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The Complexity of Single Row Routing

RAGHUNATH RAGHAVAN AND SARTAJ K. SAHNI, MEMBER, IEEE

Abstract —This paper investigates a systematic suboptimal approach to
multilayer rectilinear wire routing: the single row approach. The method
involves decomposing the general rectilinear wiring problem into a number
of conceptually simpler single row problems. The complexity of the decom-
position process is first considered. Under interesting optimization criteria,
each step in the decomposition process is shown to be NP-hard. Then the
single row wiring problem itself is considered under a variety of optimiza-
tion criteria. In some cases, either efficient or “usually good” algorithms
are possible. In other cases, the problem turns out to be NP-hard.

I. INTRODUCTION

HE fundamental wire routing problem occurs at all

levels of the physical packaging hierarchy (e.g., within
the IC chip, in the multichip package, on the PC card, in
the backpanel and sidepanel, etc.). In this basic form, the
problem may be stated as follows. We are given a set
W= {(u;,0,)(x;, y)I<i<n} of n wires. (u,,v,) and
(x;, y;) are the respective coordinates of the end points of
wire i, 1 <i < n. When more than one layer is available, the
wire end-points are assumed to exist on all the layers.! The
problem is to define the precise conductor paths for each
of these wires, using as few layers as possible and subject
to the following constraints:

(1) Each conductor path must be made up of horizontal
and vertical segments only (the rectilinear constraint).

(2) The various conductor paths are not allowed to cross
on any given layer.

This problem is NP-hard (for a proof, see [11]). So, it is
not surprising that most approaches to the problem have
been heuristic in nature (see, e.g., [5], [9], [6], [4] etc.) These
approaches have the common characteristic that there is no
guarantee of their finding optimal solutions efficiently.
Furthermore, being very ad hoc in thier various ap-
proaches, they give no feel for the inherent difficulty (i.e.,
the routability”) of the given instance. This makes it very
hard to evaluate the suitability of any such heuristic ap-
proach for a given mix of routing problems.

This paper presents the results of a thorough investiga-
tion of a promising approach to the general wiring prob-
lem. This approach is called the single row approach [14]. It

! This assumption reflects certain limitations in early package fabrica-
tion technologies. It is a little simplistic in the modern context. However,
we shall retain this assumption because: (i) it really impacts only the
pre-routing phase of the single row approach; (ii) it represents a sim-
plifying assumption; and (iii) we wish to add to a pool of complexity
results that have been obtained using this assumption.
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Fig. 1.

s a very systematic (but suboptimal) approach to wiring; it
even allows a-priori estimation of the fraction of wires
inherently routable. It works best for very large instances
of the wiring problem (i.e., containing more than 1000
wires), which usually have reasonably “regular” geome-
tries; i.e., there is a reasonable nontrivial rectangular grid,
such that each wire end-point coincides with some grid
point. (Of course, it is not necessary that every grid point
be so occupied.) We will refer to this imaginary grid as the
point grid.

Often, there are restrictions as to where vias may exist.
In that case, the point grid must be refined so that each
legal via location also coincides with some grid point. In
any case, the extent of the point grid is limited by the
(fixed) area of the wiring surface.

The essence of the single row approach lies in three
strategic constraints introduced by it:

A) Wires can only connect points (either pins or
vias) that are either in the same row or in the same
column. This amounts to decomposing the general
wiring problem into a number of “single row” wiring
problems, one for every row and every column of the
point grid.

B) The layout of a wire connecting points in the

same row (column) must be confined to the two

wiring channels on either side of that row (column).

Fig. 1 shows such a layout. So, if the wiring channels

have sufficient capacities, the layout of each row

(column) is independent of the layout of any other

row (column).

C) On any given layer, only rows (columns) can be

laid out. So, the layout of any row is independent of

the layout of any column, since they will be on

different layers. In conjunction with constraint B),

this makes each “single row” wiring problem truly

independent of any other. Another implication of this
constraint is that at least two layers must be available
for wiring. (Even when one-layer realizations are
possible, the single row approach will use two or
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more layers, except in a few rare cases.) If the wiring

channels have sufficient capacities, a two-layer reali-

zation is always possible, with one layer for all the

rows and the other for all the columns [8§].

The single row approach allows a systematic analysis of
the degree of difficulty of a given wiring problem. Unlike
earlier approaches, it allows a prior estimation of the
“routability” of any given instance on a fixed number of
layers, in the following way:

(i) Without actually doing any wiring, it is possible to
obtain sufficient conditions, which, if satisfied by the
capacities of the available wiring channels, guarantee 100
percent wiring.

(ii) When 100-percent wiring is not so guaranteed, it is
possible, again without doing any wiring, to get a lower
bound on the fraction of the wires that can actually be laid
out. This lower bound compares very well with actual
wiring results obtained using current wiring techniques. In
a sense, it represents the inherent difficult of the given
instance.

In addition to having this analytic ability, the single row
approach reduces the general problem to conceptually sim-
pler terms. All possible input configurations are mapped
into the same basic “single row” configuration. This allows
us to concentrate on solving the single row wiring problem

“well.” Arguably, this is the most attractive feature of this ,

approach.

This paper surveys the results of an investigation of the
single row approach. Section II considers the process by
which the general wiring problem is decomposed into
single row wiring problems. Following [15], this is a three-
step process. Each step is explained in detail and its
complexity analyzed. Then, Section III considers the com-
plexity of single row wiring problems, under a variety of
optimization measures. The motivation for considering each
optimization measure is explained, and the complexity of
the associated single row wiring problem analyzed. Where
possible, efficient algorithms are presented.

II. THE COMPLEXITY OF THE DECOMPOSITION
PROCESS

In decomposing a multilayer rectilinear wiring problem
(with a regular geometry) into a number of independent
single row wiring problems, there are three sequential steps
[15]:

(1) via assignment,

(2) permutation of via columns,

(3) layering (this step is meaningful only when the num-

ber of available layers exceeds two).
As stated earlier, it is assumed that the wire end-points
extend through all the layers. Further, the decomposition
process to be described in this section assumes that any
interlayer connection will require a hole that extends
through all the wiring layers.

In this section, we investigate each of the above three
decomposition steps. For each step, we present relevant
constraints and optimization criteria. Then, we investigate
the computational complexity of carrying out that step
optimally.

2.1. Via Assignment

A point specifies the location of either a component
pin/pad, a via or a site of a connection to the outside
world (i.e., an 1 /0 pin/pad). A net is a set of points to be
made electrically common. Thus, a wire is a special case of
a net. With the strategic constraint that wires (i.e., point-
to-point connections) can exist only between points that
are either in the same row or the same column. it may not
be immediately possible to appropriately decompose each
net into wires. A net is considered to be decomposable if,
for any pair of points s and t belonging to the net, there
exists a sequence s, py, Py, P3,° * *»Py. t Of points such that
(1) the points p;, 1 <i <k, belong to the net also; (i) the
points s and p, are either in the same row or the same
column, and this is true for p, and t also; and (iii) for any
1, 1<i<k—1, p, and p,,, are either in the same row or
the same column. If a net is not initially decomposable, it
can be made so by augmenting it with free (i.e., previously
unassigned) vias in such a way that the augmented net
satisfies the condition for decomposability mentioned
above.

(Each grid location of the point grid that is not occupied
by a component pin or an [/O pin/pad is a legal via
location. Initially, all the legal via locations are called free
vias. When a free via is assigned to a net, it becomes an
assigned via, and is no longer free. It is important to realize
that only assigned vias are actually fabricated.)

The object of the via assignment phase is to add free vias
to nets as necessary to decompose all the nets. Optimiza-
tion measures concern via usage. Two common ones are:

(1) Minimize the total number of vias used. There are a
couple of reasons for this:

(a) For mechanical and thermal reasons, vias in printed
circuit boards are unreliable, and should be eliminated
wherever possible. Further, they increase the fabrication
costs.

(b) In the context of IC fabrication, vias are known as
contact cuts. Contact cuts are used to establish electrical
connections between two layers. Contact cuts are function-
ally the same as vias. For a contact cut to be made
successfully, the photomasks used in fabricating the two
layers should be in exact alignment at the contact cut
location. The greater the number of contact cuts, the
harder it is to guarantee exact mask alignment at each
contact cut location.

(2) Minimize the number of columns of vias used. When
vias are allowed to appear only column-wise, minimizing
the number of via columns needed to make all the nets
decomposable minimizes the area needed for the final
realization. It also minimizes the number of single row
wiring problems generated.

The problem of minimizing the number of via columns
has received quite a bit of attention already. Tsukiyama er
al. [17] consider a restricted version of the problem where
no net has more than one point in any given column. Ting
et al. [16] consider another restricted version, where each
net is forced to use only vias from the same via column.
Both [17] and [16] have shown that, with their respective
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restrictions, deciding whether k via columns are sufficient
to make each net in a net set decomposable is NP-com-
plete.

We have obtained some important new results for the via
assignment problem.

The assumptions used in [16] are somewhat less restric-
tive than the ones in [17]. With the basic restriction in [16]
(i.e., that all vias assigned to a net must be from the same
via column), we have obtained in Section 2.1.1 a strong
result than has [16]. We show that the problem of deciding
whether & via columns are sufficient to decompose all the
nets is NP-complete even for fixed k (k =2). The impor-
tance of this result lies in the following. Often, NP-com-
plete problems reduce to polynomial complexity when
some of the parameters are fixed (i.e., given constant
values). Our findings imply that fixing k will not make the
via column minimization problem any easier.

Next, we consider the via column minimization problem
again, this time without any restrictions whatsoever on via
selection. Thus, nets are free to choose their vias from
anywhere. We show in Section 2.1.2 that the problem of via
column minimization is still NP-complete.

Finally, in Section 2.1.3, we consider the other via as-
signment optimization problem, that of minimizing via
usage. We show that this problem is NP-complete also.

2.1.1. Via Column Minimization: Restricted Version:

The decision problem corresponding to the via column
minimization problem is the following:

VIACOL (Via column minimization)

Input: A set N={Ny, N,,---,N,} of m nets, and a

positive integer k < m.

Output: “Yes” if the m nets can all be made de-

composable using at most k via columns; “no”

otherwise.

We assume that each net is forced to get all its vias from
the same via column. We shall refer to this problem as
restricted VIACOL. It has been shown that restricted
VIACOL is NP-complete for general k [16]. We shall prove
that restricted VIACOL is NP-complete even for (fixed)
k = 2. We shall refer to this problem as restricted VIACOL
(k=2).

First, we need to introduce some notation and terminol-
ogy for the problem VIACOL. A g-node is a maximal
decomposable subset of a net. Each net can be (conceptu-
ally) partitioned into one or more g-nodes. Thus a given
net N, = {(1,1),(1,4),(2, 3),(4,3)} can be partitioned into
two g-nodes G, = {(1,1),(1,4)} and G, ={(2,3),(4,3)}). See
Fig. 2.

If a net contains more than one g-node, it cannot be
immediately decomposable. For restricted VIACOL (k=
2), we need to assign exactly one via to each g-node in a
net to make that net decomposable. Not all vias are
assignable to a given g-node. A row is reachable from a
g-node only if there is a point belonging to that g-node in
that row. A via is assignable to a g-node only if it is in a
reachable row. Fig. 2(b) shows a symbolic representation
for the net of Fig. 2(a). The net is represented in terms of
its g-nodes. For each g-node, the rows reachable from it are
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indicated by the arrows emanating from it. The broken
closed path indicates that G, and G, together constitute a
net (N,).

To establish the NP-completeness of restricted VIACOL
(k=2), we shall use a new variation of the known NP-
complete problem Monotone 3-Sat. So, before launching
into Theorem 1, we shall present this variation, which we
shall term the restricted version, of Monotone 3-Sat and
show that, in spite of this variation, it remains NP-com-
plete.

In an arbitrary instance of the usual form of Monotone
3-Sat, we are given U= {x,, x,," - -,x, }: a set of n Boolean
variables, and a collection C = {C,,C,,- - -,C,, } of clauses
over U. Each clause is the disjunct of exactly 3 literals. The
literals in any given clause are either all negated or all
unnegated. The question is whether there is a truth assign-
ment for U that satisfies all the m clauses.

In the restricted version (actually, a variation) of Mono-
tone 3-Sat, for each Boolean variable x, €U, we shall
require (additionally) that the number of occurrences (over
all the clauses) of the literal x, equal the number of
occurrences of the literal — x,. Furthermore, we shall relax
the restriction that there be exactly 3 literals per clause,
requiring instead that each clause be the disjunct of ar most
3 literals. This variation of Monotone 3-Sat is also NP-
complete. To see this, suppose that x, occurs r times more
often than does —x,. We can equalize the number of
occurrences by adding new clauses (—x, V — a; Vv —b),
I<j<r, and (a; Vb)), 1< j<r. The variables aj, b,
1< j<r, are newly defined Boolean variables. Note that
now, x; occurs as often as — x;, a; as often as — a! and b;
as often as —b;, 1< j<r. The trueth assignment [a; <
true, b; < false, 1< j<r] satisfies (i.e., makes true) all
these newly added clauses, without impacting the original
problem in any way. Hence, the restricted version of
Monotone 3-Sat is also NP-complete

Theorem 1. Restricted VIACOL (k = 2) is NP-complete.

Proof: Since the problem is in the class NP, all we
need to show is that the restricted version of Monotone
3-Sat a restricted VIACOL (k = 2).

Let literals x; and — x; occur f, times each, 1<i<n.
Without loss of generality, we assume that the first r
clauses C;, 1</ < r, contain only unnegated variables, and
the remaining m — r clauses C,, r + 1< j < m, contain only
negatived variables. We shall refer to the first  clauses as
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“unnegated” clauses, and to the last m —r clauses as
“negated” clauses.

A corresponding instance of restricted VIACOL (k = 2)
is constructed as follows. There are two via columns, each
with

£ 00

i=,

vias. We shall now construct # +2 nets as follows.

The nets N, 1<i<n, correspond respectively to the
Boolean variables x;, 1<i<n. The net N, contains f
g-nodes. Each of these g-nodes can reach just one row; the
pth g-node in N, can reach row

L=l
(Zﬁ+p

J=1

JA<p<fil<isn.

Se Fig. 3.

Now, to decompose N,, we need to use f; vias. All these f;
vias have to be from the same column, because of the
nature of our restriction. Picking them from one or the
other column will be seen to correspond to setting the
associated variable x; to true or false.

The net N,,, corresponds to the set of “unnegated”
clauses C;, 1 <i<r. It contains r +1 g-nodes 4, 1<i<r
+1. The only row reachable from 4, , is row 0. The
remaining g-nodes 4,, 1 <i <r, correspond respectively to
the r “unnegated” clauses C,, 1 <i < r. The rows reachable
from each A4,, 1 <i < r, are determined as follows. Suppose
that C,, the clause corresponding to 4;, is (x, V x, V x.).
Then, three rows are reachable from A4,. (In general, if C,
contains s literals, s rows are reachable from A ,). Let
z € {a, b, c}. Then, 4; can reach one of the rows reachable
from a g-node in N,. Accordingly, an arrow is drawn form
A, to the appropriate row. Also, we shall stipulate that no
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row should be reachable from two distinct g-nodes 4, and
A,. (Clearly, there are enough rows, and each net N,
1< i< n, has enough g-nodes, so that this stipulation does
not cause any difficulties). Figure 3 illustrates the case
where C;=(x;V x,V x;) and C,=(x,V x5V x,). Note
that, after the net N, ,, has been constructed as specified
above, each row other than row 0 is reachable from exactly
two g-nodes, one of which belongs to one of the nets N,
1< i< n, and the other to the net N, ;.

The net N, |, corresponds to the set of “negated” clauses
G, r+1<j<m. It contains m —r +1 g-nodes B;, 1 <i <
m — r +1. The only row reachable from B,,_, , is row 0.
The remaining m — r g-nodes correspond, respectively, to
the m — r “negated” clauses. The rows reachable from each
B;,1<i<m—r,are determined exactly as described earlier
for the g-nodes, 4 s 1< j < r; the fact that the variables are
negated now, rather than unnegated, makes no difference
in determining the reachable rows. Fig. 3 depicts the case
where C. ., =(—x;V —x,), .., =(—x,V —x,)and C,
=(—x,V —Xx;V —x,). After the net N, , has been con-
structed, each row ¢, 1< qg< (X/_,f;), is reachable from
exactly three g-nodes. One of these belongs to one of N,,
1<i<n, the second to N, ; and the third to N, ,

Row 0 is reachable from 4, , and B,,_, ;. These two
g-nodes have to be assigned vias from row 0, as there is no
other choice. So, these two vias have to be from different

"columns. It is clear that this forces N, ; to get its r +1 vias

from a different via column from the one from which N, . ,
gets its m — r +1 vias.

Now, suppose that all the n +2 nets are decomposable
using just these two via columns. A satisfying truth assign-
ment for U= {x;, x,,*+,x,} can be obtained from the
optimal via assignment as follows. Without loss of general-
ity, assume that the r +1 vias for N, are from the right
column. So the m —r +1 vias for N, ,, are from the left
column. Set x; to true (false) if N, gets its f vias from the
left (right) column, 1<i<n.

This truth assignment will satisfy all the m clauses. To
see this, suppose an “unnegated” clause C, = (x,V x, V
x,) is not satisfied. Then it must be that x, =x,=x.=
false. So each of the nets N,, N,, and N, use vias from the
right column. However, one of these very vias has to have
been assigned to 4, if all the r +1 vias for N, are from
the right column. Since two nets cannot use the same via,
this is a contradiction. So every “unnegated” clause must
be satisfied. A similar argument can be used to show that
every “negated” clause must also be satisfied.

Next, suppose that there is a satisfying truth assignment
for U. A decomposition of N, N,,---, N, , using just two
via columns is obtained as follows. For 1<i<n, if x;=
true(false), use the vias in the left (right) column to decom-
pose N,. N, ., can be decomposed using vias in the right
column only, as follows. 4, ; is assigned the right-column
via in row 0. For each “unnegated” clause C,, 1< /<,
there has to be a variable x, € C; such that x, is true. From
the way A; was defined, it can reach a row p such that row
p is reachable from N, too. Since x, = true, N, uses only vias
from the left column. So, 4, can be assigned the right-col-
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umn via in row p. In this manner, every g-node 4,
1<i<r+1, can be assigned a via from the right via
column. So, N,,, is decomposable, and it uses vias from
the right column only.

Using a similar argument, we can show that every g-node
B, 1<i<m—r+1, can be assigned a via from the left via
column. So, N, , , is also decomposable.

Thus the constructed restricted VIACOL (k =2) in-
stance has answer “yes” if and only if there is a satisfying
truth assignment for the restricted Monotone 3-Sat in-
stance. Hence, this restricted version of Monotone 3-Sat «
restricted VIACOL (k = 2). |

2.1.2. Via Column Minimization: General Version:

We now remove the restriction that all the vias assigned
to a net must be from the same via column. The problem
VIACOL (k =2) is the decision problem concerning the
feasibility of decomposing a net using just 2 via columns.
There are now no restrictions on how the vias assigned to
each net may be chosen. So this is a less constrained
problem than the one considered in [16].

Theorem 2. VIACOL (k = 2) is NP-complete.

Proof: Clearly, the problem is in the class NP. To
establish that it is NP-hard, we shall extend the proof of
Theorem 1.

First of all, note that if a net uses vias from both via
columns, one or more “extra” (i.e., otherwise unused) vias
is needed to establish a connection between the two via
columns. We shall make use of the fact that if such “extra”
vias are not available, every net will be forced to choose all
its vias from the same via column.

Now, consider the constructed restricted VIACOL in-
stance in the proof of Theorem 1. There are

2( Y+ 1)
i
vias arranged in two via columns. We shall refer to these
vias as “old” vias, as we shall be adding some more “new”
vias. To decompose the nets N;, 1<i<n+2, we need at
least

(Z}’j.)+(r+1)+(m—r+1)=ij+m+2
J J .
“old” vias. This leaves at most

2(ij+1>—(213-+m+2)=213—m
J J J
“old” vias unused. There are two possible situations where
this many “old” vias are in fact unused after decomposing
the nets N, 1<i<n+2;

(i) Each net is assigned all its vias from the same via
column; or

(it) For each net that is assigned vias from different
columns, there is one extra row of “new” vias (to be
discussed next) available to establish a connection between
the two via columns.

We now add ¥, f, — m new nets N*, 1< j < (X, f; — m),
to sweep up some of the old vias. With each new nst N,

we add a row of “new” vias. N* contains two g-nodes a;
J g J
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and B,. The only row reachable from «, is the correspond-
ing newly added via row. From B;, all the “old” via rows
are reachable. Figure 4 illustrates this construction for
Lifi—m=2.

Clearly, the nets N*, 1< j< (X,f; — m), can be decom-
posed if and only if at least X, f, —m “old” vias are not
needed for decomposing the nets N, 1 <i<n+2. In con-
junction with the fact that at most ¥, f; — m “old” vias can
be left unused upon decomposing the nets N, 1 <i<n+2,
this means that there can be no unused “old” vias. Also, it
should be clear that there is no “extra” row among the
newly added vias, as one via from each “new” via row is
assigned to some net N *. In light of our earlier discussion,
this means that each net N, 1<i<n+2, is forced to
choose all its vias from the same via column.

The proof is now very simply completed. If the restricted
Monotone 3-Sat instance has a satisfying truth assignment,
the nets N;, 1 <i < n +2, can be decomposed using just two
via columns as described in the proof of Theorem 1. As the
nets N, 1<i<n+2, need just X, f;, + m +2 “old” vias, the
nets N*, 1< j< (X, f;, —m), can also be decomposed with
two via columns, since X, f, — m “old” vias are still avail-
able after decomposing all the N,’s.

On the other hand, if the nets N,1<j<n+2, and N,
1< j<X,;f;— m), can be decomposed using just the two
via columns, it must be the case that each of the nets N,
1<i<n+2, has all its vias from the same via column. So,
following the proof of Theorem 1, there is a satisfying truth
assignment for U.

Thus, the restricted version of Monotone 3-Sat a unre-
stricted VIACOL (k = 2). Therefore, this latter problem is
NP-hard, and also NP-complete. [ ]

2.1.3. Via Minimization:

As before, we are given a set of nets and a set of legal via
locations, located within the wiring surface whose extent
has been predetermined. Once again, we wish to obtain a
suitable decomposition into wires for each net. In order to
do so, we will augment some or all nets with free vias.

Typically, the number of legal via locations will far
exceed the actual number of vias required to decompose all
the nets. Since only the vias that are actually assigned get
fabricated, it is desirable to minimize the number of vias
assigned. Minimizing the number of vias that have to be
fabricated serves to reduce the manufacturing time and
cost, at the same time increasing reliability.

The associated decision problem is the following:

MINVIA (Minimize the total number of vias used)

Input: A set N={N/|I<i<m} of m ncts, a set of
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legal via locations (this may actually be an implicit

specification) and and a positive integer k’.

Output: “Yes” if the given set of nets can be decom-

posed using at most &” vias; “no” otherwise.

It is easy to see that MINVIA is in the class NP. To
establish that it is NP-hard, we can use the proof of
Theorem 2 in the following way. We construct a set of nets,
exactly as we did in the proof of Theorem 2. Then, we
construct the legal locations for the vias as appearing in
two columns. The resultant instance of MINVIA is then
identical to the problem instance constructed in proving
Theorem 2.

We see that with &' set to

Zfi+m+2+2(2fi—m)=32fi—m+2

the value of £’ is small enough that each net is forced to
choose all its vias from the same via column.
Theorem 3. MINVIA is NP-complete.
Proof: Follows from the above discussion.

2.2. Permutation of Via Columns

This phase of the decomposition process is meaningful
only when the vias appear column-wise. The locations of
the pins are probably unalterable, since they have been
determined by the fixed placement procedure. This, how-
ever, is not so for the via columns. At the end of the via
assignment phase, the number of via columns needed has
been minimized. However, the locations of the via columns
have not been fixed. In particular, we can interchange the
locations of two via columns while preserving all the inter-
connections; such an interchange will not violate the valid-
ity of the decomposition of any net. An interchange could
actually improve the final layout.

The thickness of a decomposition is defined as
max {number of wires that cross the interval between an
adjacent pair of columns of points}. The thickness is a
useful norm is evaluating a decomposition. Minimizing the
thickness results in obvious improvements.

The problem of finding a permutation of the via col-
umns that minimizes the thickness is NP-hard. The prob-
lem is identical to the NP-hard problem One-Dimensional
Placement [3]. Each via column corresponds to a compo-
nent b, of One-Dimensional Placement. The rest of the
correspondence between the two problems follows easily.

2.3. Layering

When the number of layers available for wiring exceeds
two, layering, the third phase in the decomposition process,
is used to effect an even distribution of the conductors
among the various layers. Usually, half the available layers
are used for realizing the row problems, and half for the
column problems.

The layering problem to be considered is the following.
We are given a set V= {1,2,---,n} of n collinear points, a
set L= {N;, N,,---,N,, } of m nets over ¥, and integers c,,
and c;. ¢, is the capacity of one of the adjacent wiring
channels and ¢, the capacity of the other. We wish to
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decompose L into r disjoint subsets L;, L,,---,L, such
that:

(1) All the nets in each L, 1 <i < r, can be laid out on a
single layer, subject to all the usual constraints, without
causing an overflow in either of the two adjacent wiring
channels.

(2) r is a2 minimum over all choices of the L.

This single row layering problem is NP-hard. For a
proof, see [13].

Reference [20] considers a restricted version of the single
row layering problem, in which ¢, =c¢, =2; a heuristic
algorithm for this restricted version is proposed therein.

II1.

In the single row wiring problem, we are given n points
(they may be pins and/or vias) V= {1,2,---,n} evenly
spaced along a line, and a set of nets L = { N}, N,,---,N, }
over V. Without loss of generality, we may assume that the
line of points is oriented horizontally. The nets satisfy the
following conditions:

D NON=9,i+]

@) UN,={1,2,---,n}.

Laying out a single row wiring problem consists of
defining conductor paths in order to realize all the nets,
subject to the following constraints:

/(1) Each conductor path is made up of horizontal and

THE COMPLEXITY OF SINGLE Row WIRING

" vertical segments only.

(i1) Conductor paths do not cross.

(iii) The layout of each net should be free of “backward
moves”. In other words, it should not be possible to draw a
vertical line anywhere, that intersects more than one con-
ductor segment of any given net. ‘

A layout that satisfies the above constraints is called a
realization.

We now introduce some terminology. The wiring chan-
nel above the line of points is called the upper street, and
the one below, the lower street. For any given realization,
the number of wiring tracks needed in the upper street is
called the upper street congestion of the realization, and is
denoted by c,. Similarly, we can define a lower street
congestion c; . The quantity max { ¢, ¢, } is called the width
of the realization. When the layout of a conductor path
contains a vertical segment from the upper street to the
lower street (or vice versa), the path is said to make an
interstreet crossing. The between-nodes congestion ¢, of a
realization is max {number of interstreet crossings between
an adjacent pair of points}. In laying out a wire the
number of right-angled bends in the layout of that wire is
related to the number of interstreet crossing made by it, as
follows: the number of bends=2 (number of interstreet
crossings)+2. In general, p — 1 wires are required to realize
a net with p points. Let p; be the number of points in net
N, 1<i< m. Then, for the complete realization, the total
number of bends =2 (number of interstreet crossings)+
22,(p;—1). (A T connection counts as two-right-angled
bends.)

In what follows, we consider the single row wiring
problem under a variety of constraints and optimization
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measures. In each case, the motivation for considering that
particular constraint or optimization measure is explained.
This is followed by a complexity analysis of the resulting
single row wiring problem. Where possible, efficient algo-
rithms are presented.

3.1. Minimizing the Width

Minimizing the width of the layout results in the most
compact realization possible. A consideration of the discus-
sion in Section I establishes that minimizing the width of
the realization of each single row wiring problem improves
the chances of overall success. This is because adjacent
single row wiring problems on a given layer are less likely
to interfere with each other. The corresponding decision
problem is the following;:

MINWIDTH (minimize the width of the realization)

Input: A set of m nets over n points, and a positive

integer k

Output: “Yes” if there is a realization with width at

most k; “no” otherwise.

It has recently come to our attention that is problem is
NP-complete [1]. (The transformation is from the known
NP-complete problem bandwidth). Since the problem is of
great practical importance, it has continued to attract quite
a bit of attention.

The minimization version problem has been studied
extensively by Kuh et al. [8]. They have obtained necessary
and sufficient conditions that characterize optimal layouts.
However, they have not succeeded in presenting an effi-
cient algorithm for the problem.

In [12], among other things, we have developed an
O((2k)'knlog k) algorithm for MINWIDTH. (A descrip-
tion of the algorithm also appears in [12]. The algorithm is
named POSSIBLE. If the algorithm outputs “yes,” the
layout can also be obtained. This algorithm is in the nature
of a “usually good” approach to the problem of finding
the minimum width realization. In most applications, k is
small (about 3 or 4), so that the complexity is not unbear-
able.

It is worth mentioning that, for the special case k =2,
Tsukiyama et al. [19] have developed an O(mn) algorithm
for MINWIDTH. This algorithm is not generalizable for
k > 2. Furthermore, it is asymptotically inferior to (i.e.,
slower than) algorithm POSSIBLE. For any fixed k, the
latter algorithm has a complexity of just O(#n).

There is a more generalized version of the problem
MINWIDTH, in which the conductors used in realizing
the nets may have nonuniform widths. Specifically, in this
generalized MINWIDTH, we associate with each net N, a
positive integer ¢,, 1 <i < m. ¢, is the width of the various
conductor paths to be used in laying out N,, 1 <i < m. The
basic objective is to obtain a minimum width layout. (The
width is now a weighted conductor count.)

This is an NP-hard problem, and is easily shown to be
so. Consider an arbitrary instance of the known NP-com-
plete problem Partition. We are given a multiset 4=
{a,,a,---a,} of positive integers. The question is whether
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(1) (2)

Fig. 5.

(&) (5)

there exists a partition of 4 into A, and A4, such that

Z a;= Z a,.

a, € A, a; € A,

An equivalent instance of the generalized MINWIDTH
problem is as follows:

(1) V={1,2---2n}: a set of 2n vertices;

(1) nets Ny, N, - - - N, where N, = {i,2n +1—i};

(iil) net widths 1, =a,, 1 <i <n.

Clearly, there exists a layout with upper street usage =
lower street usage = (¥a,)/2 if and only if the correspond-
ing partition instance has the answer “yes.”

3.2. Minimizing the Between- Nodes Congestion

In dual in-line IC packages, the separation between the
two rows of pins is much greater than the separation
between adjacent pins in a row. In view of this, it is quite
possible that we could encounter situations in which adjac-
ent single row wiring problems are relatively far apart;
however, in a given single row wiring problem, the points
could be quite closely spaced. In such situations, it is more
important to limit the between-nodes congestion of a reali-
zation, than it is to limit the width.

The decision problem to be considered is the following:

MINCB (Minimize the between-nodes congestion).

Input: A set of m nodes over n points, and a positive

integer k. '

Output: “Yes” if there is a realization with between-

nodes congestion ¢ at most k; “no” otherwise:

We shall show that MINCB is NP-complete (see Theo-
rem 4). In doing so, we need to use the interval graphical
formulation of [8] for the single row wiring problem. So,
we now introduce this rather elegant formulation.

An interval line is a horizontal straight line with a left
end-point, a right-end point and intermediate points. Each
point in the interval line can be characterized by its x-coor-
dinate. Fig. 5 shows an interval line with 4 points. Their
x-coordinate values are indicated in parentheses.

Any subset S of the set {1,2,---n} can be represented
by an interval line. Suppose S = {1,3,4}. S can be repre-
sented by an interval line with 3 points. The left end-point
would be at x =1, the right end-point at x = 4 and the one
intermediate point at x = 3. Thus the interval line in Fig. 5
can be thought of as representing the subset {1,2,4, 5}.

Since each net N, 1 <i <m, is a subset of {1,2,---n}, it
can be represented by an interval line. With this represen-
tation for the net list, it is possible (as will be explained
soon) to associate a realization with each ordering of the m
interval lines. Such a representation for a realization is
called a conceptual realization. Fig. 6(a) shows a conceptual
realization for the net set N={N,, N,,N;, N,}, where
Ny ={2,5,7}, N, = {3,6}, N;= {4,8} and N, = (1,9)}. The
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dashed line is called the reference line, and is obtained by
connecting the ith and (i +1)th points, 1<i <n —1. (The
ith point is the point with the ith smallest x-coordinate
value. Note that this does not necessarily mean that the
point is at x = i.

The actual realization corresponding to a conceptual
realization is obtained by (conceptually) straightening out
the reference line to form the line of points, and then
topologically mapping each interval line into paths in the
upper and lower streets. Those portions of an interval line
that are above (below) the reference line are mapped into

T

(b)
Fig. 6.

paths in the upper (lower) street. Fig. 6(b) is an actual -

realization corresponding to the conceptual realization in
Fig. 6(a).

It is easy to see that a different ordering of the m
interval lines will usually result in a different actual realiza-
tion. (It is not always necessary that a different actual
realization result. For instance, suppose there is an order-
ing in which there is a pair of adjacent interval lines that
do not overlap. Exchanging the positions of the two lines
gives a new ordering, which has the same actual realization
as the original ordering.)

The reference line is made up of n—1 segments. The
segment connecting the ith and (i +1)th points will be
denoted by (i,i +1), 1<i <n. Given a conceptual realiza-
tion, the number of interval lines that cross anmy given
segment ( j, j+1) is the number of interstreet crossings
between the jth and (j+1)th points in the corresponding
actual realization. In terms of the comceptual realization,
the between-nodes congestion ¢y is max {the number of
interval lines that cross the reference line segment ( j, j +
Dl<j<n}. :

We shall now prove that MINCB is NP-complete. We
shall use the conceptual representation, and calculate cj as
described above. It is easy to see that the decision problem
MINCB is in the class NP. To establish its NP-complete-
ness, we shall show that the known NP-complete problem
Bandwidth « MINCB. Some aspects of the reduction used
are similar to one used in [18].

Theorem 4. MINCB is NP-complete.

Proof: All we need to show is that bandwidth «
MINCB.
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An arbitrary instance of bandwidth is as follows. We are
given an undirected connected graph G = (V, E), and a
positive integer K < |V|. We wish to find a linear ordering
f: V= {1,2,---|V|} of the vertices in V" such that for each

cedge {u,v} € E,|f(u)— f(v)| < K. In order to construct a

corresponding instance of MINCB, we proceed as follows.

If all the vertices in a graph are of even degree, then the
graph has an Euler walk (ie., a closed path that goes
through each edge in the graph exactly once). If, in the
Bandwidth instance, the given graph G is not Eulerian, we
can create an Eulerian multigraph G’ = (V, E’) from the
graph G by duplicating each edge in E; i.e., for each edge
{u,v} € E, there are two edges {w,v},{u,v} € E’. Now,
each vertex im G” is of even degree, and so there exists an
Euler walk through G’.

We now find an Euler walk through G (or through G’, if
G is not Eulerian). In general, the Euler walk that is found
will not be unique. However, this has no effect on the
proof.

An Euler walk can be conveniently represented by the
vertex sequence encountered in making that walk. Fig. 7(a)
shows an undirected Eulerian multigraph. The numbered
arrows indicate the order in which edges are traversed in
an Fuler walk beginning and ending at vertex 1. The
corresponding vertex sequence is A= {1, 2, 3, 4, 3, 2, 4, 3,
2,1},

From such a vertex sequence, we construct a set of
interval lines as shown in Fig. 7(b). This results in one
interval line being constructed for each vertex in the graph.
Note that the vertex sequence does not determine the
(vertical) ordering of the interval lines. (In fact, this order-
ing will be seen to correspond to the required ordering f of
the vertices). Also, note that there is a one-to-one corre-
spondence between edges in G and segments of the refer-
ence line. These |E| segments of the reference line are
called “old” segments, to differentiate them from “new”
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segments created by the additional construction discussed
next.

Each interval line is extended in both directions using
what we shall term a reflection extension. A leftward reflec-
tion extension is done as follows. A vertical reflection axis
is drawn through the leftmost point, i.e., the point with the
smallest x-coordinate value. To each interval line whose
left end-point is to the right of the reflection axis, we add a
new point that is as far to the left of the reflection axis as
the left end-point is to the right of it. This new point
becomes the new left end-point. Fig. § illustrates the reflec-
tion extension. Fig. 8(a) shows a set of interval lines, such
as might be obtained from a vertex sequence of an Euler
walk. Fig. 8(b) shows a leftward reflection extension of the
interval lines. A rightward reflection extension can be
defined in an analogous manner. Fig. 8(c) shows the set of
interval lines of Fig. 8(a) after a leftward reflection exten-
sion and a rightward reflection extension.

The effects of these two extensions are as follows. In a
given ordering R of the |V| interval lines, let M(i) denote
the position in R of the interval line to which the ith point
belongs. (We shall sometimes refer to the ith point simply
as point i). Then,

(1) For any “old” segment { p, p +1) of the reference
line, the number of interval lines that cross (p, p+1)
equals |[M(p)— M( p +1)|—1. Obviously, the number can-
not be greater than this. For the number to be less than
this, it must be that there is a point d such that:

(1) either M(p)<M(d)<M(p+1)or M(p)> M(d)
> M(p+1); and

(i1) the left (right) end-point of the interval line to
which d belongs is to the right (left) of the point p +1( p).
The nature of the leftward and rightward reflection exten-
sions makes (ii) impossible. Thus the number of interval
lines crossing ( p, p +1) equals [M(p)— M(p +1)|—1.

(2) For each “new” segment (g, ¢ +1), there is an “old”
segment (r, r +1) such that M(g)= M(r +1) and M(q +
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1) = M(r). Furthermore, the number of interval lines that
cross (g,q +1) is less than or equal to the number of
interval lines that cross (r, r +1). Consequently, it is not
necessary to consider the contributions of the “new” seg-
ments of the reference line when calculating the between-
nodes congestion ¢y for a conceptual realization.

The proof is now easily completed. Given an arbitrary
instance of Bandwidth, we construct a corresponding set of
interval lines as described above. We then set k (of the
MINCB instance) to K —1{ K € bandwidth). Clearly, this
construction takes only a polynomial amount of time.

Now, suppose that there is a conceptual realization with
cp < k. An ordering f of V is obtained as follows. For each
v EV, set f(v) to x if the corresponding interval line is the
xth one in the conceptual realization. To see why “this
yields the proper f, consider the following argument. For
each edge {u,v} € E, there exists a corresponding “old”
segment (z,z +1). Now, it must be the case that |M(z)—
M(z+1)|-1<k, since ¢y < k. Thus |[M(z)— M(z+1)| <
k +1= K. Also, we know that |M(z)— M(z +1)|=|f(u)—
f(v)|. Hence, for each {u,v} €V,|f(u)— f(v)| < K.

Next, suppose that there is a function f such that | f(u)—
f(v)|< K for each {u,v} € E. A conceptual realization
with ¢z <k can be obtained as follows. For each vertex
veV={12,---},if f(v) = j, the interval line correspond-
ing to v is the jth one in the conceptual realization. That
this yields a realization with ¢z <k can be justified as
follows. Each “old” segment (z,z—1) corresponds to
some edge {u,v} € E. Thus, the ordering procedure sug-
gested above makes |f(u)— f(v)|=|M(z)— M(z+1)]
Since |f(u)— f(v) < K, |M(z)— M(z —1) < K. Hence
|[M(z)— M(z+1)|—1< K —1= k. Since this holds true for
every “old” segment, ¢, < k.

Hence, the constructed MINCB instance has an answer
“yes” if and only if the (arbitrary) Bandwidth instance
does too. So, Bandwidth « MINCB, and MINCB is NP-
hard (and also NP-complete).

3.3 Minimizing the Total Number of Bends

Here, we are concerned with finding a realization that
minimizes the total number of bends (in all the wires). This
optimization measure is important in at least three con-
texts.

(1) In fabricating microwave and millimetric wave
integrated circuits, the conductor paths in the metallization
layer act as waveguides, rather than as simple electrical
wires. These paths are called microstrip lines. The effect of
a bend in a microstrip line is the creation of reflections,
and this reduces the transmission efficiency of the line.
This forces the drivers to send out stronger signals in order
to effect a proper transmission. So, in this context, count-
ing the total number of bends in a realization can help
form a rough estimate of the power requirements of the
chip. Minimizing the total number of bends will help
reduce the power consumption of the integrated system.

(2) As mentioned earlier, the total number of bends in a
realization is intimately related to the total number of
interstreet crossings. If external circumstances (e.g., a fixed



RAGHAVAN AND SAHNI: SINGLE ROW ROUTING

i

Fig. 9.

placement procedure) do not force the point locations to be
fixed, a realization that minimizes the total number of
interstreet crossings can be followed by a suitable reloca-
tion of the point positions along the lines of points. The
result is a “minimum length” realization, i.e., a realization
in which the separation between the two extreme points is
minimized.

The corresponding decision problem is MINBENDS:
Given a single row wiring problem, is there a realization
with at most k& bends totally? Note that it is essential to
have k > n (the number of points), since the geometry of
the single row wiring problem dictates that any realization
must have at least n bends.

Tsukiyama et al. [18] have shown that finding a realiza-
tion that minimizes the total number of interstreet cross-
ings is NP-complete. This establishes the NP-completeness
of MINBENDS.

3.4. Limiting the Number of Bends in Each Wire

In fabricating high-frequency IC’s, each bend in a micro-
strip line results in reflections of the electrical signal. So

the greater the number of bends in a microstrip line, the”

lower is its transmission efficiency. This forces the trans-
mitting device to output more power in order to accom-
plish the transmission. Limiting the maximum number of
bends in the layout of any microstrip line helps alleviate
this problem.

The decision problem to be considered here is
KBENDWIRE: Given an instance of the single row wiring
problem, is there a realization with at most k bends in the
layout of each wire? Because of the single row geometry,
we require that k > 2.

It is not known whether KBENDWIRE is NP-complete
for general k. However, for the special case k = 2, it is easy
to find a polynomial time algorithm for KBENDWIRE.
Note that with £ =2, it is not possible for (the layout of)
any wire to make interstreet crossings. This problem has
been considered before, by [2], but no satisfactory solution
was proposed therein. The problem was of much interest
earlier, when design rules did not permit any etch paths
between adjacent pins of dual-in-line IC packages.

The restriction that wires cannot make interstreet cross-
ings allows one to decompose nets that contain more than
two nodes into a set of nets, each containing exactly two
nodes. See Figure 9.

It is not too difficult to formulate a linear time algorithm
to determine whether or not a set of nets can be wired with
no interstreet crossings. This algorithm assumes that nets
have already been decomposed such that each net contains
exactly two nodes.

Let us assume without loss of generality that the n points
are numbered 1,2,- - -,n from left to right. We now add the
following “new” nets: {1,2}, {2,3}, {3,4},---,{n—1,n},
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{n,1} to the problem. The problem of determining feasibil-
ity simply becomes the problem of determining the planar-
ity of the graph defined by the wiring problem instance.
This can be solved in linear time using the planarity testing
algorithm of Hopcroft and Tarjan [7].

If feasibility of wiring is indicated, it is worth finding the
minimum width layout, since this is in a sense the most
compact layout possible. To this end, we have developed in
[10] an 0(n?) algorithm to obtain layouts of minimum
width. The algorithm is based on dynamic programming.

IV. CoONCLUSIONS

In this paper, we have thoroughly investigated the single
row approach to wiring. First, we considered the decom-
position process. For each step in the decomposition pro-
cess, we have stated the appropriate constraints and opti-
mization measures. Given any of these measures, we have
shown that each step in the decomposition process is
NP-hard.

Then, we considered the complexity of single row wiring,
The most reasonable optimization measure here is the
width of the realization. While it is known that finding the
minimum width realization is NP-hard, we have obtained
(elsewhere, in [10], [12]) a “usually good” algorithm for
this problem. Other important optimization measures are
the between-nodes congestion and the total number of

"bends. For each of these measures, the single row wiring

problem is NP-hard. Then, we consider the single row
wiring problem when each wire is restricted to have at most
k bends in its layout. For the special case k =2, we have
outlined an efficient algorithm for the single row wiring
problem.

From the findings in this paper, one may conclude that
the single row approach allows a conceptual simplification
of the general rectilinear wiring problem. However, this
conceptual simplification is not accompanied by a reduc-
tion in the computational complexity.
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