Systolic algorithms for
rectilinear polygons

Rajiv Kane* and Sartaj Sahni

We develop systolic algorithms for the OR, AND, Over-
sizing, and Undersizing of rectilinear polygons. These

algorithms work on an edge representation of the polygons .

rather than on a bit map representation. The algorithms are
to be run on a systolic chain of processors. The edges are
input at the left end of this chain. From here, they ‘float’ as
far to the right as necessary. As edges float to the right,
they compare themselves with edges that are resident in the
processors they are floating through. During this comparison
the output polygons are generated. Output polygons float
Lo the left. These polygons are output from the left end of
the chain. The throughput of the sytolic system can be
improved by increasing the length of the processor chain.

rectilinear polygons, systolic algorithms, oversize, undersize, circuit
design

Rapid advances in manufacturing technology have madé it
possible to fabricate chips of ever-increasing complexity.
This has posed a severe challenge to existing design auto-
mation tools. Existing algorithms take more computer time
than is desirable and in some cases require more time and
memory than is practical.

One way to meet this challenge is to design new com-
puter architecture and corresponding algorithms for design
automation tasks. This approach has been the subject of
many recent research efforts. Special architectures for
design rule checks are described in Blank et a/?, Seiler? and
Kane and Sahni®, wire routing is considered in Blank et a/!,
Mudge ez a/*, Nairet a/®, and Ueda er a/®, losupovici et a/”
and Dah-Juh and Breuer® consider module placement. New
architectures for simulation are proposed in Abramovici
et a/®, Denneau'®, Kronstadt and Pfister'!, and Pfister!2.
It is anticipated that through the use of these specialized
architectures, one can increase the circuit size that can be
handled by a few orders of magnitude.

Kane and Sahni® have proposed a systolic design rule
checker. This is essentially a hardware algorithm that
checks for width and spacing errors. (The reader unfamiliar
with systolic designs is referred to Kung®® for an excellent
introduction.) This paper is a continuation of the work
reported in Kane®. Specifically, systolic algorithms are
developed for some functions that are commonly performed
on rectilinear polygons. These functions are:

® OR
O find the logical. OR of a set of rectilinear polygons
belonging to & layers
e AND
© find logical AND of a set of rectilinear polygons
belonging to & layers
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® UNDERSIZE
© reduce the height (width) of each rectilinear polygon
by a specified amount 2¢
® OVERSIZE
O increase the height (width) of each polygon by a
specified amount 2d¢

The details of these functions are described in the next
section. The systolic algorithms described in this paper are
edge based. This coupled with the fact that the algorithms
are to be implemented in hardware should result in a sub-
stantial reduction in the computing time required.

RECTILINEAR POLYGONS AND FUNCTIONS

In this paper only rectilinear polygons are dealt with
explicitly. A rectilinear polygon is composed solely of
horizontal and vertical edges. Further, it is assumed that all
polygons are well formed. This means that open polygons
and polygons with self overlaps (Figures 1(a) and (b)) are
not permitted. However, polygons are permitted to contain
holes which are themselves rectilinear polygons (Figure 1 (c)).

The set of polygons to be handled is assumed to belong
to different layers. It is assumed that a polygon belonging
to a given layer satisfies the spacing and width requirements
as described in Kane3. These requirements can actually be
relaxed for the AND, and OR operations. In particular,
polygons on a layer can share an edge, and a hole may share
an edge with the enclosing polygon (see Figure 2). However,
these are not allowed for oversize and undersize operations.

The restriction to rectilinear polygons allows a compact

a b c

Figure 1. Polygons (a) open, (b) with self overlap and (c)
with hole that is a rectilinear polygon. Polygon interior is
shaded
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Figure 2. Polygons (a) on a layer sharing an edge and (b)
enclosing and sharing an edge with a hole. Polygon interior
is shaded
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Figure 3. Polygons (a) without holes and (b) with two holes
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Figure 4. The OR of two rectilinear polygons A and B

representation for each polygon. Thisrepresentation consists
of the following:

® Polygon number
O Each polygon is assigned a unique number. Holes
within a polygon are assigned the same number as the
enclosing polygon.
® [ayer number
O The layer number to which the polygon belongs.
® Sequence of polygon vertices

This sequence begins at the lowermost left hand vertex of
the polygon and is obtained by traversing the polygon so
that its interior lies to the left of the edge being traversed.
Since all edges are either horizontal or vertical, the polygon
vertices (except the first) may be described by providing a
single coordinate. Thus, the polygon of Figure 3(a) is
represented as

b, /7,/,X1,,V1, X2, V3, Xa, Vs, X6, V1, X8, V1

The first symbol p identifies this as an enclosing polygon;
n is the polygon number. / is the layer number. In case of a
hole, an A is used in place of the p. Holes are traversed such
that the interior is to the left of each edge traversed. The
representation for the polygon and holes of Figure 3(b) is

Dy 0y b X1, Y1, X2, V3, Xa, Vs, Xe, V1, X8y Yo, X10, V11,
X12, V1

h, 1,y X13, Y13, X14, V15, X16, Y17, X18, Y19, X20, V13

h} n, /) X21, Y21, X22, V23, X24;, V25, X26, V21
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OR

The OR of two rectilinear polygons A and B is a set of
rectilinear polygons that includes the area occupied by A as
well as that occupied by B. Figure 4 gives some examples.

AND

The AND of two rectilinear polygons A4 and B is a third
rectilinear polygon C which includes the area that is common
to both A and to B. Figure 5 shows some examples.

Oversize

Oversizing in the y direction is described here. Oversizing in
the x direction is similar. The objective is to enlarge the
polygon by an amount 2d in the y direction. For each
horizontal edge, with ud = 0, the y coordinate is decreased
by d and for each horizontal edge with wd = 1, the y
coordinate is increased by d. The OR of these elongated
polygons with the original set (assumed to be a set of non-
overlapping polygons) yields a set of polygons oversized by
2d inthe y direction. Note that the OR is needed to properly
account for holes that shrink to zero during the oversize
and also to account for the fact that oversizing might cause
polygons that did not overlap earlier, to do so now. Figure
6 gives some examples.

A B A and B
Null
A and B
A B
Null
A and B
A B

Figure 5. The AND of two rectilinear polygons A and B

Oversize
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Note that the
hole has vanished

—
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Figure 6. Examples of oversizing
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Undersize
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Figure 7. Examples of undersizing
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Figure 8. SOR and SAND attached to a computer system as
a peripheral
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Figure 9. SOR architecture

Undersize

As in the case of oversize, only the operation for the y
direction is described. Undersizing in the x direction
is similar. The y coordinate of each horizontal edge is
decreased by ¢ if ud = 1 and increased by d if ud=0. The
AND of these shortened polygons with the original polygon
set (assumed to be a set of nonoverlapping polygons)
yields the set of undersized polygons. Figure 7 gives some
examples. Note that if polygons are oversized by 2d we
may not get back the original polygon. This happens, for
example, when holes vanish due to oversize.

SOR AND SAND ARCHITECTURE

The SOR (systolic OR generator) and SAND (systolic AND
generator) are hardware devices that may be attached to a
computer system as a peripheral (see Figure 8) or directly
to a CPU as in the case of a floating point processor. A high
level description of the SOR architecture is explicitly provi-
ded. The architecture of the SAND is similar.

A block diagram of the SOR_ architecture appears in

volume 19 number 1 january/february 1987

Figure 9. As can be seen, the systolic OR generator is com-
prised of three major units: a controller, SAX, and ORGen.
The controller essentially communicates with the outside
world and also coordinates the activities of the SAX and
ORGen. SAX is a hardware sorter and ORGen is a hard ware
device that generates the OR.

The controller receives the compact polygon descriptions
and generates horizontal edges of each polygon. Each
horizontal edge has a four field descriptor as shown in
Figure 10; y is the y coordinate of the edge; x; the left
coordinate; x, is the right x coordinate; and ud (up/down)
is O if the interior of the polygon is above the edge and 1
otherwise. The polygon number and layer number are not
recorded in the edge descriptors.

As an example, consider the polygon in Figure 11. The
horizontal edge descriptors are

Vi, X1, X2, 1,0
V7, X7, Xg, 1,1
Y16, X16, X15, 1,0
Y10, X10, X9, 1,0
Y11, X11, X12, 1,0
Y6y X6y X5, 1,1
Yia, X14, X13, 1,0

Ya, Xa, X3, ])]

The horizontal edges generated by the controller are
transmitted to SAX, which is a sorter. This device sorts the
horizontal edges into non-decreasing order of the multikey
(%X, ud) (i.e. y is the primary key, Xy is the first secondary
key, and wud the second secondary key). For SAX, we
propose using the systolic priority queue developed by
Leiserson™ . This device will periodically output the next
horizontal edge in the desired sorted order. In this design®,
the first edge comes out two cycles after the last edge has
been input. Thereafter, each succeeding edge may be
extracted every two cycles.

The controller accepts the edges from the SAX in the
sorted order and transmits them one by one to ORGen. The
ORGen generates the horizontal edges of the polygons that
form the OR of all the input polygons. These horizontal
edges may be passed back to the controller or directly to
the CPU.

In some applications it is adequate to describe the result
of the OR by a sequence of horizontal edges. In others, it is
necessary to provide the vertical edges explicitly too. This
may be accomplished by carrying out a vertical edge OR
generation in parallel with the generation of horizontal

y X1 X, ud

Figure 10. Four field descriptor of horizontal edge

XaYa X3Y3
X6Ve XsVs| 14 13
11 12
16 15 10 9
7 [
X1y X2y2

Figure 11. Polygon with horizontal edge descriptors
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Figure 12. Block diagram of the SOR after a vertical edge
OR generation in parallel with the generation of horizontal
edges

X Yb Ve Ir

Figure 13. Four field descriptor of vertical edge

edges. The block diagram of the SOR now takes the form
given in Figure 12. C1 generates horizontal edges while C2
generates vertical edges. Each vertical edge has a four field
descriptor (see Figure 13). x is the x coordinate; y, the
bottom y value; y; the top y value; and /r (left/right) is O if
the polygon interior is to the right of the edge and 1 other-
wise. The descriptors for vertical edges of Figure 11 are

X2, Y2, V3, 1,0
X8, Vs, V9, 1,1
X12, Y12, Y13, 1, 1
X10, Y10, Y11, 1, 1
X1s, Y15, Y1a, 1, 0
Xs, Vs, Ya, 1,1
X7, Y1, V16, 1, 1
X1, ¥, Ve, 1,1

SAY is identical to SAX except that it sorts vertical
edges rather than horizontal. Another solution to the
vertical edge problem is to generate the vertical edges in the
OR from the horizontal edges as in Figure 14. This is slower
than the solution of Figure 12 which generates the hori-
zontal and vertical edges in parallel.

ORGEN : THE OR GENERATOR
Preliminaries and overview

The ORGen is a systolic array processor that accepts as
input the horizontal (vertical) edges of a set of polygons
and generates as output the horizontal (vertical) edges of
the polygon obtained by computing the OR of the input
polygons. In describing the ORGen, it is assumed that the
horizontal edges are input. (Consequently, the terminology
used in this section is with respect to horizontal edges.) As
mentioned earlier, the horizontal edges are input to the
ORGen in non-decreasing order of the multikey (v, x;, ud).
The processors of the ORGen (also called processing
elements) are connected to form a chain (see Figure 15).
The horizontal edges of the polygons are input at the left-
most processor in this chain. These edges float towards the
right. As an edge moves towards the right, it determines if it
overlaps with edges already in the processor it is currently
at. (Two horizontal edges overlap if they have a common x
coordinate, the y coordinate of the edges need not be the
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same.) If so, the polygons described by the overlapping
edges are to be combined in the OR. The edges are suitably
processed to reflect this combining of polygons. Since edges
are input in order of increasing y coordinate, it is possible
to output polygons in the OR before processing all the
horizontal edges. Specifically, once the y coordinate of an
input edge exceeds the maximum y coordinate of a polygon
in the ORGen array, this polygon may be output as further
input edges cannot interact with this polygon. Polygons (or
more correctly, their horizontal edges) are output from the
leftmost processor. This is accomplished by making these
‘float’ from their resident processors leftwards along the
processor chain.

The remainder of this paper provides the details of how
the horizontal edges of the OR are generated and how these
float towards the left and are output. Each processing
element (PE) of the ORGen contains four sets of registers
A, B1, B2, C as shown in Figure 15. The PEs are connected
together to form a logical chain. Adjacent PEs need to be
able to exchange the data from A registers. Also a PE needs
to be able to send B1 and B2 registers to the right.

Edges enter the ORGen through the B2 register of PE 0.
Output edges, ie,-edges that form the polygon in the OR,
exit the ORGen through the A register of PE 0. The A
registers contain two kinds of edges:

® edges to be output
® cdges not ready for output

This second category of A register edges have the following
properties:

® No two edges overlap. If L; and L; are the left x coordi-
nates of the edges in PEs/ and j respectively, and R; and
R; respectively are their right x coordinates, then either
Rsubj < LjorR;<L;.

SAX C1

ORGen

Vertical edge
generator

Figure 14. Vertical edges in the OR generated from the
horizontal edges

Cc C C C
— B2 B2 B2 — — B2

Inputs
— B1 B1 BT +— — B1
Output — A A A — —/ A
PEs 0 1 2 = omoe n

Figure 15. Processors of the ORGen connected to form a
chain
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Figure 16. Z reaches a PE (a) whose A register edge W lies
entirely to its right and (b) with which it overlaps
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® Edges are ordered by their x coordinates. So, if / <j
then R; < L.
® [Edges are all lower boundary edges.

The B registers contain edges that are ready to be output or
are looking for a PE to settle into (this can only be done by
moving into an A register such that all the above properties
are preserved). Let Z be an edge looking for a PE to settle
into. Z moves to the right (through B registers and possibly
going through C registers too) until it reaches a PE whose A
register edge W lies entirely to its right (Figure 16(a)) or
with which it overlaps (Figure 16(b)) is one such case).

If case Z is entirely to the left of W (Figure 16(a)) then
Z settles in this PE and W moves towards the right through
B registers. If there is an overlap, the edges are split. In
Figure 16(b) we will assume that the level of Wis 1. The Z
and W get split into segments g, b and c. g settles in this
PE while segments 6 and ¢ move to the right through B

registers. If the interior of the polygon (whose edge Z is) ‘

lies above Z, the number of open polygons above edge b
becomes 2. In this case b’ is discarded since it does not
form an edge of the output polygons. If the interior of the
polygon (of edge Z) lies below, then level number of edge &
becomes 0. Thus no open polygons are above edge b. Thus
an output edge is generated. This consists of edge b together
with v coordinate of Z, which denotes an area bounded by
bandb'.

Details of ORGen are presented below.

Each register will hold edge descriptor fields x/, x,, ¥ and
ud. Each set of register has the following additional fields:

® PR: a two bit priority field used to control the flow of
the edges, the four possible values of PR have the follow-
ing interpretation:
o PR = 11: this signifies an empty register _
O PR = 10: the register contains an edge that has yet to
settle
O PR = 01: this denotes an edge that has settled (this
value is possible for A registers only)
O PR = 00: this denotes an edge in the OR output
® y,: this field is used only when PR = 00, it allows the
storage of two edges having the same x; and x, values
(but different y values) in the same register
® |evel: the number of active (or open) polygons so far that
are above this edge

Before the edges are input into the ORGen, every register
in the ORGen s initialized so that PR = 11 and ud = 0.
Following this, ORGen repeatedly executes its basic cycle.
At the start of each iteration of this cycle, the ORGen
checks for an overflow condition. Overflow occurs if the
rightmost PE has a nonempty B1 or B2 register. If this is
the case, then the ORGen cannot faithfully compute the
OR of the input polygons and the problem needs to be
partitioned into smaller subproblems.

If no overflow is detected, the edges in B1 and B2
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registers of every PE are moved one PE right. In case there
are new edges to enter into the ORGen, one of these (in the
order stated earlier)-is entered into the B2 register of the
leftmost PE. The B1 register of this PE is set to be empty
(ie, PR = 11). Each PE now processes the edges in its
registers. Only the edges in A, B1, and B2 are involved in
this processing. Following the processing, the edges in B2
and C registers of each PE are interchanged. This is done so
as to cause a delay in the rightward movement of the B2
edges. Edges that appear in the OR of the input polygons
are called output edges. These edges move to the left
through A registers at the end of each cycle.

The processing that takes place in each PE during each
cycle of the ORGen has the following objectives:

® control the rightward movement of edges

® cnsure that all A register edges that are not output edges
are ordered left to right and have no overlaps

® at the start of each cycle, the B2 edge (if any) is to the
right of B1 edge (if any); there is no overlap between B1
and A edges

The details of the ORGen are spelled out in the next sub-
section.

procedure OR__Cycle
{basic cycle of ORGen}
begin
if B1[n].PR <> 11 or B2[n].PR <> 11
then
overflow; stop
endif

{shift B edges right}

B1[i], B2[i] < B1[i-1], B2[i-1] i >0
{set B edges in the first PE (i.e. PE 0) }
B1[0].PR < 11; B1[0].ud < 1

if there is a new edge
then
[B2[0] < new edge; B2[0] .PR < 10;
if B2[0].ud =0
then
B2[0] .level <1
else
B2[0] .level < -1
endif]
else
[B2[0].PR < 11]
endif

OR_process_in_each_PE

{exchange C and B2}
Cli] <~ B2[i] ,i>0
{move output A edges left}

if A[i].PR=00and A[i-1].PR <> 00
then
Ali] «=>A[i-1],i>1
if A[0].PR =00
then
[output edge A[O]; A[O].PR < 11; A[0].ud « 1]
endif
end OR__Cycle;

Figure 17. Procedure OR_Cycle
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procedure OR_managelevel (X)
begin
{update the level of edge in register X}
if B2.ud = 0 {polygon bounded by B2 is above B2}
then
X.level < X.level - 1
else {B2 is closing edge }
[X.level «+ X.level - 1
if X.level = 0 {B2 ahd X are two output edges }
then
[X.PR < 00; X.y, < B2.y; B2.PR < 11]
endif]
endif
end OR_managelevel

Figure 18. Procedure OR_managelevel

Formal description of ORGen

The ORGen basic cycle

We shall’ use the notation X[/].Y to refer to field Y of the
register X of PE /. Thus, B1[2].PR refers to the priority
field of register B1 of PE 2. Every PE in the ORGen is
initialized so that X.PR = 11 and X.ud = 0 for X € {4, B1,
B2, C}. Following the initialization, procedure OR_Cycle
(Figure 17) is repeatedly executed until all edges have been
output from the ORGen.

OR_managelevel ‘
Before describing the procedure OR_process_in_each_PE
that is used by OR__cycle, another procedure OR_manage-
level (Figure 18) that is used extensively by this procedure
is described. OR_managelevel life OR_process_in_each__
PE is local to every PE. It has one parameter X which is a
register name (the only possible values are A and B1). At
the time it is invoked, it is known that the edges in 82 and
X have the same x; and x, values. So, the presence of the
edge in B2 will either increase or decrease the level number
of the edge in X. If the level number of X drops to zero
then X and B2 are respectively lower and upper bounding
edges in the OR of the input polygons.

OR_process_in_each_PE

Each PE uses this procedure to process the edges in its A,
B1 and B2 registers. In order to understand this procedure,
one should keep the following in mind: -

® 1 Edges may settle only in A registers. Thus only A
registers may have a priority value 01. Furthermore,
all settled edges have ud = 0.

® 2 Settled edges are ordered by their x; values left to
right in the A registers. The sequence of settled edges
(ie PR = 01) may be interspersed with output edges
(ie PR = 00) and empty A registers (ie PR = 11).

® 3 Edges that have yet to settle must do so by moving
right through the B1 and B2 registers.

® 4 Edges left in B2 registers at the end of processing first
move to the corresponding C register (see procedure
OR_Cycle). Thus B2 edges move right once every
two cycles.

® 5 A polygon edge may get split or discarded during
processing. In general, edge splits and discards are
carried out so as to ensure that the set of active edges
(ie PR = 01 or 10) have no overlap of their x coordi-
nates.

® 6 At the start of every cycle of PE processing the
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following is true in every PE:

O (a) If a PE has both a B1 and B2 edge, then B2 edge
is completely to the right of the B1 edge.

O (b) Every B1 edge is completely to the left of all
settled A edges (ie PR = 01) to its right.

© (c) Every C register edge lexically precedes the B2
register edge (if any) in its PE. If the A register
has PR = 07 then C register edge (if any) is com-
pletely to its right.

The details of the processing carried out in each PE during
each cycle are provided using algorithmic notation in
Appendix 1.

The correctness of conditions 6(a), (b) and (c) is readily
established by induction on the cycles. The necessity of a
C register in each PE is seen by examining case 3 of Figure
20(c). If the B1" and B2' segments proceed to the right as a
packet then when B1' finds a PE to settle into (the first PE
with A.PR = 01 and B1'x, < = A.x)) it is quite possible
that B2 now overlaps with the A edge. Handling this
condition is now quite difficult. By using C registers as
described here, B2 edges travel slower than B1 edges and it
can be ensured that whenever a B1 edge is present, the 82
edge is completely to its right.

A final note about ORGen is that its output is really
edge segments rather than complete edges. These segments
are readily combined by creating two sorted lists; one
sorted on x; and the other on x, using a systolic sorter.
Next, these two lists are merged combining edges that abut.

Example

The working of ORGen is illustrated by means of an
example. The polygons considered in the example are
shown in Figure 21. Inside the PEs, edges are represented
by their coordinates, but for sake of clarity their names will
be used (as shown in Figure 22). During the processing,
some of the edges get split into segments. The names of the
segments and their coordinates appear in Figure 22. The
output edges are stored in the registers as edges with PR
field set to 00. The y, field in such cases will be shown
along with the edge field.

Figure 23 shows the registers in the PEs as they will be
depicted in the illustration. In Figure 23, the contents of
the registers during the respective processing cycles are
shown. The contents represent the status after the B1 and
B2 register transfers have taken place. The processing that
takes place in each of the cycles is now described.

® O |Initialization. In all the PEs the PR field is set to 00
and ud to 0 (not shown in Figure 23).
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Figure 19. Nine possibilities for B2 relative to A
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Figure 20. Nine cases; primed quantities are after processing and unprimed quantities are before processing

1

2

(o]

Edge @ is input. This will settle in the A register of
PE 0.

Edge b overlaps partially over g, in PE 0. The edges
a and b are split giving rise to three segments A, f,
and k; k goes to B2, f goes to B1 and / goes to A. B2
and C are exchanged and B1, B2 are transferred to
PE 1.

In PE O, ¢ is to the right of 4. In PE, f settles.

In PE O, ¢ and / have some overlap, thus splitting
takes place. Segment 4 is ready to be output. Its PE
field is set to 00 and a segment / is formed in B2. In
PE 1, k liesentirely to the right of 7. The result (#, 3)
is taken out of the PE 0. In the next cycle A[0] .PR
issetto 11 and A[0] .ud to 1.

In PE 0, A.PR is 11 with ud 1. Thus e does not
settle in PE 0. In PE 1, ¢ covers f completely. ¢ is
split and the level of fis reduced by 1. Segment m is
created.

[n PE 1, / covers f partially. After the splitting,
segment g with PR 00 results. This is to be output.
Another segment # is created which goes to B1. In
PE 2, k settles. After OR_process_in_each_PE,
A[1] and A[0] are exchanged. A[0] contains the
output which is taken out.

In PE 2, n is in B1 register, thus B1 and A are
exchanged; so are B2 and C.

Segment £ settles in PE 3.

In PE 2 and 3, B2 segments overlap A segments
exactly. Thus results are generated. A register
exchanges take place between PEs 1 and 2.
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® 10 Results are pulled to the left through A registers in
this and the remaining cycles (11, 12 and 13).
Results come out from A[0].

ANDGEN: THE AND GENERATOR

The operation of the ANDGen is very similar to that of the
ORGen. The basic cycle of the ANDGen is the same as that
of the ORGen except that OR_process_in_each_PE is
replaced by AND_process_in_each_PE. The processing in
each PE differs only in the specification of the managelevel
procedure and handling of cases 7 and 9 (Figure 20(g) and
(i)). First, cases 7 and 9 are modified, so that edge splitting

(3,6) (6, 6)

(1,3) (3.3)
(2,2) (6,2)

(1,1) (4,1)

(2,0 (6, 0)

Figure 21. Polygons considered in the example of the
working of ORGen
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edge X| Xr Y ud
a 2 6 O 0
b 1 4 1 0
& 2 6 2 1
d 1 3 3 1
e 3 4. 4 1
Segments

f 2 4 0 1
g 2 3 0 1
h 1 2 1 0
k 4 6 0 0
[ 23 31
m 4 6 2 1
n 23 4 0 0

Figure 22. Edge names of polygons

takes place as in Figure 24. This essentially delays some of
the splitting that took place as in Figure 20(g) and (i). Note
that these two cases no longer result in a‘call to managelevel.
All uses of OR_managelevel are changed to AND_manage-
level. Note that AND_managelevel is invoked only in cases
4,5, 6, and 8 of Figure 20.

AND_managelevel has two parameters X and Y. X is the
same register as before and Y register is the name of a
register that will be empty following the processing (in
case 4, Y = B2;in case 5, Y = B1 or B2;incase 6, Y = B1;
and in case 8, Y = B2). This empty register Y is used to
store the bounding edge of a result polygon. Procedure
AND_ managelevel is given in Figure 25.

Another alternative for the ANDGen is to handle cases 7
and 9 as in Figure 20 when B2.ud = 0 and as in Figure 24
when B2.ud = 1.

PARTITIONING

The total number of edges to be handled will often exceed
the capacity of the ORGen and ANDGen. Hence there is a
need to be able to decompose a large problem into smaller
ones. This decomposition is quite straightforward for the
AND and OR operations. Each layer may be partitioned as
in Figure 26 and the AND/OR of each partition computed
separately.

CONCLUSIONS

It has been demonstrated how the OR and AND of several
polygons may be computed efficiently using a systolic array.
This array has a reasonably simple architecture. Further-
more, since the oversize and undersize operations can be
carried out by some simple processing (change of y coordi-
nates) followed by OR or AND, these two operations can
also be computed efficiently using systolic arrays.
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Figure 23. (right) Registers in the PE showing contents
during the processing cycles
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(1)

2)

B2

B1

PR edge level
{a

0] k|1 "
0] c |1 1
(3)
" 10|72
o1 |1 1
0 1
10[ ¢ |1 "
10]d|-1 10| k|1
(4)
"
o1 A |1 o1 |2
0 1
0] 1|1 10| |1
10| e -1 10| c |1
(5)
.30 11 o1| 7 |2
0 1
10]|e |1 10| m|-1 1
" 10[1 -1 0] 4|1
(6)
1 " 1
11 o1| £ |1 11
0 1 2
1 1 1
1 10|e |1 10| m| =1
(7)
1 1 10|n|1
(g, 3)
11 1 0| k|1
0 1 2
1 10| e | -1 10| m|-1 1
1 1 " 11
(8)
11 1 1 0] 4|1
1 Ll 01| n |1 1
0 1 2 3
" 11 1 1
1 11 10 e |1 10| m|-1
(9)
1 11 1 1
1 11 01] |1 o1] « |1
0 1 2 3
1 1 1 "
1 " 1 1
(10
1 " 1 11
1 00|n, 4| 0 1 111k,2| 0
0 1 2 3
11 1 i 1
1 1 11 1
(11
s 1 1 11 11
(n,4)| 11 1 00 [, 2| 0 11
0 1 2 3
1 1 11 1 1
11 11 1 1 "
(12) (13)
11 1 11 yail 11
00 |, 2| O " he2h [ "
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. B2 B2

| B2 l B2'
Al B1' A" B1'
A ! A

Case 7 Case 9

a b

Figure 24. Modification of cases 7 and 9 so that edge
splitting takes place

procedure AND_managelevel(X,Y) begin {k is the number of layers}
if B2.ud=0
then
[X.level < X.level + 1
X.y < B2.y]
else
[X.level < x.level -1
if X.level=k -1
then
[Y < X;Y.PR<+U0 Y.y, «B2y]
if X.level =0
then
[X.PR < 11; X.ud < 1]
]

endif end AND_managelevel

Figure 25. Procedure AND_managelevel

Figure 26. Partitioning into 16 partitions
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APPENDIX 1: DETAILS OF PROCESSING
IN EACH PE DURING EACH CYCLE

procedure OR__Process_in_each_PE begin
case A.PR of

00: {output e:ige in A; do nothing}
10: {unsettled edge in A; not possible}
11:{A register is empty }
case B1.PR of
00:A < — B1 {move output edge to A register}
01: {not possible }
10:if A.ud = 0 {no edges to the right}
then
[A<-B1; A.PR <01]
endif
11:case B2.PR of
00:A < — B2 {move output edge to A register}
01: {not possible }
10:if Aud=0
then
[A<-B2; A.PR «01]
11:{do nothing}
end case {B2.PR}

end case {B1.PR}

01: {register A contains a settled edge}

case B1.PR of

00: -, =-»B1; B1.PR < 10 {move output edge to A}
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- 10:if Bl.x, <= Axy

then [A <—>B1; A.PR < 01;B1.PR «+ 10]
01: {not possible }
11:{B1 is empty but B2 may have an edge}

case B2.PR of

00: {transfer output edge to A; and A to B1}
B1 < A;B1.PR«10 *
A < B2; APR«<01;B2. PR« 11

01: {not possible }
11:{do nothing}

10: {A contains a settled edge and the edge in
B has yet to settle }

case

:Ax;>=B2.x,: {B2 hasto
settle here }

B1<A;B1.PR <10

A <B2; APR < 01; B2.PR « 11

:A.x; <B2.x;:{B2 is to the right
of A; do nothing}

:else : {B2 and A overlap; there are
nine cases (see Figure 19) }

:case 1: {Figure 20(a). B2.ud = 0 as otherwise
the edge would have been split by now}
B1 <« A; B1.PR < 10;
Bl.x, < B2.x,;
Bl.level < Bl.level + 1;
A< —>B2; Ax, < B2.x/; APR <01
B2.PR« 10

:case 2: {Figure 20(b).B2.ud = 0 as otherwise the
edge would have been split by now}
B1 < A; B1.PR « 10;
B1.level < B1.level + 1
A< B2; Ax, < Bl.xj; A.PR <01
B2.PR <11

:case 3: {Figure 20(c)* B2.ud = 0 as otherwise the
edge B2 would have been split by now}
B1 < A; B1.PR <01
Bl.level < B1.level + 1
A < B2; APR«01; Ax, < Bl.x,
B2.x; < Bl.x,

:case 4: {Figure 20(d) }
B1 < A; Bl.x; < B2.x,
B1.PR < 10;
Ax,<B2x,
B2.PR < 11;
OR_managelevel(A);

:case 5: {Figure 20(e)}
B2.PR < 11;
OR_managelevel (A);

:case 6: {Figure 20(f) }
B2.x; < Ax,;
OR_managelevel(A);

:case 7: {Figure 20(g) }
B1 < B2;Bl.y < A.y;
OR_managelevel(B1);
B2 « A; B2.x; < B1.x,; B2.PR < 10
Ax, < Bl.xy;

:case 8: {Figure 20(h) }
B1 < B2;B1 <+ A.y;
OR_managelevel(B1);
Ax, <Blxy;
B2.PR < 11

:case 9: {Figure 20(i) }
B1 < B2;Bl.y « Aly; Bl.x, < Ax,
OR_managelevel(B1);
Ax,<—>B2x
end else
end case
end {B2.PR =10}
end {B1.PR=11}
end case {B1.PR}

end {A.PR=01}
end case {A.PR}

end OR_Process_in_each__PE
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