be used to select a subset of the
PE’s that are to perform an instruction. Only the enabled PE’s will
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perform the instruction. The remaining PE’s will be idle. All enabled
PE’s execute the same instruction. The set of enabled PE’s can change
from instruction to instruction.

While several SIMD models have been proposed and studied, in
this paper we shall be primarily concerned with only the shared
memory model (SMM). In the shared memory model, there is a
common memory available to each PE. Data may be transmitted from
PE(i) to PE()) by simply having PE({) write the data into the com-
mon memory and then letting PE(j) read it. Thus, in this model it
takes only 0(1) time for one PE to communicate with another PE.
Two PE’s are not permitted to write into the same word of common
memory simultaneously. The PE’s may or may not be allowed to si-
multaneously read the same word of common memory. If the former
is the case, then we shall say that read conflicts are permitted. In a
realistic situation, the common memory will be divided into blocks
of size g and a read conflict occurs whenever two PE’s attempt to si-
multaneously access the same block. Throughout this paper, we as-
sume that g = 1.

Most algorithmic studies of parallel computation have been based
on the SMM. Agerwala and Lint [1], Arjomandi [2], Csanky [8],
Eckstein [11], and Hirschberg [12] have developed algorithms for
certain matrix and graph problems using the SMM. Hirschberg [13],
Muller and Preparata [24], and Preparata [30] have considered the
sorting problem for SMM. The evaluation of polynomials on the
SMM has been studied by Munro and Paterson [25], while arithmetic
expression evaluation has been considered by Brent [7] and others.

The mesh connected computer (MCC), cube connected computer
(CCC), and perfect shuffle connected computer (PSC) are three other
SIMD models. Efficient algorithms to sort and perform data per-
mutations on an MCC can be found in Thompson and Kung [38],
Nassimi and Sahni [26] and [27], and Thompson [37]. Thompson’s
algorithms [37] can also be used to perform permutations on a CCC
and a PSC. Lang [19], and Lang and Stone [20], and Stone [36] show
how certain permutations may be performed using shuffles and ex-
changes. Nassimi and Sahni [28] develop fast sorting and permuta-
tion algorithms for a CCC and PSC. Dekel, Nassimi, and Sahni [9]
present efficient matrix multiplication and graph algorithms for
CCC’s and PSC’s. .

The algorithms considered in this paper are described explicitly
only for the SMM. The algorithms are readily translated into algo-
rithms for the other SIMD models. In some cases, it may be necessary
to use the data broadcasting algorithms developed by Nassimi and
Sahni [29] to accomplish this adaptation to the other models.

Throughout this paper, we assume that no read conflicts are al-
lowed.

II. THE BINARY TREE METHOD

In the binary tree method, we make use of a binary computation
tree. Such a tree is generally a complete binary tree. Fig. 1 shows such
a tree with 11 leaf nodes. The nodes of this tree have been indexed
(indexes appear outside each node) using the standard indexing
scheme for complete binary trees.

With each node of the computation tree, we associate k, k > 1
subproblems. The computation consists of k passes over this com-
putation tree. In pass 1, we proceed from the leaves to the root solving
the first subproblem associated with each node; in pass 2, we proceed
from the root to the leaves solving the second subproblem associated
with each node; and so on. Every odd pass is from the leaves to the root
while every even pass is from the root to the leaves.

As far as we are aware, the binary tree method has thus far been

used only with k = 1. A simple example is finding the sum i A(D)

i=1
of n numbers. The computation tree used has n leaf nodes. The sub-
problem associated with each node is that of finding the sum of all
the numbers represented by the leaves in the subtree of which it is a
root. Fig. 1 shows the computation for the case n = 11.

0018-9340/83/0300-0307$01.00 © 1983 IEEE
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Level

16 17 18 19 20

line procedure SUM1 (A4, n)
//compute Ii‘ AC(i) using | n/2]PE’s//
//initialize V//
I k<llogan];j <2kt 2%(n—j)p+n—1
Vip+i)«< A((i+t—1)modn+1),1<i=<n
for i < k down to 0 do //add by levels//
V() < V(2j) + V(2j + 1), 2 < j < min{p, 2i+] — 1}
end for
return (V(1))
end SUMI

=N L R W N

Fig. 2.

Once the computation has been described using a computation tree,
a parallel algorithm is easily obtained. Let V(i) denote the sum cor-
responding to node i. Procedure SUM1 of Fig. 2 is the corresponding
parallel algorithm. In lines 2 and 4, the use of @ < b < ¢ means that
this line is to be executed in parallel for all b satisfying the inequality.
Line 2 can be performed in two steps using | n/2] PE’s. Line 4 needs
at most | n/2] PE’s. It is clear that the compiexity of procedure SUM1
is O(log n).

In addition to analyzing the complexity of a parallel algorithm, one
often (see Savage [32]) also computes the effectiveness of processor
utilization (EPU). This is defined relative to a specific problem P,
the complexity of the fastest sequential algorithm known for P, and
the parallel algorithm A for problem P.

EPU(P, A)

_ complexity of the fastest sequential algorithm for P
number of PE’s used by A* complexity of 4

For the case of procedure SUM1,

1
EPU = Q |——| =
(n/2* log n) o (log n)

Note that 0 < EPU < 1 and that an EPU close to 1 is considered

n
“good.” For the case of computing > A(i), we can actually arrive
i=1

at an O(log n) algorithm with an EPU of Q(1) (i.e., using only [n/log
n] PE’s) [32]. This is done by dividing the nA(i)’s into [n/log n]
groups, each group containing at most [log n] of the 4(i)’s. Each of
these groups is assigned to a PE which sequentially computes the sum

of the numbers in the group. This takes O(log n) time. Now, we need
to sum up these [n/log n] group sums. Procedure SUM1 can be used
to compute this sum in 0(log n) time.

Note that the discussion carried out so far concerning the com-

~1 A(i)
where © is any associative operator (for example, max, min, *, etc.).

putation of Z A(i) applies just as well to the computation of ® 7.

Hence, max {A4(i)}; mln {4} H A(i); etc., can all be computed

1<i<n <
in 0(log n) time using [In/log n] PE’

We now consider an example with k = 2. Suppose we wish to

compute S; = i‘ A(i), 1 £j < n. Weshall refer to this problem as

the partial sums problem When computing S, using the straight-
forward sequential algorithm, we obtain S;, 1 <i < n as a byproduct
and so, in this case, no additional effort need be expended. In the case
of procedure SUM1 (and its refinement to the case of [n/log n] PE’s),
however, all the S;’s are not computed during the computation of S,,.
Following the computation of S, the remaining S;’s can be obtained
by making one pass down the binary tree. In this pass each node
transmits to its children the sum of the values to the left of the
child.

Let 4(1:11) =(1,1,2,3,1,2,1,2, 3,4, 2). The computation tree
of Fig. 1 is redrawn in Fig. 3. The index of each node appears outside
it. Inside each node there are two numbers. The upper number is V'
as defined for procedure SUM1. The lower number in each node is
L; where for any-node i, L is defined as

0 i=1

L(3i/2)
L3/2) + V(i—1)

i is even
i is odd.

L) =

One may easily verify that if i is a leaf node representing 4(;); then

L(i) = 3 A(p). Hence, from the L values of the leaf nodes, one

1=p<;

can easily obtain all the partial sums. Our first algorithm for the
partial sums problem is PSUM1 (Fig. 4). This algorithm simply
computes the V(i)’s in the first pass and the L(i)’s in the second. Fi-
nally, the S values are computed.

As in the case of SUMI, the parallelism of lines 4 and 8 requires
only n/2 PE’s. Using n/2 PE’s, line 2 can be done in two steps. Ac-
tually, procedure PSUM1 can be run in O(log n) time using only
[n/log n] PE’s. The idea here, is the same as that for SUM1.

By using a slightly different computation tree and rearranging the
order of computation, one can arrive at a one pass algorithm for the
partial sums problem. Let 4(0:n — 1) be the n numbers to be added.
Let S(0:n — 1) denote the partial sum array. A 2% block of array el-
ements consists of all array elements whose indexes differ only in the
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line procedure PSUM1 (A4, n, S)

//compute S(i) = i A(),1 <i=<n//
j=1

1 k<llogonf;j<=2%t<2%(n—j);p+—n—1
Vip+i)<—A((i+t—1)modn+1),1 <i<n
for i < k down to 0 do //add by levels//

end for
//compute Ls//
6 L(1)<0

2
3
4 V()< V@) +V(Qj+1),2) <j < minfp, 211 — 1}
5

7 fori<1tok +1do //compute L by levels//
8 L(j) —ifj even then L(j/2)
else LGj/2) +V(j—1)

endif

2{ < j < min {n, 2+! — 1}

9 end for

10 S((+t=Dmodn+ 1)~ Lp+i)+V(p+i),l<i<n

11  end PSUMI

Fig. 4.

least significant k bits. The 2! blocks of 4(0:10) are [0, 1], [2, 3], [4,
5], [6, 71, [8, 91, and [10]; the 22 blocks are [0, 1, 2, 3], [4, 5, 6, 7],
and [8, 9, 10], etc. Two 2% blocks are sibling blocks if their union is
a 24*1 block. Thus, [0, 1] and [2, 3] are sibling blocks; so also are [0,
1,2, 3] and [4, 5, 6, 7]. However, [2, 3] and [4, 5] are not sibling
blocks. The one pass algorithm computes S by first computing the
partial sums for all 20 blocks of 4. In this case, S(i) = A(i). Next,
S'is computed for all 2! blocks; then for all 22 blocks; - - - ; and finally
for the single 29 block where g = [log, n].

Let X and Y be two sibling 2% blocks. Let X be the block containing
all elements with bit k equal to 0. The union of X and Y is a 2k+1
block. Relative to this 2%4+1 block, the S values for elements of X are
the same as with respect to the corresponding 2% block. The S values
for elements in Y, however, change by the sum of the 4 elements
corresponding to the 2% block X. Fig. 5 gives the S values and 2%
blocks when S values are computed by blocks as described above.
Blocks are enclosed in brackets.

The updating of S when going from one block size to the next is
easily performed if we keep track of the sum of the 4 (i)’s in each 2%
block. For this purpose, we use an auxiliary array T. T(i) fori in a
given 2% block (except possibly the rightmost 2% block) is the sum
of all the A(i)’s in that block. Before we can formally specify the
partial sums algorithm, we need a processor assignment scheme. Fig.

5 shows a processor assignment scheme for our example. Processors
are assigned only to compute the S values that change. Thus, when
k = 0, PE(0) computes S (1), PE(1) computes S(3), PE(2) computes
S(5), and PE(4) computes S(9). When k = 3, PE(0) computes S(8),
PE(1) computes S(9), and PE(2) computes S(10). PE’s 3 and 4 are
idle when k = 3. Let - - - i3i5i1i¢ be the binary representation of i. The
PE assignment rule is obtained by defining the function f(i, j) = . .
ij41j0ij—; - - - ip. For any k, PE(i) computes S(f(i, k) + 2*) provided
that this index of S is no more than n — 1. The one pass partial sums
algorithm is stated as procedure PSUM2 (Fig. 6). PSUM2 uses | n/2]
PE’s indexed O through | n/2] — 1.

It should be easy to see that our earlier ideas regarding the use of
only [n/log n] PE’s carry over to the case of PSUM2. So, PSUM2
can be modified to obtain an 0(log ) one pass algorithm using only
[n/log n] PE’s. For the modified algorithm, EPU = Q(1).

It should be emphasized that while a computation tree might look
like a tree connected computer, there is no implication that the parallel
algorithms obtained using the binary tree method are best run on such
a computer. In fact, the computation at each node might require
several processors.

Finally, there is a similarity between divide-and-conquer algorithms
and the binary tree method when k = 2. In divide-and-conquer al-
gorithms too, there is an underlying computation tree (not necessarily
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Fig. 5. Computing S by blocks.

binary). When stated recursively, the computation starts at the room,
proceeds to the leaves, and then backs up to the root again. When
stated iteratively, the computation starts at the leaves and proceeds
to the root. Hence, iteratively stated divide-and-conquer algorithms
are the same as binary tree method algorithms (extended to arbitrary
trees) with k = 1. _ ‘

In the rest of this paper, we demonstrate the usefulness of the binary
tree method with k = 2 in arriving at efficient parallel algorithms for
various scheduling problems.

III. PARALLEL SCHEDULING ALGORITHMS

In this section, we develop fast parallel algorithms for a variety of
scheduling problems. Each of these algorithms is arrived at using the
binary tree method of Section I. We shall refrain from providing
explicit formal statements such as those of Figs. 2, 4, and 6 of these

-algorithms. Instead, we shall describe the algorithms informally and
illustrate them with an example. One should note that we are inter-

ested in both the complexity as well as the EPU of the algorithms -

developed.

All the §cheduling problems to be discussed assume that  jobs have
to be scheduled on m identical machines. Associated with job i is a
four-tuple (r;, d;, p;, w;) where r; is its release time, d; is its due time,
Di is its processing requirement, and w; is its weight, 1 <i < n. The
processing of no job can commence until its release time. No job can
be scheduled for processing on more than one machine at any time
instant. Job i is completed after it has been processed for p; time units.
If a job does not complete by its due time, it is tardy. In a non-
preemptive schedule, job i is scheduled to process on a single machine
from some start time s; to the completion time s; + p;, 1 <i <n. In
a preemptive schedule it is permissible to split the processing of jobs
over machines as well as over nonadjacent time intervals.

A. Minimizing Maximum Lateness

Let S be a schedule for the n jobs (r;, d;, pi, wi). Let ¢; be the
completion time of job i. The lateness of job i is defined to be ¢; — d;.

The maximum lateness, Ly, is max {¢; — d;}. We wish to obtain an

m machine nonpreemptive schedule that minimizes Lmax. This
problem is known to be NP-hard [22]. So, we shall consider only
special cases of this problem, i.e., cases for which a polynomial time
sequential algorithm is known. Specifically, we shall consider the
following cases: 1) p; = 1,1 <i < nand all release times are integer,
2) m =1 (i.e., the number of machines is 1) and preemption is al-
lowed, and 3) cases 1) and 2) with precedence constraints. These three
cases are considered in Sections I1I-A1), I1I-A2), and I1I-A3), re-
spectively. Since the weights w; play no part in the L ., problem, we
shall only consider triples (r;, d;, p;) in these subsections.

1) pi=1,1 <i < nand All Release Times are Integer: Jackson
[16] has shown that when m = 1 and all jobs have the same release
time, Lmax is minimized by scheduling the jobs in nondecreasing order
of due times. Horn [14] and Baker and Su [3] have generalized this
method to the case where m = 1 and all jobs do not have the same
release time. An optimal one machine schedule is now obtained by
assigning jobs to time slots, one slot at a time starting at time 0. When
we are considering the time slot [i, i + 1], we select a job with least
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line procedure PSUM2 (A4, S, n)
//one pass partial sums//
1 declare A(0:n — 1), S(0:n — 1), T(0:n — 1)

2 for each PE(i) do in parallel
//initialize S and T for 2%-blocks//

3 j< /G0
4 S <TG~ A4()
5 SU+D<=T{l+1)<—AG+1)
6 for k < 0to[logon] — 1 do
//combine 2%-blocks/ /
T JfUK)
8 if j + 2% < n then
9 S+ 2K) < S + 25) + T(j)
10 T(j+ 2k) < T(j + 2%) + T())
11 TG) < TG+ 2%)
12 endif
13 end for
14 end for
15  end PSUM?2
Fig. 6. One pass partial sums algorithm.
i 1| 2|3|4|s5|6|7|8|9|10]11]12]|13]14
r_52252262569999

i s 8623|1497 |10[12[13]11 14
oo l222)2 2|5 5| 5]|6|6|9|9]9]09
d; | 35|67 |7 |8|1w0f12]|7 [17]|11|15|16|16
(b)
Fig. 7.

due time from among the set of available jobs. (The set of available
jobs consists of all jobs not yet selected that have a release time less
than or equal to i.) If this set is empty, then this slot is left idle. This
strategy can be implemented to run in O(n log n) time on a single
processor computer. Blazewicz [6] has extended this idea to the
general case m = 1. His algorithm also schedules by time slots. Let
J be the set of jobs available when slot [i, i + 1] is to be scheduled.
If |J| < m then all the available jobs are processed in [i, i + 1]. If
|J| > m, then we select m jobs with least due times.

In developing the parallel algorithm, we first consider the case m
= 1. Horn’s algorithm is readily seen to be highly sequential. No
decision concerning time slot [i, i +1] can be made unless we know
the jobs that are available at this time. This, of course, depends on
which jobs were selected for the earlier time slots. So, a straightfor-
ward adaptation of Horn’s algorithm would need # steps (one for each
time slot). The overall complexity of the resulting parallel algorithm
would be Q(n). This is not very good. We are really interested in al-
gorithms with complexity 0(log# n) for some k.

Despite the highly sequential nature of Horn’s method, his idea
can be used to arrive at a parallel algorithm with complexity 0(log2n).
This is accomplished using the binary tree method. It is helpful to
consider an example. Suppose we have 14 jobs with r;, and d; as
specified in Fig. 7(a). The first step in our proposed parallel algorithm
is to sort the jobs by release times (into nondecreasing order). Jobs
with the same release time are sorted into nondecreasing order of due
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(2,>)

(2,5) (5+6)

6,9) (9,%)

Fig. 8. Computation tree for the example of Fig. 7.

(2,=)

518 |6 2 3 7 1

24 2 2 2 2 6 | 5

3 516 7 7 7 8

10 {11 |12 11516 |16 | 17

/

518162 3 1| 4 9

2 2 2 2 2 5 5 5

3051617878 10112

//‘\(L (2,6) (6,)
used transferrecﬂ Lused transferred—l used ftransferred used
i 51816 2 3 1§ 4 9 7 |10 12 13 111 | 14
g 2 2 2 2 2 5 5 5 6! 6 9 919 9
di 31516 7 7 8 #1012 7 411 111516116
(2,5) (5,6) (6,9) (9,=)

Fig. 9. First pass of the Lpyax algorithm.

time. Let Ry, Ry, -+, and Ry be the k distinct release times of the
njobs (R} < Ry <-+- < Ry).Let Ryyy = . For our example, the
sorted sequence of jobs is shown in Fig. 7(b); k = 4,and R, = 2, R,
=5,R3=6,R4=9,andR5= @,

Next, a binary computation tree is associated with the problem.
The tree used is the unique complete binary tree with k leaves. With
each node in this tree, we associate a time interval (¢, tr). Assume
that the leaf nodes are numbered 1 through k, left to right. The ith
leaf node has associated with it the interval (R;, R;31), 1 <i < k. The
interval (#;, tg) associated with a nonleaf node N is obtained from
the intervals associated with the two children of this node. ¢, (N) =
t; (left child of V) and tg(IN) = tg (right child of V). For our ex-
ample, the binary computation tree together with time intervals is
shown in Fig. 8.

A schedule that minimizes Lyax is now obtained by making two
passes over this computation tree. The first pass is made level by level
towards the root; the second is made level by level from the root to
the leaves. Let P be any node in the computation tree. Let the interval
associated with P be (1, tg). The set of available jobs A(P) for P
consists exactly of those jobs that have a release time r; such that ¢,
=< r; <tg. This set of jobs may be partitioned into two subsets, re-
spectively, called the used set and the transferred set. The set of used
Jjobs consists exactly of those available jobs that will be scheduled
between 77 and tg for the Lyax problem defined by the job set A(P).
The remaining jobs in A(P) make up the transferred set. For our
example, the set of available jobs for the node representing the interval
(2,6)is {5, 8,6,2,3,1,4,9}. If Horn’s algorithm is used on this set
of jobs, then jobs 5, 8, 6, and 2 will get scheduled in the interval from
2 t0 6. Hence, the used set is {5, 8, 6, 2} and the transferred set is {3,
1,4,9].

In the first of the two passes mentioned above, the used and
transferred sets for each of the nodes in the computation tree are
determined. For a leaf node the used and transferred sets are deter-

mined by directly using Jackson’s rule. If P is a leaf node for the in-
terval (7, 1), then the used set is obtained by selecting jobs from the
available job set A(P) for P in nondecreasing order of due times. Since
jobs with the same release time have already been sorted by due times,
the used set consists of the first min {| A(P)|, tg — ¢, } jobs in A(P).
The remaining jobs form the transferred set. For our example, for the
interval (2, 5), the set of used jobs is {5, 8, 6} while the set of trans-
ferred jobs is {2, 3}; for the interval (5, 6), the used set is {1} and the
transferred set is {4, 9}, etc. Fig. 9 shows the used and transferred sets
for each of the leaf nodes for our example. The solid vertical line
separates the used jobs from the transferred jobs.

For a nonleaf node, the used and transferred sets may be computed
from the used and transferred sets of its children. Let P be a nonleaf
node and let Uy, Ug, Ty, and Tk be the used and transferred sets for
its left and right children respectively. Let (¢, t), (¢}, t%), and (¢2,
t%) be the intervals, respectively, associated with node P, its left child,
and its right child. Clearly, t; = t}; tg = t};and ¢t = ¢}. It should
be clear that if Horn’s algorithm is used to schedule the available jobs
A(P), then the jobs in Uy, will be the ones scheduled from 7; to th. The
set of jobs scheduled from ¢} to tx will be some subset of Tr u Ug.
Let Q denote the min {| 7T, u Ug|, tg — th} jobs of T, U Ug that have
least due times. It is not too difficult to see that Q is the subset of A4 P)
that is scheduled by Horn’s algorithm in the interval thto tg. Hence,
the used set for Pis Uy u Q and the transferred set is A(P) — U; —
Q. Observe that if Uy, Ug, Ty, and Tg are in nondecreasing order
of deadlines, then the set Q can be obtained by merging together Ug
and T and selecting the first min {| 7, u Ug|, tg — tk} jobs from
the merged list. O can next be merged with U, to obtain the used set
in nondecreasing order of due times. Another merge yields the
transferred set in nondecreasing order of due times. Fig. 9 gives the
used and transferred sets in nondecreasing order of due times for all
nodes in our example computation tree.

In the second pass, the used sets are updated so that the used set
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(2,=)
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31516 7 7 7 8 10 11 112 |15 |16 |16 | 17

Fig. 10. Results of second pass.

for a node representing the interval (¢,, zg) is precisely the subset of
jobs (from among all n jobs) that is scheduled in this interval by
Horn’s algorithm when solving the Lp,,x problem for the entire job
set. This is done by working down the computation tree level by level
starting with the root. The used set for the root node is unchanged in
this pass. If P is a node whose used set has been updated, then the used
sets for the left child and the right child of P are obtained in the fol-
lowing way. Let the interval associated with P be (¢,, tg) and let the
interval associated with its left child be (¢, t%). Let V be the subset
of the used set of P consisting solely of jobs with a release time less
than t;. ¥ may be obtained from the used set of P by first selecting
the elements of P that are to be in ¥ and then compacting these ele-
ments without changing their relative order [29]. Let U be the current
used set (i.e., the one computed in the first pass) for the left child of
P. Let W be the set obtained by merging U and V (note that U and
V are disjoint and that both are ordered by due times). The new used
get, U1, for the left child of P consists of the first min {W|, tk — .}
jobs in W. The used set for the right child of P consists of all jobs in
the used set for P that are not included in U'.

Let us now go through this second pass on our example. Let P be
the root node. (¢z, tr) = (2, ) and ¥ = ¢. Hence, the new used set
for the left child of P is simiply its old used set. The used set for the
right child of P becomes {3,7, 1, 4, 12,9, 13, 11, 14, 10}. Now, let P
be the right child of the root. (7, tg) = (6, @); ¥V =1{3,1,4,9; W =
{3,7,1,4,9, 10}. The new used set for the left child of Pis{3,7, 1}. The
new used set for the right child of Pis {4, 12,9, 13, 11, 14, 10}. Fig.
10 shows the new used sets for all the nodes in the computation
tree.

From the definition of an updated used set, it follows that the
schedule defined by the leaf nodes (for our example, this is job 5 at
time 2, job 8 at time 3, job 6 at time 4, job 2 at time 5, etc.) minimizes
Lmax. The correctness of the node updating procedure is easily seen.
If P is the root node, then it represents the interval (R, ). All jobs
are necessarily scheduled in this interval by Horn’s algorithm. Hence,
the updated used set for this node consists of all 7 jobs. Now, let P be
any nonleaf node for which we have obtained the updated used set.
Assume that this is in fact the correct updated used set, i.e., it consists
exactly of those jobs scheduled by Horn’s algorithm in that interval.
We shall show that the updating procedure gives the correct used sets
for the left and right child of P. Let t7, tk, tg, V, W, U, and U' be as
defined in the updating procedure. Let X be the used set for P. From
the way the first pass works, it follows that only jobs from W =U u
V are candidates for scheduling by Horn’s algorithm, in the interval
(t1, tk). It is a simple matter to see that only min {W|, tk — #,} of
these can be scheduled in this interval; further these jobs are selected
in nondecreasing order of due times. Hence, U is correctly computed.
From this it follows that the used set for the right child must be X —
UL

Having established the correctness of our parallel procedure, we
are ready to determine its complexity as well as the required number
of PE’s. The first step consists of sorting the jobs. This can be done
in 0(log? n) time using | n/2] PE’s [4]. In both the first and second
passes over the computation tree we are essentially performing a fixed
number of merges of ordered sets at each node. Using Batcher’s bi-
tonic merge scheme ([4], [18]), a p element ordered set can be merged
with a g element ordered set using | (p + ¢)/2] PE’s in O(log(p + ¢))
time. Hence, the overall complexity of our parallel Lpyax algorithm

" is 0(log? n). The number of PE’s used is | n/2]. The EPU of this al-

gorithm is Q(n log n/(n/2 log? n)) = Q(1/log n).

Our parallel Lax algorithm for the case m = 1 easily generalizes
to the case m = 1. The two passes over the computation tree are
changed so that all uses of tz — z; and t} — ¢, are replaced by m(tr
—t7) and m(th — t), respectively. The schedule is obtained from
the updated used sets of the leaf nodes. The ith job in this used set is
assigned to the i mod m + 1th machine.

2) m = 1 and Preemptions Permitted: Horn’s [14] algorithm for
this problem is quite similar to the sequential algorithm for the case
discussed in Section ITI-A1) and also has a sequential complexity that
is 0(n log n). A schedule with minimum L,y is obtained by starting
at the first release time and considering an available job i with least
due time. Let the processing time of this job be p. Let the time to the
next release time be 7 and let the current time be 7. Job i is scheduled
from T to T + min {p, t}. The current time changes from 7 to 7' + min
{p, t{ and the remaining processing time for job i becomes p — min
{p, t}. Next, from the available job set at the current time T a job with
minimum due time is selected for processing, and so on.

The parallel algorithm of Section I1I-A1) can be adapted to this
case. Jobs are sorted as before and two passes are made over the tree.
In the first pass, used and transferred sets are computed for each node.
In the second pass, the used sets are updated. For the first pass, the
used and transferred sets for the leaf nodes are obtained by computing
the partial sum sequence for the ordered set of available jobs for each
leaf (see the algorithm of Fig. 6). Next, for each leaf we determine
the first partial sum j (if any) that exceeds the value of tg — ¢, for
that node. If there is no such partial sum, then all the available jobs
are used. If there is, then the used set consists of jobs 1,2,---,j — 1
together with a fraction f of job j. This fraction is chosen such that
the sum of the processing times of jobs 1,2,---,j — 1 and j times that
of job j equals tg — ;. The transferred set consists of 1 — f of job j
together with the remaining jobs.

For the nonleaf nodes, the used and transferred sets are computed
from the corresponding sets for the left and right children. Let P be
a nonleaf node. Let Q and S be its left and right children respectively.
The used set for P is obtained by merging (according to due times)
the transferred set of Q with the used set of S, to obtain W. The partial
sums for W are computed and W is partitioned into W1 and W2 such



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 3, MARCH 1983 313

" that the sum of the proccessing times for the jobs in W1 equals min
{sum of processing times in W, t% — 7} where (¢, 1) is the interval
associated with node S. Observe that this partitioning of W may re-
quire us to split one of the jobs in W in the same way as was done for
leaf nodes. The used set for P is obtained by merging together W1 and
the used-set for Q. The transferred set for P is obtained by merging
together W2 and the transferred set for .S.

The updating of the second pass is also carried out in a manner
similar to that used in Section III-A1). The updated used set for the
root node consists of all # jobs. Let P be a node for which the updated
used set has been computed. Let (¢;, £g) be the interval associated
with P. Let Q and S, respectively, be the left and right children of P.
Let the interval associated with Q be (¢;, t&). Define V to be the set
of all jobs in the used set of P that have a release time less than ;.
Merge V and the current used set of Q together. Let the resulting
ordered set be W. Compute the partial sums for W and partition W
into W1 and W2 as was done in the first pass. Once again, it may be
necessary to split a job into two to accomplish this. The used set for
Qis W1. The remaining jobs in the used set of P (including possibly
a remaining fraction of a job that went into W1) constitute the used
set for S.

Once the updated used sets for the leaves have been computed, a
schedule minimizing L,y is obtained by scheduling the used sets of
the leaves in the intervals associated with them. For each such interval,
the scheduling is in nondecreasing order of due time.

The correctness of the algorithm described above follows from the
correctness of Horn’s algorithm and the discussion in Section I1I-A1).
The algorithm can be run in 0(log? n) time using at most 3n/2 PE’s.
Note that because jobs may split, we may at some level have a total
of n + 2k jobs (or job parts). Recall that k denotes the number of

distinct release times and that at each node at most one additional

Job split can occur. Because of the effective increase in number of jobs,
more than| n/2] PE’s are needed here, while only | n/2] were needed
in Section I1I-A1). The EPU is still Q(1/log 7).

3) Precedence Constraints: Suppose that the set of jobs to be
scheduled defines a partial order <.i <j means that the processing
of job j cannot commence until the processing of job i has been
completed. Let (r, d;, p;) be the release, due, and processing times
of job i. Modify the release and due times as below.

r; = max [r,», max {r; + pj}]
j<i

d; = min [d,‘, min {d; — pj}]
i<j

Rinooy Kan [31] has observed that a schedule minimizing Lpmax
when p; = 1, m = 1, the r;’s are integer, and < is a partial order can
be obtained by simply using Horn’s algorithm [cf. Section III-A1)]
on the jobs (r;, p; = 1,d;), 1 < i < n with no precedence constraints.
Since the modified release and due times can be computed in 0(log?
n) time using the critical path algorithm of [9], a schedule minimizing
L,y in the presence of precedence constraints can be obtained in
0(log? n) time (m = 1, p; = 1). The number of PE’s needed by the
algorithm of [9] is n?/log n, so the EPU of the resulting algorithm
is Q(n? log n/(n? log? n))) = Q(1/(n log n)).

When m = 1, a partial order < is specified, and preemptions are
allowed, a schedule minimizing Ly, can be obtained by computing
modified release and due times as above and then using the algorithm
of Section I1I-A2) on the modified jobs. The resulting algorithm has
complexity 0(log? n), uses 0(n2/log n) PE’s, and has an EPU that

18
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B. Minimizing Total Costs

Let (r;, d;, pi, wi), 1 =i < ndefine n jobs. Let S be any machine
schedule for these jobs. the completion time ¢; of job i is the time at
which it completes processing. Job i is tardy iff ¢; > d;. The tardiness

T; of job i is max{0, ¢; — d;}. When p; = 1, Horns [14] algorithm
described in Section III-A1) also finds a schedule that minimizes 2T,
2L;, and Tpmay [31, p. 80].

A schedule that minimizes Zw;c; whenp; = 1,1 <i <npandm =
1 can be obtained by extending Smith’s rule (see Rinnooy Kan [31]).
Smith’s rule [35] minimizes 2w;c; whenr; = 0,1 < < n. It essen-
tially schedules jobs in nondecreasing order of p;/w;. The extension
to the case when p; = 1,1 </ < n and the r;s may be different (but
integer) works in the following way. Scheduling is done time slot by
time slot. From the set of available jobs for any slot, a job with least
1/w; (or equivalently, maximum w;) is selected and scheduled in this
slot. This procedure is quite similar to that used for the L., problem
with p; = 1[see Section II1I-A1)]. The only difference is that Smith’s
rule replaces the use of Jackson’s rule. The used and transferred sets
are now kept in nonincreasing order of weights. Note that this method
is easily extended to the case m > 1.

When 2¢; is to minimized m = 1 and preemptions are permitted,
the algorithm of Section III-A2) can still be used. This time, however,
the used and transferred sets are maintained in nondecreasing order
of p; rather than d; [31].

-Number of Tardy Jobs

Now, let us consider the problem of minimizing the number of
tardy jobs when m = 1 and all jobs have the same release time.
Without loss of generality, we may assume that all jobs have a release
time 7; = 0. The fastest sequential algorithm for this problem is due
to Hodgson and Moore [23]. It consist of the following three steps:

Step 1: Sort the n jobs into nondecreasing order of due times. Ini-
tialize the set R of tardy jobs to be empty.

Step 2: If there is no tardy job in the current sorted sequence, then
append the jobs in R to this sequence. This yields the desired schedule.
Stop. ,

Step 3: Find the first tardy job in the current sorted sequence. Let
this be in position J. Find the job with the largest processing time from
amongst the first j jobs in this sequence. Remove this job from the
sequence and add it to R. Go to step 2.

The time complexity of the Hodgson and Moore algorithm is 0(n
log n). As in the case of the Hodgson and Moore algorithm, our
parallel algorithm for this problem begins by sorting the jobs into
nondecreasing order of due times. Within due times, jobs are sorted
by pi. Let Dy, Dy, -+ ,and Dg (D) < Dy < - -+ < Dy) be the k distinct
due times associated with the n jobs. Let Dy = 0. We next consider
the unique complete binary tree that has exactly k leaves. If the leaf
nodes of this tree are considered from left to right, then with the ith
leaf we associate the interval (D;—1, D;). The interval associated with
a nonleaf node is (11, £,) iff there exists ¢3 such that (¢1, £3) and (3,
1) are the intervals, respectively, associated with its left and right
children. If the interval (¢, £,) is associated with some node P, then
all jobs with a due time d such that t; < d < ¢, are associated with
that node.

The set J(P) of jobs associated with any node P may be partitioned
into two sets S(P) and R(P). S(P) and R(P) are defined in the fol-
lowing way. Consider the problem of obtaining a schedule that min-
imizes the number of tardy jobs for J(P) assuming that all jobs in
J(P) have a release time #,[(¢1, £5) is the interval associated with P].
S'(P) is the set of nontardy jobs in this schedule while R(P) is the set
of tardy jobs. It is well known [16] that if all jobs in S(P) are sched-
uled in nondecreasing order of due times, then no job in .S(P) will be
tardy. From the definition of S and R, it is clear that S(root) defines
the set of nontardy jobs in a schedule for all # jobs that minimizes the
number of tardy jobs. These jobs may be scheduled at the front of the
schedule in nondecreasing order of due times. The remaining jobs can
be scheduled, in any order, after the jobs in S(root).

For a leaf node P, S(P) and R(P) are easily computed. First the
partial sum sequence for J(P) is obtained (recall that the jobs asso-
ciated with P are in nondecreasing order of p;). Let the interval as-
sociated with P be (21, 23). All jobs with a partial sum that is less than
or equal to t; — t; are in S(P). The remainder are in R(P).

Let us consider an example. Fig. 11(a) shows a set of 10 jobs."In
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Fig. 11.

Fig. 11(b), these jobs have been ordered by due times and within due
times by p;. There are four distinct due times, and we have D(0:4)
= (0, 8, 15, 17, 25). Fig. 12 shows the complete binary tree and four
leaves. The interval associated with each node is also given. The S and
R sets for each of the leaf nodes are also shown.

The computation of S and R for a nonleaf node P is done using the
S and R sets of its left child Q and its right child T'. Let the interval
associated with Q and T, respectively, be (7., tk) and (th, tr). Ttis
clear that S(T) c S(P) and that R(Q) c R(P). To get the remaining
jobs in S (P), we merge together the jobs in S(Q) and R(T). Let the
resulting ordered set be W. The partial sum sequence of the processing
times of the jobs in W is next computed. Let ¥ be the subset of W
consisting of jobs that have a partial sum sequence no more than th
—t;. Let X = W — V. Clearly, V- c S(P). However, ¥V u S(T) may
not equal S(P) as it is possible for (at most) one of the jobs in X to also
be in S(P). To determine this job, we first determine for each due time

D;, th < D; < tg,ajobin X that has least processing time amongst -

all jobs in x with due time D;. If there are no jobs in X with a certain
due time D;, then no job corresponding to this due time is selected.
Let the set of jobs determined in this way be U = {J1, Ja,* - -, Jg). Let
A=th—1t; — 3 p; Foreachduetime D;, th < D; < tg, determine

ieV
the sum of the processing times of all jobs in S(7") with due times no

more than D;. Let this sum be Y. Let A; = D; — Y; — th. Now,
compute y; = min {A}. It can be seen that the job (if any) in U with
p

=1
due time D; cafl be in S (P) only if its processing time is less than or
equal to A + +y;. This information is used to remove from U those jobs
that cannot possibly be in S(P). From the remaining jobs, the job r
with minimum processing time is selected and added to S(P). R(P)
= R(Q) u (X — {r}). The S and R sets for all nonleaf nodes in our
example are specified in Fig. 12.

The sets U and {A;} can be computed in 0(log n) time using 0(n)
PE’sif S and R are available in nondecreasing order of due times (so
it is necessary to keep two copies of each S and R; one ordered by
processing times and one by due times). The ;s may be computed
in 0(log n) time using 0(n/log n) PE’s using a modified version of the
partial sums algorithm. Merging S(Q) and R(T) by processing times
or by due times requires O(log n) time and n/2 PE’s. So, all the work
needed to be done at any leve! can be accomplished in O(log n) time
with 0(n) PE’s. The overall complexity of our parallel algorithm is
therefore 0(log2 n) and its EPU is Q(1/log n).

Job Sequencing with Deadlines

The problem of minimizing the sum of the weights of the tardy jobs
is commonly referred to as the job sequencing with deadlines problem
[15]. It is assumed that r; = 0,and p; = 1,1 <i < n. When the as-
sumption p; = 1 is not made, the problem is known to be NP-hard
[17]. We shall now proceed to show how the binary tree method leads
to an efficient parallel algorithm for this problem. We shall explicitly
consider only the case m = 1. When m > 1, the problem can be
transformed into an equivalent m = 1 problem. Further, all the d;’s
are assumed to be integers.

An 0(n log n) sequential algorithm for this problem appears in [15].

7 8
3 4
17 | 25
S R

25|25 25|25
(17,25)

This algorithm builds an optimal schedule by first determining the
set of jobs that are to be completed by their due times. This is done
by considering the jobs in nonincreasing order of weights. The job
currently being considered is added to the set of selected jobs iff it is
possible to schedule this job and all previously selected jobs in such
a way that all of them complete by their respective due times.

In our parallel algorithm, we begin by sorting the jobs by due times.
Jobs with the same due time are sorted into nonincreasing order of
weight. Let the distinct due times by Dy, Dy, -+, Dy (D1 <D <- -
< Dy). Let Dg = 0. The computation tree to use is the unique com-
plete binary tree with k leaves. Consider these leaves left to right.
With leaf i, we associate the interval (D;—1, D;),1 <i < k. Let P be
a nonleaf node. Let the intervals associated with its left and right
children, respectively be (¢, tk) and (¢k, 7r). The interval associated
with P is (¢, tg). The interval associated with the root is therefore
(0, Dg).

The set J(P) of jobs associated with node P consists precisely of
those jobs that have a due time d; such that t; <d; < tg where (¢,
tg) is the interval associated with P. With each node P, we may also
associate two sets of jobs, S(P) and R(P). Consider the job se-
quencing with deadlines problem defined by the job set J(P). Assume
that all jobs have a release time ;. S(P) consists exactly of those jobs
in J(P) that will be scheduled to finish by their due times in an optimal
schedule for J(P). R(P) consists of the remaining jobs in J(P). Once
S (root node) is known, the optimal schedule for the overall job se-
quencing problem is also known.

For the leaf nodes, S(P) and R(P) are easily obtained. For each
leaf node P, S(P) consists of the tg — ¢, jobs of J(P) with largest
weight. If P is a nonleaf node, S(P) and R(P) are computed from the
S and R sets of its children. Let Q and T, respectively, be the left and
right children of P. Let the intervals associated with Q and T, re-
spectively, be (¢, tk) and (¢k, tg). Let W= S(Q) u R(T) and let
¥ be the set consisting of the min {| W], tk — 2.} jobs of W with largest
weights. It is not too difficult to see that S(P) = ¥ u §(T). Hence,
R(P) =J(P) —S(P) = R(Q) u (W= S(P)).

Once the S and R sets have been computed, the optimal schedule
can be obtained by sorting S(root) by due times and appending the
jobs in R(root) to the end.

Since the S and R sets are maintained in nonincreasing order of
weights, the merging required at each node to compute S and R can
be carried out using a parallel bitonic merge. Hence, all the compu-
tation needed at each level of the computation tree can be performed
in 0(log n) tiome using n/2 PE’s. The overall complexity for our job
sequencing with deadlines algorithm is 0(log? n) and the EPU is
Q(1/log n). (In [10] Dekel and Sahni show how to solve the job se-
quencing problem in 0(log n) time. This algorithm does not use the
binary tree method and has an EPU which is considerably inferior
to that of the algorithm developed here.)

Finally, we note that the parallel algorithm developed to minimize
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the number of tardy jobs when m = 1 and r; = 0, can be adapted to
obtain a one machine schedule that minimizes the sum of the weights
of the tardy jobs provided that all jobs have agreeable weights. (All
jobs have agreeable weights iff p; < p; implies w; < w; for all i and
J-) The sequential algorithm for this problem is an extension of the
Hodgson-Moore algorithm to minimize the number of tardy jobs.
This extension is due to Lawler [21]. Also, Sidney’s [34] extension
which takes into account jobs that must necessarily be completed by
their due times can also be solved by a modified version of our algo-
rithm.

IV. CONCLUSIONS

We have demonstrated that the binary computation tree is a very
important tool in the design of efficient parallel algorithms. The bi-
nary tree method is closely related to the divide-and-conquer approach
used to obtain many efficient sequential algorithms [15]. While di-
vide-and-conquer algorithms do use an underlying computation
structure that is a tree, the use of this tree is implicit. Further, only
one pass over this tree can be made as partial results computed in the
various nodes are not saved for use in further passes. In this respect,
the binary tree method is more general than divide-and-conquer. The
single pass algorithms discussed in this paper can, however, be just
as well viewed as divide-and-conquer algorithms.

While all the parallel algorithms discussed in this paper have as-
sumed that as many PE’s as needed are available, they can be run
quite easily using fewer PE’s. The complexity of course will increase
by a factor of g/k where k is the number of PE’s available and g is the
number assumed in the paper.
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