Two-Aggregator Topology Optimization without
Splitting in Data Center Networks

Soham Das and Sartaj Sahni
Department of Computer and Information Science and Engineering
University of Florida
Gainesville, USA
Email: {sdas, sahni}@cise.ufl.edu

Abstract—Data aggregation is a critical operation in many
big-data applications; for example, data residing in several source
racks (mappers) are to be aggregated into one or more specified
racks called aggregators (reducers) in the data center network
during the shuffle phase of a map-reduce task. In this paper,
we explore algorithms for data aggregation to two aggregators
in a data center network under the constraint that data from a
source rack must be routed to each aggregator using a single
path. We derive bounds on the approximation ratios of two
classes of aggregation algorithms— Restricted 1-Round (R1R) and
Restricted 2-Round (R2R). For the case when racks have exactly
2 optical links (uplinks in Top-of-Rack switches), we propose
another strategy using the 2Chain topology for aggregation and
show that the optimal 2Chain cannot have an aggregation time
greater than that of the optimal R1R and R2R topologies. For
the case when racks have at least 4 optical links, we propose a
1-round aggregation algorithm (1R) that uses tree topology for
aggregation. Experimental results indicate that, when racks have
4 optical links, 1R, R2R and R1R reduce the aggregation time by
up to 85%, 67% and 67 % respectively, relative to the two-round
aggregation algorithm proposed by Wang et al. Moreover, the
2Chain can reduce the aggregation time up to 42% and 24%
respectively relative to R1IR and R2R, when racks have exactly
2 optical links.

Keywords—Data center networks, software defined networking,
big data applications, map-reduce tasks

I. INTRODUCTION

Thousands of server racks are interconnected using top-
of-rack (ToR) switches to form large data center networks.
For large-scale big-data applications, these networks can be
dynamically reconfigured using software defined networking
(SDN) in negligible time compared to the total execution
time of the application. Recent research has shown how such
a reconfiguration can significantly enhance the performance
of a big-data application [1]. Data aggregation is a critical
operation in many big-data applications that employ paradigms
such as the Map-Reduce. In these paradigms data residing in
several source racks (mappers) are to be aggregated into one
or more specified racks called aggregators (reducers). Wang et
al. [1] have observed that the aggregation time is a dominant
component of the overall execution time in many big-data
applications. Given the application (i.e. the amount of data
in each source rack), this paper focuses on determining an
optimal topology of the data center that minimizes aggregation
time (the network can be reconfigured to the determined
topology using SDN) when there are two aggregators and
data from each source rack can be routed to an aggregator
using only a single path. The degree of each rack in the

Fig. 1: Example aggregation tree topologies

data center network is constrained by the number k of optical
links at each Top of rack (ToR) switch. We have addressed
the single aggregator version of the problem in our previous
work [2]. As a first step towards generalizing the problem to
multi-aggregator topologies, we focus on the problem with two
aggregators here.

We illustrate the two-aggregator data aggregation prob-
lem using the small example of Fig. 1. There are a to-
tal of eight source racks, each denoted by X(d), X €
{B,C,D,E,F,G,H, I}, where d units of data are to be
aggregated from the source rack X into the corresponding
aggregator and two aggregator racks A; and As. Fig. 1 shows
a possible aggregation tree topology that may be used by each
of the 2 aggregators. Among the source racks, B and C have
data to send to both aggregators and so, these racks are present
in both the aggregation trees U; and Us. Racks D, F and F
have data to send to only A; and racks GG, H and I have data
to send to only A, and so, these racks are present in only one
aggregation tree. The edges denote optical links between pairs
of ToR switches. The shown aggregation trees can be realized
when k£ > 5 as rack B uses 3 and 2 optical links, respectively,
in the two trees.

We assume that the data is packetized and nodes can send
and receive packets at the same time using multiple optical
links. A node sends its own data and the data aggregated from
the subtree below it to its parent, the parent node in turn sends
its data along with the data aggregated from the subtree below
it to its parent and in this way data from all the sources finally
reach the aggregators. Note that each source rack sends its
data through a unique path to the corresponding aggregator.
In Fig. 1, if each optical link has a bandwidth of 10 units per
second, the data from B, D, and F' can be aggregated into
Ay in (44 8+ 4)/10 = 1.6s and that from C and F can be

aggregated in (8 +4)/10 = 1.2s. Since A receives data from
B and C in parallel, the aggregation time is max{1.6,1.2} =
1.6s. Similarly, the data from B, G, and H can be aggregated
into Az in (54+8+4)/10 = 1.7s and that from C and I can be
aggregated in (5+6)/10 = 1.1s. Since A5 receives data from
B and C in parallel, the aggregation time is max{1.7,1.1} =
1.7s. So the total aggregation time is max{1.6,1.7} = 1.7s.

In the two-aggregator network topology optimization prob-
lem (TANTO), our objective is to minimize the overall aggre-
gation time, given the degree k of ToR switches, set of source
racks 57 that send data to only A;, set of source racks S5
that send data to only As, and set of source racks C' that send
data to both A; and A, along with the corresponding units of
data to be sent; each source rack can send its data through a
single path to an aggregator. The single aggregator version of
the problem (SANTO) has been proved to be NP-hard in [2].
Hence, it is evident that TANTO is NP-hard.

Previously, Wang et al. [1] have proposed a 2-round’
algorithm, W2R, to solve TANTO. In round 1, W2R uses a tree
to aggregate data from S; to A; and another one to aggregate
from Sy to As in parallel. In round 2, W2R uses a 2-D torus
to aggregate data from C' to both A; and As. The round 2
torus topology of [1] requires £ > 4 and so cannot be used
when k < 4.

In this paper, we study two classes of algorithms for
TANTO- Restricted 1-round (R1R) and the Restricted 2-
Round (R2R). These classes are motivated by the structure
of W2R. In RIR, the aggregations S; — Aj, So — A,
and C — {A;,As} are performed in parallel in a single
round under the restriction that we use k; < k links of A;
to aggregate S; — A; and the remaining k£ — k; links to
aggregate C' — A;. As a result, each link of A, carries data
for either racks in S; or racks in C' (but not both). In R2R,
the aggregations S; — A; and So — A, are performed in
parallel in round 1. In round 2, the aggregation C' — {A;, A>3}
is performed. The two rounds are executed serially. So in,
each round the aggregators have all k£ links available. The
algorithm W2R of [1] is an example of an R2R algorithm.
However, since W2R uses a torus for round 2, W2R cannot
be used when k < 4. For k = 2, we propose another strategy
using the 2Chain topology for aggregation and show that the
optimal 2Chain cannot have an aggregation time greater than
that of the optimal R1R and R2R topologies. Our results lay
the foundations for studying the generic m aggregator network
topology optimization problem in future.

The main contributions of this work are listed below:

1) We establish the existence of TANTO instances for
which the optimal R1R and R2R aggregation times
are twice that of the true optimal.

2) We show that for every TANTO instance, the optimal
RIR and R2R aggregation times are at most 4 and
11/3, respectively, times the true optimal when 2 <
k < 3. For the case k > 4, we prove a tight bound of
2 on this approximation ratio for both R1R and R2R.

3) For k = 2, we propose another strategy using the
2Chain topology for aggregation and show that the
optimal 2Chain cannot have an aggregation time
greater than that of the optimal R1R and R2R topolo-
gies.

!In a round, the network topology is fixed.

4) For k > 4, we propose solving TANTO using an
I-round (1R) algorithm, based on the LPT (Longest
Processing Time) scheduling rule [2], [5], [6].

5) We show via experimentation that, for £k = 4, 1R,
R2R and RIR can reduce aggregation time by up to
85%, 67% and 67% relative to W2R [1]. Moreover,
for k = 2, the 2Chain can reduce the aggregation time
up to 42% and 24% respectively relative to R1R and
R2R.

The remainder of this paper is organized as follows.
Related work is reviewed in Section II. In Section III, we
derive bounds on the optimal aggregation times using R1R
and R2R besides results using the 2Chain topology. In Section
IV, we describe our 1-round algorithm for TANTO. Experi-
mental results are presented in Section V and we conclude in
Section VI

II. RELATED WORK

Recently, there has been much interest in studying new
data center network architectures with the goal of making
them more energy efficient [7]. The classic data-center design
architecture [8], switch-centric architectures like the one by Al-
Fares et. al [9], VL2 [10], the Juniper Qfabric architecture [11],
server-centric architectures like BCube [12] and DCell [13]
need special mention. Recent research has focused on optical
interconnect schemes; Helios [14], C-Through [15], OSA [16]
have made significant contributions. Das et al. [17] explore the
use of OpenFlow to control routing according to application
need and Webb et al. [18] propose to isolate applications and
use different routing mechanisms for them in fat-tree based
data-centers. Among full optical data centers, some recent ar-
chitectures, that are of significant importance are Petabit [19],
[20], DOS [21], Proteus [22] etc.But the main drawback is the
fact that these fully optical architectures require a complete
changeover of current data centers. The hybrid architectures
reconfigure the network relying on network-level statistics to
suit the application, but utilization and application performance
can be poor unless we have a true application-level view of
traffic demands and dependencies [1], [23].

Our work is motivated by that of Wang, Ng and Shaikh [1].
In [1], Wang et al. describe an “integrated network control
for big-data applications” that comprise “OpenFlow-enabled
top-of-rack (ToR) switches”. They propose heuristics for the
single as well as multiple aggregators variants of the network
topology optimization problem. In [2], we address single
aggregator network topology optimization (SANTO) under the
constraint that nodes cannot split their data over multiple paths.
The problem is shown to be NP-hard and the approximation
ratio of the algorithm of Wang, Ng, and Shaikh [1] is shown
to be (k + 1)/2, where k is the degree of ToR (top-of-rack)
switches. We propose a SANTO algorithm that is based on the
longest processing time (LPT) scheduling rule, approximation
ratio of (4/3 — 1/(3k)) [5], [6]. We also prove that the
aggregation time using the LPT method is never more than that
using the algorithm of [1]. Wang et al. [1] propose a two-round
algorithm, W2R, for TANTO which works for &k > 4. They,
however, do not establish any properties for this algorithm. In
[3], [4], we study one and two-aggregator network topology
optimization for the case when data splitting is permitted; i.e.,
when data from a single source may be split across multiple
paths on the way to the aggregator.

Fig. 2: 2Chain topology

ITII. PERFORMANCE BOUNDS FOR RESTRICTED
AGGREGATION TOPOLOGIES

We begin by introducing some of the notations we will be
using. We use I to denote an instance of TANTO. OPT(1, k)
denotes the overall optimal aggregation time, where k is
the maximum degree of a ToR switch. OPT(R1R, I, k) and
OPT(R2R, I, k) denote, respectively, the optimal aggregation
time for RIR and R2R.

Before proving the bounds, we first prove a result in
Lemma 1 that will be used in later proofs. For simplicity of
the equations, we have assumed the bandwidth to be 1 unit
so that the data transmission time equals the amount of data
transmitted through a link.

Lemma 1. The aggregation time for every aggregation strat-
egy for I is > max{D;(j)}, where D;(j) is the amount of data
aggregated through link j of A;, 1 < j<kand1 <i<?2
over all aggregation rounds.

Proof: Follows from the definition of aggregation time.
|

Several of our subsequent proofs will employ a 2Chain
topology which is comprised of two chains (upper and lower)
with the two aggregators A; and A, at the two ends and source
racks in between (Fig. 2), each rack using 2 links. 2Chain may
include all racks in S; U Sy U C. Note that a 2Chain is not an
R1R or R2R topology. However, a 2Chain that is limited to the
racks of C, for example, is a valid R1R and R2R topology.
We will show results comparing the 2Chain, R1R and R2R
strategies (for k = 2) in the subsections to follow.

A. Restricted One Round Aggregation (RIR)

Before going into proving bounds for R1R, we first com-
pare the performance of 2Chain with respect to RIR for k = 2
in Theorem 1.

Theorem 1. OPT(2Chain, I,2) < OPT(R1R, I,2), for all
I

Proof: Consider an optimal R1R topology for I as shown
in Fig. 3. Let ¢(S1), t(S2) and ¢(C) be the aggregation
times of the three topologies of RIR. So, OPT(R1R,I,2) =
max{t(S1),t(S2),t(C)}. We assign the racks in S; and
S to the upper chain of a 2Chain R and those in C to
the lower chain, as shown in Fig. 3. Data from S; and
Sy are aggregated in parallel into the aggregators through
upper chain, and data from the racks in C' are aggregated
exactly in the same way as in the optimal RIR topology
for racks in C. So, the aggregation time using the 2Chain
R is max{#(51),t(S2),t(C)} = OPT(R1R,I,2). Hence,
OPT(2Chain,I,2) < OPT(R1R,I,2), for all I. [|

RIR

2Chain

Fig. 3: 2Chain corresponding to an R1R k£ = 2 topology

Next, we prove bounds of the R1R aggregation strategy.

Theorem 2. For every k, k > 2, and integer u,
x > 1, there is an instance I(x) of TANTO such that
OPT(RIR,I(x),k)/OPT(I(x),k) =2 —1/x.

Proof: The proof is omitted due to lack of space [24]. &

Note that as x — oo, the ratio of Theorem 2 approaches
2. We show below, in Theorem 5, that for k > 4, there is
no instance I for which OPT(R1R,1,k)/OPT(I,k) > 2.
Hence the bound of Theorem 5 is tight. First, we establish
bounds for £ = 2 and 3.

Theorem 3. OPT(R1R,1,2) <40PT(I,2) for every I.

Proof: The proof is omitted due to lack of space [24]. &
Theorem 4. OPT(R1R,1,3) < 40PT(I,3) for every I.

Proof: The proof is omitted due to lack of space [24]. ®

Theorem 5. OPT(R1R,I,k) < 20PT(I,k) for every I and
every k, k > 4.

Proof: The proof is omitted due to lack of space [24]. &

B. Restricted Two Round Aggregation (R2R)

Before going into proving bounds for R2R, we first com-
pare the performance of 2Chain with respect to R2R for k = 2
in Theorem 6.

Theorem 6. OPT(2Chain, I,2) < OPT(R2R, I,2), for all
I.

Proof: Consider an optimal R2R topology for I. This
topology is comprised of a round 1 topology Y that ag-
gregates from the S;s to the A;s and a round 2 topology
Z that aggregates from the racks in C' to the A;s. Let
SE2R(7) be the subset of S; that sends its data to A;
through the j'* link of A; using the topology Y and let
d(SF?E(j)) be the sum of data in the racks of SI*2%(j).
The round 1 aggregation time usin}g Y is, therefore, >
max{d(S{?(1)), d(S{(2)), d(S577(1)), d(S577(2))} by
Lemma 1. Since k = 2, Z must be a 2Chain with A; and A,
at the two ends and the racks of C' in between. Let C2%(1)
be the subset of racks in C' in the upper chain and CF2%(2)

R2R Round 1

R2R Round 2

2Chain

Fig. 4: 2Chain corresponding to an R2R k£ = 2 topology

be those in the lower chain. The aggregation time for C' is
maz{tc(l),tc(2)} by Lemma 1, where tc(1) and tc(2) are,
respectively, the aggregation times of the upper and lower
chains (see Fig. 4).

Consider the 2Chain of Fig. 4. Data is routed from
{SF2R(1), SF2R(2)} to Ay and from {S525(1), SI2E(2)} to
A, using a standard chain routing strategy. Data is routed from
{CF2R(1), CE2R(2)} to {Ay, Ao} via the SE2E () using the
strategy employed in Z. The packets to be aggregated from
CT™M(1) to Ay get to Ay at most d(S{*"(1)) units later in
the 2Chain than in Z (note that since each rack of S; has at
least 1 unit of data, d(SF?E(1)) > \SRQRS%). The same is
true for the remaining combmatlons of C and A;s. So,

OPT(2Chain,I,2)

S max{d(SF2R(1)) 4 te(1),d(SF2R(2)) +
te(2),d(S52E(1)) +te(1), d(SF21(2)) 4 te(2)} by Lemma 1
< max{d(SI2R(1)), d(SH2(2)), d(SF2R (1)), d(SF2R (2))}+

max{tc(1),tc(2)}
= OPT(R2R,I,2). [|
Next, we prove bounds of the R2R aggregation strategy.
Theorem 7. For every k, k > 2, there is an instance I for
which OPT(R2R,I,k) = 20PT (1, k).
Proof: The proof is omitted due to lack of space [24]. &

We show below, in Theorem 10, that for k > 4, there is
no instance I for which OPT(R2R,1,k)/OPT(I,k) > 2.
Hence the bound of Theorem 10 is tight. First, we establish
bounds for £ = 2 and 3.

Theorem 8. OPT(R2R, 1,2) < 11/30PT(I,2) for every I.

Proof: The proof is omitted due to lack of space [24]. W
Theorem 9. OPT(R2R,1,3) <11/30PT(I,3), for all I.

Proof: The proof is omitted due to lack of space [24]. ®

Theorem 10. OPT(R2R,1,k) < 20PT(1,k) for every I
and every k > 4.

Proof: The proof is omitted due to lack of space [24]. &

IV. THE 1-ROUND ALGORITHM 1R

We propose a l-round algorithm, 1R, for & > 4 here.
This algorithm, which is specified in Algorithm 1, employs
2 aggregation trees U; and Us to do the aggregation for A,
and A, respectively. Source racks are first assigned to the
k subtrees of U; and Us using the longest processing time
(LPT) rule [5], [6]. A rack that aggregates data to only A
(As) is assigned to a single subtree of A; (A3) while one that
aggregates to both A; and A, is assigned to one subtree in
U1 and one in Us. The racks, assigned to each subtree of U;
(U3) are connected to form a chain with A; (As) as the root
of the tree. To construct the two trees U; and U,, we use all
k links of A; and A and at most 4 links of each source rack
(2 in each tree). The unutilized links of the source racks, if
any, could be used to optimize secondary measures such as
link utilization (see [2]). We do not explore this here.

Algorithm 1 One-round Algorithm

Input: S, S3, C, k> 4.
Output: Aggregation trees U; and Us.
1: for each aggregator A; do

2: Sort racks in S;, C in decreasing order of data for A;

3: for each rack in decreasing order do

4 Assign the rack to the subtree of U; which has the
minimum assigned data so far.

5: end for

6: Connect racks in each subtree of U; into a chain with
A; as the root of U;.

7: end for

V. EXPERIMENTS

The distribution of the amount of data available at each
source rack is application specific and may vary widely
depending on the particular application. For example, if we
are scanning a big text corpus distributed in the network and
returning frequencies of a set of keywords for each document,
we have the same amount of data to aggregate from each
source rack. On the other hand, if we are executing a search
query on the same text corpus and returning the documents
matching the keywords, the amount of data to be sent to the
aggregators from each source rack may vary to a large extent.
Since TANTO has the constraint that data from a source rack
must be routed to each aggregator using a single path, for
racks with large amounts of data, all the data for an aggregator
has to reach the latter through exactly one of it’s uplink. This
increases the aggregation time significantly (Lemmal). So, in
order to assess the performance of our algorithms in such real
scenarios, we used the following data sets:

e Gaussian 1. Amounts of data in source racks are
drawn from a truncated Gaussian distribution with
mean 500 and standard deviation 1000 truncated in
[200, 800]. An alternate data-set

e Gaussian 2. Amounts of data in source racks are
drawn from a truncated Gaussian distribution with
mean 500 and standard deviation 1000 truncated in
[400, 600].

R1R-2Chain mmm R1R-2Chain s
° R2R-2Chain s ° R2R-2Chain
7] 17}
o ©
o o
I e
o o
3 3
[=] [=]
ES ES
0 $ & v 0 & B 9
P @ A2 S > @ 2 S

No. of Racks (in 100s)
(b) Gaussian 2

R1R-2Chain e
R2R-2Chain s

No. of Racks (in 100s)

(a) Gaussian 1

50 | [R1R-2Chain

R2R-2Chain s
40
30
20
10
0

% Decrease
% Decrease

0
o @ 2 S F
No. of Racks (in 100s)

(d) Zipfian

o @ o 8
No. of Racks (in 100s)

(¢) Uniform

Fig. 5: Average percentage decrease in aggregation time
(2Chain vs RIR, R2R), k =2

e Uniform. Amounts of data in source racks are drawn
from a uniform distribution with values in [50,100].

e Zipfian. Amounts of data in source racks are drawn
from a Zipfian distribution with parameter 2.

The link bandwidth is assumed to be 1 unit so that the
data transmission time equals the amount of data transmitted
through a link. In our experiments, we took £ = 2 and k =
4 to compare our algorithms with the 2Chain and W2R [1]
respectively. We varied the total number of source racks (|S1|+
|S2|+]C|) from 300 to 19200, we have assumed |S1| = |S2| =
|C|. Our experiments were conducted on a 64-bit PC with a
2.80 GHz AMD Athlon(tm) II X2 B22 processor and 8GB
RAM.

Fig. 5 shows the average percentage decrease in aggrega-
tion time of the 2Chain compared to that of R1R and R2R
respectively, k& = 2. In RIR, we assigned 1 link of each
aggregator A; to racks in S; and the other link to the racks
in C. In round 1 of R2R, we assign racks using the longest
processing time first rule (LPT) to the two subtrees of the
aggregation tree. In round 2, we create a 2Chain topology with
each rack using 2 links, and racks are assigned to the upper
and lower chains of the 2Chain using LPT on the total amount
of data in each rack for the two aggregators. The maximum
reduction in aggregation time by the 2Chain compared to R1IR
was up to 42%, 27%, 26% and 26% for the Zipfian, Gaussian 1,
Gaussian 2 and Uniform data-sets, respectively. The maximum
reduction in aggregation time by the 2Chain compared to R2R
was up to 24%, 4%, 2% and 1% for the Zipfian, Gaussian 1,
Gaussian 2 and Uniform data-sets, respectively.

Fig. 6 shows the average percentage decrease in aggre-
gation time by 1R, RIR and R2R respectively compared to
W2R [1] when k£ = 4. In RIR, we assigned 2 links of each
aggregator A; to racks in S; and the other two links to the racks
in C. For S;s, racks are assigned to subtrees using LPT rule.
Now, since each rack has 4 links, we form a 2Chain topology
for aggregating data from racks in C' with each chain having
two parallel paths, one to Aj, the other to As, each source
rack using 4 links. So aggregation to A; and A5 can be done
in parallel in each chain. Racks in C' are assigned to the chains
using a modified version of LPT on the total amount of data
in each rack for the two aggregators - each source rack in C

W2R-1R mmmm 'W2R-1R =
2R-R1R m— 2R-R1R
b 2R-R2R 2 2R-R2R
© ©
o o
o <
%3 o
[[
a a
ES S
0 e & o 0 $ & o
U R I T G O I TR T\ S
No. of Racks (in 100s) No. of Racks (in 100s)
(a) Gaussian 1 (b) Gaussian 2
W2R-1R s 'W2R-1R =
2R-R1R = 2R-R1R =
H 2R-R2R @ 2R-R2R
o ©
[[
o 2
[o
[[
o a
ES ES

0
W @ o S
No. of Racks (in 100s)

(d) Zipfian

0
o ® o P B F
No. of Racks (in 100s)

(¢) Uniform

Fig. 6: Average percentage decrease in aggregation time (IR,
RIR, R2R vs W2R), k =4

120 YRR — WIR-R
100 2R-R1R = 2R-R1R =

3 2R-R2R] 2R-R2R

@ 80]

e o

[60 [

[[

a 40 a

EN 20 B

0 $ & o 0 $ & o
)l @ A2 9 P R A2 S 9
No. of Racks (in 100s) No. of Racks (in 100s)
(a) Gaussian 1 (b) Gaussian 2

W2R-1R ‘W2R-1R =
2R-R1R = 2R-R1R =

3 2R-R2R b 2R-R2R

o ©

o o

e o

o %3

[[

(=] a

* BN

0
o ® o S
No. of Racks (in 100s)

0
i @ 2 B 4
No. of Racks (in 100s)

(c) Uniform (d) Zipfian

Fig. 7: Average percentage decrease in aggregation time (IR,
RIR, R2R vs W2R), k =4

is assigned to the chain, where it increases the aggregation
time (maximum of the aggregation times of A; and A in that
chain) the least. In round 1 of R2R, we assign racks using the
standard LPT rule. In round 2, we create an extended 2Chain
topology with four chains (4Chain), each chain having parallel
paths to the two aggregators with each rack using 4 links.
Racks are assigned to the four chains using the modified LPT,
as discussed earlier. The maximum reduction in aggregation
time by 1R, compared to W2R was up to 67%, 67%, 67%
and 64% for the Gaussian 1, Gaussian 2, Uniform and Zipfian
data-sets, respectively. The maximum reduction in aggregation
time by RIR, compared to W2R was up to 67%, 67%, 65%
and 64% for the Uniform, Gaussian 2, Gaussian 1 and Zipfian
data-sets, respectively. The maximum reduction in aggregation
time by R2R, compared to W2R was up to 68%, 67%, 65%
and 64% for the Uniform, Gaussian 2, Gaussian 1 and Zipfian
data-sets, respectively.

To vary the balance among the amounts of data in racks
of Sy, So and C, in Fig. 7, we used a variant of each of the
original data-sets, where we scaled up the data for racks in Sy
and C5, while those in racks in Sy and C; are being drawn
from the origin distributions. For Uniform, we have drawn data

for S; and Cy from [500,1000], for the other distributions,
we have scaled these up by adding 1000 units to racks in
S1 and Cs. Fig. 7 shows the average percentage decrease in
aggregation time by 1R, RIR and R2R algorithms compared
W2R [1]. As expected, the maximum reduction in aggregation
time by 1R, compared to W2R goes up to 85%, 82%, 78%
and 78% for the Zipfian, Uniform, Gaussian 1 and Gaussian 2
data-sets, respectively. The maximum reduction in aggregation
time by RIR, compared to W2R was up to 67%, 67%, 67%
and 65% for the Gaussian 2, Uniform, Zipfian and Gaussian 1
data-sets, respectively. The maximum reduction in aggregation
time by R2R, compared to W2R was up to 67%, 67%, 67%
and 65% for the Gaussian 2, Uniform, Zipfian Gaussian 1
data-sets, respectively.

VI. CONCLUSION

In this paper, we have focused on the two-aggregator
network topology optimization problem without splitting
(TANTO). We have proposed solving TANTO using two
classes of algorithms- RIR and R2R, which unlike the existing
W2R algorithm do not require k, the degree of a ToR switch,
to be > 4. We proved that both RIR and R2R have an
approximation ratio of at least 2. We derived upper bounds of 4
for k = 2 and k = 3 and 2 for £ > 4 for R1R and upper bounds
of 11/3 for k = 2 and k = 3 and 2 for k > 4 for R2R. We have
also proposed solving TANTO using a 1-round algorithm (1R),
by constructing two aggregation trees one for each aggregator
and then using the LPT (Longest Processing Time) scheduling
rule to place racks in the aggregation trees. This algorithm
requires k > 4. For k = 2, we propose another strategy using
the 2Chain topology for aggregation and show that the optimal
2Chain cannot have an aggregation time greater than that of
the optimal R1R and R2R topologies. Experimental results
indicate that, when & = 4, 1R, R2R and RIR reduce the
aggregation time by up to 85%, 67% and 67% respectively,
relative to the two-round aggregation algorithm proposed by
Wang et al [1]. Moreover, for k = 2, the 2Chain can reduce the
aggregation time up to 42% and 24% respectively relative to
R1R and R2R. Our results lay the foundations for studying the
generic m aggregator network topology optimization problem
in future.

ACKNOWLEDGMENT

This research was supported, in part, by the National
Science Foundation under grant CNS0905308.

REFERENCES

[1] Wang, Guohui and Ng, T.S. Eugene and Shaikh, Anees, Programming
your network at run-time for big data applications, Proceedings of the
first workshop on Hot topics in software defined networks HotSDN °12,
2012.

[2] Das, Soham and Sahni, Sartaj Network topology optimization for data
aggregation, IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid), 2014.

[3] Das, Soham and Sahni, Sartaj Network topology optimization for data
aggregation with Splitting, IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), 2014.

[4] Das, Soham and Sahni, Sartaj Network topology optimization for data
aggregation using Multiple Paths, International Journal on Metaheuris-
tics (IIMHeur), 2015, pages 115-140

[5] Graham, R. L. Bounds on Multiprocessing Timing Anomalies, SIAM
JOURNAL ON APPLIED MATHEMATICS, 1969, volume 17, number
2, pages 416-429.

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

CoffmanJr., E. G. and Sethi, Ravi, A generalized bound on LPT
sequencing, Proceedings of the 1976 ACM SIGMETRICS conference
on Computer performance modeling measurement and evaluation, SIG-
METRICS °76, 1976.

Hammadi, A. and Mhamdi, L., A survey on architectures and energy
efficiency in data center networks, Computer Communications, 2014,
vol. 40, no. 0, pp. 1 21.

Kliazovich, D. and Bouvry, P. and Audzevich, Y. and Khan, S.,
Greencloud: a packet-level simulator of energy-aware cloud computing
data centers, Global Telecommunications Conference (GLOBECOM
2010), 2010, IEEE, 2010, pp. 1-5.

Al-Fares, Mohammad and Loukissas, Alexander and Vahdat, Amin,
A scalable, commodity data center network architecture, Proceedings
of the ACM SIGCOMM 2008 conference on Data communication,
SIGCOMM ’08, 2008.

Greenberg, A. and Hamilton, J.R. and Jain, N. and Kandula, S. and
Kim, C. and Lahiri, P. and Maltz, D.A. and Patel, P. and Sengupta, S.,
VI2: a scalable and flexible data center network, Commun. ACM 54
(3) (2011) 95-104.

Revolutionizing Network Design Flattening the
Data Center Network with the QFabric Architec-
ture. http://www.itbiz.com.ua/media/docs/Juniper/QFX/

The%20Q%Fabric%20Architecture.pdf

Guo, C. and Lu, G. and Li, D. and Wu, H. and Zhang, X. and Shi, Y. and
Tian, C. and Zhang, Y. and Lu, S., Bcube: a high performance, server-
centric network architecture for modular data centers, SIGCOMM
Comput. Commun. Rev. 39 (4) (2009) 63-74.

Guo, Chuanxiong and Wu, Haitao and Tan, Kun and Shi, Lei and
Zhang, Yongguang and Lu, Songwu, Dcell: a scalable and fault-tolerant
network structure for data centers, Proceedings of the ACM SIGCOMM
2008 conference on Data communication, SIGCOMM ’08, 2008.

Farrington, N. and Porter, G. and Radhakrishnan, S. and Bazzaz, H.H.
and Subramanya, V. and Fainman, Y. and Papen, G. and Vahdat, A.,
Helios: a hybrid electrical/optical switch architecture for modular data
centers, SIGCOMM Comput. Commun. Rev. 41 (4) (2010).

Wang, G. and Andersen, D.G. and Kaminsky, M. and Papagiannaki, K.
and Ng, T.E. and Kozuch, M. and Ryan, M., C-through: part-time optics
in data centers, SIGCOMM Comput. Commun. Rev. 41 (4) (2010).

Chen, K. and Singla, A. and Singh, A. and Ramachandran, K. and Xu,
L. and Zhang, Y. and Wen, X. and Chen, Y., Osa: an optical switching
architecture for data center networks with unprecedented flexibility,
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI12, p. 18.

Das, S. and Yiakoumis, Y. and Parulkar, G. and McKeown, N. and
Singh, P. and Getachew, D. and Desai, P.D., Application-aware aggrega-
tion and traffic engineering in a converged packet-circuit network, Op-
tical Fiber Communication Conference and Exposition (OFC/NFOEC),
2011 and the National Fiber Optic Engineers Conference, 2011.

Webb, Kevin C. and Snoeren, Alex C. and Yocum, Kenneth, Topology
switching for data center networks, Proceedings of the 11th USENIX
conference on Hot topics in management of internet, cloud, and
enterprise networks and services, Hot-ICE’11, 2011.

Chao, H. and Deng, K. L. and Jing, Z., Petastar: a petabit photonic
packet switch, IEEE J. Sel. Areas Commun. 21 (7) (2003) 1096-1112.

Xia, M.Y.K. and Kaob, Y.H. and Chao, H.J., Petabit optical switch for
data center networks, Tech. Rep., Polytechnic Institute of NYU, 2010.

Ye, X. and Yin, Y. and Yoo, S.J.B. and Mejia, P. and Proietti, R. and
Akella, V., Dos: a scalable optical switch for datacenters, Proceedings
of the 6th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS10, ACM, New York, NY, USA, 2010,
pp- 24:1-24:12.

Singla, A. and Singh, A. and Ramachandran, K. and Xu, L. and Zhang,
Y., Proteus: a topology malleable data center network, Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
Hotnets-IX, ACM, New York, USA, 2010, pp. 8:1-8:6.

Bazzaz, H. et al., Switching the optical divide: Fundamental challenges
for hybrid electrical/optical data center networks, ACM SOCCI11,
October 2011.

http://www.cise.ufl.edu/~sahni/papers/tantofull.pdf

