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Abstract—Data aggregation is a critical operation in many
big-data applications; for example, data residing in several source
racks (mappers) are to be aggregated into one or more specified
racks called aggregators (reducers) in the data center network
during the shuffle phase of a map-reduce task. In this paper,
we explore algorithms for data aggregation to two aggregators
in a data center network under the constraint that data from a
source rack must be routed to each aggregator using a single
path. We derive bounds on the approximation ratios of two
classes of aggregation algorithms– Restricted 1-Round (R1R) and
Restricted 2-Round (R2R). For the case when racks have exactly
2 optical links (uplinks in Top-of-Rack switches), we propose
another strategy using the 2Chain topology for aggregation and
show that the optimal 2Chain cannot have an aggregation time
greater than that of the optimal R1R and R2R topologies. For
the case when racks have at least 4 optical links, we propose a
1-round aggregation algorithm (1R) that uses tree topology for
aggregation. Experimental results indicate that, when racks have
4 optical links, 1R, R2R and R1R reduce the aggregation time by
up to 85%, 67% and 67% respectively, relative to the two-round
aggregation algorithm proposed by Wang et al. Moreover, the
2Chain can reduce the aggregation time up to 42% and 24%
respectively relative to R1R and R2R, when racks have exactly
2 optical links.

Keywords—Data center networks, software defined networking,
big data applications, map-reduce tasks

I. INTRODUCTION

Thousands of server racks are interconnected using top-
of-rack (ToR) switches to form large data center networks.
For large-scale big-data applications, these networks can be
dynamically reconfigured using software defined networking
(SDN) in negligible time compared to the total execution
time of the application. Recent research has shown how such
a reconfiguration can significantly enhance the performance
of a big-data application [1]. Data aggregation is a critical
operation in many big-data applications that employ paradigms
such as the Map-Reduce. In these paradigms data residing in
several source racks (mappers) are to be aggregated into one
or more specified racks called aggregators (reducers). Wang et
al. [1] have observed that the aggregation time is a dominant
component of the overall execution time in many big-data
applications. Given the application (i.e. the amount of data
in each source rack), this paper focuses on determining an
optimal topology of the data center that minimizes aggregation
time (the network can be reconfigured to the determined
topology using SDN) when there are two aggregators and
data from each source rack can be routed to an aggregator
using only a single path. The degree of each rack in the
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Fig. 1: Example aggregation tree topologies

data center network is constrained by the number k of optical
links at each Top of rack (ToR) switch. We have addressed
the single aggregator version of the problem in our previous
work [2]. As a first step towards generalizing the problem to
multi-aggregator topologies, we focus on the problem with two
aggregators here.

We illustrate the two-aggregator data aggregation prob-
lem using the small example of Fig. 1. There are a to-
tal of eight source racks, each denoted by X(d), X ∈
{B,C,D,E, F,G,H, I}, where d units of data are to be
aggregated from the source rack X into the corresponding
aggregator and two aggregator racks A1 and A2. Fig. 1 shows
a possible aggregation tree topology that may be used by each
of the 2 aggregators. Among the source racks, B and C have
data to send to both aggregators and so, these racks are present
in both the aggregation trees U1 and U2. Racks D, E and F
have data to send to only A1 and racks G, H and I have data
to send to only A2 and so, these racks are present in only one
aggregation tree. The edges denote optical links between pairs
of ToR switches. The shown aggregation trees can be realized
when k ≥ 5 as rack B uses 3 and 2 optical links, respectively,
in the two trees.

We assume that the data is packetized and nodes can send
and receive packets at the same time using multiple optical
links. A node sends its own data and the data aggregated from
the subtree below it to its parent, the parent node in turn sends
its data along with the data aggregated from the subtree below
it to its parent and in this way data from all the sources finally
reach the aggregators. Note that each source rack sends its
data through a unique path to the corresponding aggregator.
In Fig. 1, if each optical link has a bandwidth of 10 units per
second, the data from B, D, and F can be aggregated into
A1 in (4 + 8 + 4)/10 = 1.6s and that from C and E can be



aggregated in (8 + 4)/10 = 1.2s. Since A receives data from
B and C in parallel, the aggregation time is max{1.6, 1.2} =
1.6s. Similarly, the data from B, G, and H can be aggregated
into A2 in (5+8+4)/10 = 1.7s and that from C and I can be
aggregated in (5+6)/10 = 1.1s. Since A2 receives data from
B and C in parallel, the aggregation time is max{1.7, 1.1} =
1.7s. So the total aggregation time is max{1.6, 1.7} = 1.7s.

In the two-aggregator network topology optimization prob-
lem (TANTO), our objective is to minimize the overall aggre-
gation time, given the degree k of ToR switches, set of source
racks S1 that send data to only A1, set of source racks S2

that send data to only A2, and set of source racks C that send
data to both A1 and A2 along with the corresponding units of
data to be sent; each source rack can send its data through a
single path to an aggregator. The single aggregator version of
the problem (SANTO) has been proved to be NP-hard in [2].
Hence, it is evident that TANTO is NP-hard.

Previously, Wang et al. [1] have proposed a 2-round1

algorithm, W2R, to solve TANTO. In round 1, W2R uses a tree
to aggregate data from S1 to A1 and another one to aggregate
from S2 to A2 in parallel. In round 2, W2R uses a 2-D torus
to aggregate data from C to both A1 and A2. The round 2
torus topology of [1] requires k ≥ 4 and so cannot be used
when k < 4.

In this paper, we study two classes of algorithms for
TANTO- Restricted 1-round (R1R) and the Restricted 2-
Round (R2R). These classes are motivated by the structure
of W2R. In R1R, the aggregations S1 → A1, S2 → A2,
and C → {A1, A2} are performed in parallel in a single
round under the restriction that we use ki < k links of Ai

to aggregate Si → Ai and the remaining k − ki links to
aggregate C → Ai. As a result, each link of Ai carries data
for either racks in Si or racks in C (but not both). In R2R,
the aggregations S1 → A1 and S2 → A2 are performed in
parallel in round 1. In round 2, the aggregation C → {A1, A2}
is performed. The two rounds are executed serially. So in,
each round the aggregators have all k links available. The
algorithm W2R of [1] is an example of an R2R algorithm.
However, since W2R uses a torus for round 2, W2R cannot
be used when k < 4. For k = 2, we propose another strategy
using the 2Chain topology for aggregation and show that the
optimal 2Chain cannot have an aggregation time greater than
that of the optimal R1R and R2R topologies. Our results lay
the foundations for studying the generic m aggregator network
topology optimization problem in future.

The main contributions of this work are listed below:

1) We establish the existence of TANTO instances for
which the optimal R1R and R2R aggregation times
are twice that of the true optimal.

2) We show that for every TANTO instance, the optimal
R1R and R2R aggregation times are at most 4 and
11/3, respectively, times the true optimal when 2 ≤
k ≤ 3. For the case k ≥ 4, we prove a tight bound of
2 on this approximation ratio for both R1R and R2R.

3) For k = 2, we propose another strategy using the
2Chain topology for aggregation and show that the
optimal 2Chain cannot have an aggregation time
greater than that of the optimal R1R and R2R topolo-
gies.

1In a round, the network topology is fixed.

4) For k ≥ 4, we propose solving TANTO using an
1-round (1R) algorithm, based on the LPT (Longest
Processing Time) scheduling rule [2], [5], [6].

5) We show via experimentation that, for k = 4, 1R,
R2R and R1R can reduce aggregation time by up to
85%, 67% and 67% relative to W2R [1]. Moreover,
for k = 2, the 2Chain can reduce the aggregation time
up to 42% and 24% respectively relative to R1R and
R2R.

The remainder of this paper is organized as follows.
Related work is reviewed in Section II. In Section III, we
derive bounds on the optimal aggregation times using R1R
and R2R besides results using the 2Chain topology. In Section
IV, we describe our 1-round algorithm for TANTO. Experi-
mental results are presented in Section V and we conclude in
Section VI.

II. RELATED WORK

Recently, there has been much interest in studying new
data center network architectures with the goal of making
them more energy efficient [7]. The classic data-center design
architecture [8], switch-centric architectures like the one by Al-
Fares et. al [9], VL2 [10], the Juniper Qfabric architecture [11],
server-centric architectures like BCube [12] and DCell [13]
need special mention. Recent research has focused on optical
interconnect schemes; Helios [14], C-Through [15], OSA [16]
have made significant contributions. Das et al. [17] explore the
use of OpenFlow to control routing according to application
need and Webb et al. [18] propose to isolate applications and
use different routing mechanisms for them in fat-tree based
data-centers. Among full optical data centers, some recent ar-
chitectures, that are of significant importance are Petabit [19],
[20], DOS [21], Proteus [22] etc.But the main drawback is the
fact that these fully optical architectures require a complete
changeover of current data centers. The hybrid architectures
reconfigure the network relying on network-level statistics to
suit the application, but utilization and application performance
can be poor unless we have a true application-level view of
traffic demands and dependencies [1], [23].

Our work is motivated by that of Wang, Ng and Shaikh [1].
In [1], Wang et al. describe an “integrated network control
for big-data applications” that comprise “OpenFlow-enabled
top-of-rack (ToR) switches”. They propose heuristics for the
single as well as multiple aggregators variants of the network
topology optimization problem. In [2], we address single
aggregator network topology optimization (SANTO) under the
constraint that nodes cannot split their data over multiple paths.
The problem is shown to be NP-hard and the approximation
ratio of the algorithm of Wang, Ng, and Shaikh [1] is shown
to be (k + 1)/2, where k is the degree of ToR (top-of-rack)
switches. We propose a SANTO algorithm that is based on the
longest processing time (LPT) scheduling rule, approximation
ratio of (4/3 − 1/(3k)) [5], [6]. We also prove that the
aggregation time using the LPT method is never more than that
using the algorithm of [1]. Wang et al. [1] propose a two-round
algorithm, W2R, for TANTO which works for k ≥ 4. They,
however, do not establish any properties for this algorithm. In
[3], [4], we study one and two-aggregator network topology
optimization for the case when data splitting is permitted; i.e.,
when data from a single source may be split across multiple
paths on the way to the aggregator.
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III. PERFORMANCE BOUNDS FOR RESTRICTED
AGGREGATION TOPOLOGIES

We begin by introducing some of the notations we will be
using. We use I to denote an instance of TANTO. OPT (I, k)
denotes the overall optimal aggregation time, where k is
the maximum degree of a ToR switch. OPT (R1R, I, k) and
OPT (R2R, I, k) denote, respectively, the optimal aggregation
time for R1R and R2R.

Before proving the bounds, we first prove a result in
Lemma 1 that will be used in later proofs. For simplicity of
the equations, we have assumed the bandwidth to be 1 unit
so that the data transmission time equals the amount of data
transmitted through a link.

Lemma 1. The aggregation time for every aggregation strat-
egy for I is ≥ max{Di(j)}, where Di(j) is the amount of data
aggregated through link j of Ai, 1 ≤ j ≤ k and 1 ≤ i ≤ 2
over all aggregation rounds.

Proof: Follows from the definition of aggregation time.

Several of our subsequent proofs will employ a 2Chain
topology which is comprised of two chains (upper and lower)
with the two aggregators A1 and A2 at the two ends and source
racks in between (Fig. 2), each rack using 2 links. 2Chain may
include all racks in S1 ∪S2 ∪C. Note that a 2Chain is not an
R1R or R2R topology. However, a 2Chain that is limited to the
racks of C, for example, is a valid R1R and R2R topology.
We will show results comparing the 2Chain, R1R and R2R
strategies (for k = 2) in the subsections to follow.

A. Restricted One Round Aggregation (R1R)

Before going into proving bounds for R1R, we first com-
pare the performance of 2Chain with respect to R1R for k = 2
in Theorem 1.

Theorem 1. OPT (2Chain, I, 2) ≤ OPT (R1R, I, 2), for all
I .

Proof: Consider an optimal R1R topology for I as shown
in Fig. 3. Let t(S1), t(S2) and t(C) be the aggregation
times of the three topologies of R1R. So, OPT (R1R, I, 2) =
max{t(S1), t(S2), t(C)}. We assign the racks in S1 and
S2 to the upper chain of a 2Chain R and those in C to
the lower chain, as shown in Fig. 3. Data from S1 and
S2 are aggregated in parallel into the aggregators through
upper chain, and data from the racks in C are aggregated
exactly in the same way as in the optimal R1R topology
for racks in C. So, the aggregation time using the 2Chain
R is max{t(S1), t(S2), t(C)} = OPT (R1R, I, 2). Hence,
OPT (2Chain, I, 2) ≤ OPT (R1R, I, 2), for all I .

A1 A2

S
1 S

2

R1R

A1

S
1

A2

S
2

2Chain

A1

A2

C

C

Fig. 3: 2Chain corresponding to an R1R k = 2 topology

Next, we prove bounds of the R1R aggregation strategy.

Theorem 2. For every k, k ≥ 2, and integer x,
x > 1, there is an instance I(x) of TANTO such that
OPT (R1R, I(x), k)/OPT (I(x), k) = 2− 1/x.

Proof: The proof is omitted due to lack of space [24].

Note that as x → ∞, the ratio of Theorem 2 approaches
2. We show below, in Theorem 5, that for k ≥ 4, there is
no instance I for which OPT (R1R, I, k)/OPT (I, k) > 2.
Hence the bound of Theorem 5 is tight. First, we establish
bounds for k = 2 and 3.

Theorem 3. OPT (R1R, I, 2) ≤ 4OPT (I, 2) for every I .

Proof: The proof is omitted due to lack of space [24].

Theorem 4. OPT (R1R, I, 3) ≤ 4OPT (I, 3) for every I .

Proof: The proof is omitted due to lack of space [24].

Theorem 5. OPT (R1R, I, k) ≤ 2OPT (I, k) for every I and
every k, k ≥ 4.

Proof: The proof is omitted due to lack of space [24].

B. Restricted Two Round Aggregation (R2R)

Before going into proving bounds for R2R, we first com-
pare the performance of 2Chain with respect to R2R for k = 2
in Theorem 6.

Theorem 6. OPT (2Chain, I, 2) ≤ OPT (R2R, I, 2), for all
I .

Proof: Consider an optimal R2R topology for I . This
topology is comprised of a round 1 topology Y that ag-
gregates from the Sis to the Ais and a round 2 topology
Z that aggregates from the racks in C to the Ais. Let
SR2R
i (j) be the subset of Si that sends its data to Ai

through the jth link of Ai using the topology Y and let
d(SR2R

i (j)) be the sum of data in the racks of SR2R
i (j).

The round 1 aggregation time using Y is, therefore, ≥
max{d(SR2R

1 (1)), d(SR2R
1 (2)), d(SR2R

2 (1)), d(SR2R
2 (2))} by

Lemma 1. Since k = 2, Z must be a 2Chain with A1 and A2

at the two ends and the racks of C in between. Let CR2R(1)
be the subset of racks in C in the upper chain and CR2R(2)
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be those in the lower chain. The aggregation time for C is
max{tc(1), tc(2)} by Lemma 1, where tc(1) and tc(2) are,
respectively, the aggregation times of the upper and lower
chains (see Fig. 4).

Consider the 2Chain of Fig. 4. Data is routed from
{SR2R

1 (1), SR2R
1 (2)} to A1 and from {SR2R

2 (1), SR2R
2 (2)} to

A2 using a standard chain routing strategy. Data is routed from
{CR2R(1), CR2R(2)} to {A1, A2} via the SR2R

i (j) using the
strategy employed in Z. The packets to be aggregated from
CR2R(1) to A1 get to A1 at most d(SR2R

1 (1)) units later in
the 2Chain than in Z (note that since each rack of S1 has at
least 1 unit of data, d(SR2R

1 (1)) ≥ |SR2R
1 (1)|). The same is

true for the remaining combinations of CR2R and Ais. So,
OPT (2Chain, I, 2)
≤ max{d(SR2R

1 (1)) + tc(1), d(SR2R
1 (2)) +

tc(2), d(SR2R
2 (1)) + tc(1), d(SR2R

2 (2)) + tc(2)} by Lemma 1
≤ max{d(SR2R

1 (1)), d(SR2R
1 (2)), d(SR2R

2 (1)), d(SR2R
2 (2))}+

max{tc(1), tc(2)}
= OPT (R2R, I, 2).

Next, we prove bounds of the R2R aggregation strategy.

Theorem 7. For every k, k ≥ 2, there is an instance I for
which OPT (R2R, I, k) = 2OPT (I, k).

Proof: The proof is omitted due to lack of space [24].

We show below, in Theorem 10, that for k ≥ 4, there is
no instance I for which OPT (R2R, I, k)/OPT (I, k) > 2.
Hence the bound of Theorem 10 is tight. First, we establish
bounds for k = 2 and 3.

Theorem 8. OPT (R2R, I, 2) ≤ 11/3OPT (I, 2) for every I .

Proof: The proof is omitted due to lack of space [24].

Theorem 9. OPT (R2R, I, 3) ≤ 11/3OPT (I, 3), for all I .

Proof: The proof is omitted due to lack of space [24].

Theorem 10. OPT (R2R, I, k) ≤ 2OPT (I, k) for every I
and every k ≥ 4.

Proof: The proof is omitted due to lack of space [24].

IV. THE 1-ROUND ALGORITHM 1R

We propose a 1-round algorithm, 1R, for k ≥ 4 here.
This algorithm, which is specified in Algorithm 1, employs
2 aggregation trees U1 and U2 to do the aggregation for A1

and A2, respectively. Source racks are first assigned to the
k subtrees of U1 and U2 using the longest processing time
(LPT) rule [5], [6]. A rack that aggregates data to only A1

(A2) is assigned to a single subtree of A1 (A2) while one that
aggregates to both A1 and A2 is assigned to one subtree in
U1 and one in U2. The racks, assigned to each subtree of U1

(U2) are connected to form a chain with A1 (A2) as the root
of the tree. To construct the two trees U1 and U2, we use all
k links of A1 and A2 and at most 4 links of each source rack
(2 in each tree). The unutilized links of the source racks, if
any, could be used to optimize secondary measures such as
link utilization (see [2]). We do not explore this here.

Algorithm 1 One-round Algorithm

Input: S1, S2, C, k ≥ 4.
Output: Aggregation trees U1 and U2.

1: for each aggregator Ai do
2: Sort racks in Si, C in decreasing order of data for Ai

3: for each rack in decreasing order do
4: Assign the rack to the subtree of Ui which has the

minimum assigned data so far.
5: end for
6: Connect racks in each subtree of Ui into a chain with

Ai as the root of Ui.
7: end for

V. EXPERIMENTS

The distribution of the amount of data available at each
source rack is application specific and may vary widely
depending on the particular application. For example, if we
are scanning a big text corpus distributed in the network and
returning frequencies of a set of keywords for each document,
we have the same amount of data to aggregate from each
source rack. On the other hand, if we are executing a search
query on the same text corpus and returning the documents
matching the keywords, the amount of data to be sent to the
aggregators from each source rack may vary to a large extent.
Since TANTO has the constraint that data from a source rack
must be routed to each aggregator using a single path, for
racks with large amounts of data, all the data for an aggregator
has to reach the latter through exactly one of it’s uplink. This
increases the aggregation time significantly (Lemma1). So, in
order to assess the performance of our algorithms in such real
scenarios, we used the following data sets:

• Gaussian 1. Amounts of data in source racks are
drawn from a truncated Gaussian distribution with
mean 500 and standard deviation 1000 truncated in
[200, 800]. An alternate data-set

• Gaussian 2. Amounts of data in source racks are
drawn from a truncated Gaussian distribution with
mean 500 and standard deviation 1000 truncated in
[400, 600].
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Fig. 5: Average percentage decrease in aggregation time
(2Chain vs R1R, R2R), k = 2

• Uniform. Amounts of data in source racks are drawn
from a uniform distribution with values in [50,100].

• Zipfian. Amounts of data in source racks are drawn
from a Zipfian distribution with parameter 2.

The link bandwidth is assumed to be 1 unit so that the
data transmission time equals the amount of data transmitted
through a link. In our experiments, we took k = 2 and k =
4 to compare our algorithms with the 2Chain and W2R [1]
respectively. We varied the total number of source racks (|S1|+
|S2|+|C|) from 300 to 19200, we have assumed |S1| = |S2| =
|C|. Our experiments were conducted on a 64-bit PC with a
2.80 GHz AMD Athlon(tm) II X2 B22 processor and 8GB
RAM.

Fig. 5 shows the average percentage decrease in aggrega-
tion time of the 2Chain compared to that of R1R and R2R
respectively, k = 2. In R1R, we assigned 1 link of each
aggregator Ai to racks in Si and the other link to the racks
in C. In round 1 of R2R, we assign racks using the longest
processing time first rule (LPT) to the two subtrees of the
aggregation tree. In round 2, we create a 2Chain topology with
each rack using 2 links, and racks are assigned to the upper
and lower chains of the 2Chain using LPT on the total amount
of data in each rack for the two aggregators. The maximum
reduction in aggregation time by the 2Chain compared to R1R
was up to 42%, 27%, 26% and 26% for the Zipfian, Gaussian 1,
Gaussian 2 and Uniform data-sets, respectively. The maximum
reduction in aggregation time by the 2Chain compared to R2R
was up to 24%, 4%, 2% and 1% for the Zipfian, Gaussian 1,
Gaussian 2 and Uniform data-sets, respectively.

Fig. 6 shows the average percentage decrease in aggre-
gation time by 1R, R1R and R2R respectively compared to
W2R [1] when k = 4. In R1R, we assigned 2 links of each
aggregator Ai to racks in Si and the other two links to the racks
in C. For Sis, racks are assigned to subtrees using LPT rule.
Now, since each rack has 4 links, we form a 2Chain topology
for aggregating data from racks in C with each chain having
two parallel paths, one to A1, the other to A2, each source
rack using 4 links. So aggregation to A1 and A2 can be done
in parallel in each chain. Racks in C are assigned to the chains
using a modified version of LPT on the total amount of data
in each rack for the two aggregators - each source rack in C
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R1R, R2R vs W2R), k = 4
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Fig. 7: Average percentage decrease in aggregation time (1R,
R1R, R2R vs W2R), k = 4

is assigned to the chain, where it increases the aggregation
time (maximum of the aggregation times of A1 and A2 in that
chain) the least. In round 1 of R2R, we assign racks using the
standard LPT rule. In round 2, we create an extended 2Chain
topology with four chains (4Chain), each chain having parallel
paths to the two aggregators with each rack using 4 links.
Racks are assigned to the four chains using the modified LPT,
as discussed earlier. The maximum reduction in aggregation
time by 1R, compared to W2R was up to 67%, 67%, 67%
and 64% for the Gaussian 1, Gaussian 2, Uniform and Zipfian
data-sets, respectively. The maximum reduction in aggregation
time by R1R, compared to W2R was up to 67%, 67%, 65%
and 64% for the Uniform, Gaussian 2, Gaussian 1 and Zipfian
data-sets, respectively. The maximum reduction in aggregation
time by R2R, compared to W2R was up to 68%, 67%, 65%
and 64% for the Uniform, Gaussian 2, Gaussian 1 and Zipfian
data-sets, respectively.

To vary the balance among the amounts of data in racks
of S1, S2 and C, in Fig. 7, we used a variant of each of the
original data-sets, where we scaled up the data for racks in S1

and C2, while those in racks in S2 and C1 are being drawn
from the origin distributions. For Uniform, we have drawn data



for S1 and C2 from [500,1000], for the other distributions,
we have scaled these up by adding 1000 units to racks in
S1 and C2. Fig. 7 shows the average percentage decrease in
aggregation time by 1R, R1R and R2R algorithms compared
W2R [1]. As expected, the maximum reduction in aggregation
time by 1R, compared to W2R goes up to 85%, 82%, 78%
and 78% for the Zipfian, Uniform, Gaussian 1 and Gaussian 2
data-sets, respectively. The maximum reduction in aggregation
time by R1R, compared to W2R was up to 67%, 67%, 67%
and 65% for the Gaussian 2, Uniform, Zipfian and Gaussian 1
data-sets, respectively. The maximum reduction in aggregation
time by R2R, compared to W2R was up to 67%, 67%, 67%
and 65% for the Gaussian 2, Uniform, Zipfian Gaussian 1
data-sets, respectively.

VI. CONCLUSION

In this paper, we have focused on the two-aggregator
network topology optimization problem without splitting
(TANTO). We have proposed solving TANTO using two
classes of algorithms- R1R and R2R, which unlike the existing
W2R algorithm do not require k, the degree of a ToR switch,
to be ≥ 4. We proved that both R1R and R2R have an
approximation ratio of at least 2. We derived upper bounds of 4
for k = 2 and k = 3 and 2 for k ≥ 4 for R1R and upper bounds
of 11/3 for k = 2 and k = 3 and 2 for k ≥ 4 for R2R. We have
also proposed solving TANTO using a 1-round algorithm (1R),
by constructing two aggregation trees one for each aggregator
and then using the LPT (Longest Processing Time) scheduling
rule to place racks in the aggregation trees. This algorithm
requires k ≥ 4. For k = 2, we propose another strategy using
the 2Chain topology for aggregation and show that the optimal
2Chain cannot have an aggregation time greater than that of
the optimal R1R and R2R topologies. Experimental results
indicate that, when k = 4, 1R, R2R and R1R reduce the
aggregation time by up to 85%, 67% and 67% respectively,
relative to the two-round aggregation algorithm proposed by
Wang et al [1]. Moreover, for k = 2, the 2Chain can reduce the
aggregation time up to 42% and 24% respectively relative to
R1R and R2R. Our results lay the foundations for studying the
generic m aggregator network topology optimization problem
in future.
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