J. Inform. Process. Cybernet. EIK 30 (1994) 1, 29-43
(formerly: Elektron. Inform.verarb. Kybernet.)

Segmented ‘Winner Trees!

By Andrew Lim and Sartaj Sahni

Abstract: A new data structure, segmented winner tree, is introduced. This is useful when one
needs to represent data that are partitioned into segments. The segment operations that are
efficiently supported are: initialize a unit length segment, find the element with least value in
any given segment, update an element in any segment, merge two adjacent segments, and split
a segment.

Key Words and Phrases: Data structures, winner trees, segmented data

1. Introduction

Suppose that we have n elements 1,2,...,n that have been partitioned into some
number of segments such that the elements in each segment are contiguous. Figure 1
shows a possible partitioning of the eleven elements 1,2,...,11 into three segments. A
value, v[7], is associated with each element 3.

segment 1 segment 2 segment 3

1 23 45 6 7 8 9 10 11

Figure 1: Eleven elements partitioned into three segments

The operations we wish to perform on these segments are:

1. Initialize(l;): Initialize the one element segment /i : r; where 7y = [5.

2. PindMin(l1,71,2): Find the smallest value in the segment comprised of elements
ly : 1. This value is returned in variable z.

3. Update(ly,r1,1,y): Change the value of element 4 to y. Element ¢ is a member of
the segment that is comprised of elements Iy : 7. Note that {; <4 < rq.

4. Merge(ly,r1,75): Merge the adjacent segments ly : 74 and 71 + 1 : 74 into a single
segment 1 : rq.

5. Add(ly,,y): This is a special case of merge in which the right segment 71 41 : 79
consists of a single element with value y. Le., 71 + 1 = 75 and v[ry] = 4.

!This research was supported, in part, by the National Science Foundation under grant MIP91-
03379.

30 A. Lim, S. Sahni

6. Split(ly,71,q): The segment Iy : 7y is split into two adjacent segments I; : ¢ and
qg+1:7;.

Two applications for a data structure that efficiently supports these operations are:

1. Geographic Service Environment: In this, the n elements represent n clients who
are located adjacent to one another on the same side of a street. The clients are
served by servers who, for efficiency reasons, serve a contiguous set of clients. So,
each segment represents a set of clients served by the same server. In the ideal
situation, we have one server per client. In this case all segments are of size one.
If a server is disabled, then the set of clients served is assigned to one of the
servers associated with an adjacent server (segment merging). Alternatively, the
client set could be partitioned (segment split) with the left (right) partition being
assigned to the left (right) server (segment merging). If a new server becomes
available, then a client set for this server is created by partitioning off clients from
at most two adjacent client sets (segment splitting). A server selects a client from
its client set, for service, based on the clients value. We assume priority is given
to the client with the least value. This uses the FindMin operation. The value (or
priority) of a client may change in time. This requires one to update the clients
value.

2. Cell Joining: When stretching two adjacent cells of a VLSI design so as to mi-
nimize the total wire length subject to a minimum area constraint[1], the pins
on one side of a cell represent the n elements of our data structure. The pins
are maintained as segments of adjacent pins and the distance between pins is the
pin value. In the course of the algorithm, adjacent pin segments may coalesce;
it is necessary to obtain the pin with the least value in any segment; and it is
necessary to update the pin values. To implement this algorithm efficiently, we
need an efficient data structure for the segment operations (except split) defined
above.

The data structure we propose, segmented winner trees, represents each segment as a
collection of winner trees [2] with each winner tree representing a number of elements
that is a power of 2. All winner trees for all segments are compactly represented within
an array of size 2n — 1. Because of this, explicit pointers are not used and one can
move up and down a tree by performing simple arithmetic operations on the current
location within a tree [2].

Two of the already known data structures that could be used to represent our seg-
ments are Leftist trees and Fibonacci heaps [2, 3]. Table 1 compares the complexity of
these data structures and that of segmented winner trees. s is the size of the segment
involved (in the case of a merge, it is the size of the resulting segment). The comple-
Xities are amortized complexities for the case of Fibonacci heaps and worst case per
operation complexities for leftist trees and segmented winner trees.

We note that if the updates are restricted to those that only reduce a value, then the
amortized update cost for Fibonacci heaps is O(1).

Segmented winner trees are defined in Section 2. Algorithms for the segmented win-
ner tree operations are provided in Section 3. Experimental data comparing the per-
formance of leftist trees, Fibonacci heaps, and segmented winner trees is provided in
Section 4.

Segmented Winner Trees 31

Operation | Leftist Trees | Fibonacci Heaps | Segmented Winner Trees
Initialize O(1) 0o(1) 0(1)
FindMin 0o(1) 0o(1) O(log s)
Update O(s) O(s) O(log s)
Merge O(log s) 0o(1) O(log s)
Add O(log s) ~0(1) O(log s)
Split O(s) O(s) 0(1)

Table 1: Data structure complexities

2. Segmented Winner Trees

A winner tree is a tree where each node represents the smaller of its children [2]. A
segmented winner tree is a complete binary tree [2]. Le., each node has degree 0 or 2;
the leaves are on at most two adjacent levels; if the leaves are on two adjacent levels,
then all leaves on the next to last level are at the right end of that level. Figure 2
shows a complete binary tree with 11 leaves and 21 nodes. Node numbers are inside
the nodes. The leaves have been numbered left to right. The leaf numbers are given
outside the leaves. Note that for every m, m > 0, there is a unique m node complete
binary tree. Further, for every n, n > 0, there is a unique n leaf complete binary tree.
The number, m, of nodes in this complete binary tree is 2n— 1 when n > 1 and 0 when
n = 0.

A complete binary tree with m nodes is efficiently stored in an array t[1..m] with
node 7 of the tree represented in position ¢ of the array. The parent of node ¢ is in
position 7 div 2, its left child (if it exists) is in position 27, and its right child (if it
exists) is in position 274 1 [2].

To represent a collection of segments with n elements, we use a complete binary tree
with 7 leaves. This has m = 2n—1 nodes. Element ¢ is represented by leaf 7, where the
leaves are numbered 1 through n left to right (see Figure 2). The position of element 7
in the array ¢[1..m] is easily obtained using the function Position of Figure 3. In this,
k is a power of 2 such that % <n<k. So,when 8 <n <16,k =16. Le. k = 2Mlogan]
n > 0. k gives the position of element 1. Hence, we expect to find element ¢ in position
j=k+1—1 unless j > n. In this case, only m — k + 1 leaves are at the lowest level
and ¢ > m — k + 1. The first leaf on the preceding level is at position || + 1. So, the
i'th leaf is in position |%] +14+i—(m—k+1)—1= 2L —2n—1)+j=j—n.

The non leaf nodes of a segmented winner tree are used to maintain winner trees.
When we have only one segment, we get a winner tree as defined in [2]. However, when
there is more than one segment, several winner trees are embedded in ¢[...]. Consider
the eleven element example of Figure 1. Segment 1 is represented by two winner trees
comprised of the nodes labeled a and b in Figure 4 . The nodes labeled a form one tree
and the node labeled b forms the other. The nodes labeled ¢, d, and e, respectively,
form the three winner trees that represent segment 2 while the nodes labeled f form
the single winner tree that represents segment 3. Note that each winner tree embedded
in a segmented winner tree is a full binary tree.

32 A. Lim, S. Sahni

@y \
{\ /\

VANVANRANEVAN

©) \)

I /@/\@7 o

Figure 2: An 11 leaf 21 node complete binary tree

function Position(1);
/* find the position of element ¢ in ¢[1..m]
Een<k*
begin
ji=k+1-1;
if j > m then j := j — n;
Position := j;
end;

Figure 3: Computing the position of element 4

Segmented Winner Trees 33

o/ 0O
\O | @/\@

AN
\

ONONONONONO)

Figure 4: Segmented winner tree for example of Figure 1

@, @,
O /\ /\
Q Ny_, 9h-3

(a) h=1 (b) h=2 (o) h>2

Figure 5: Minimum winner trees

The winner trees that represent any segment are obtained by the following rules:

R1. All leaf nodes are members of winner trees.
R2. A non leaf node is a member of a winner tree iff all the leaves in the subtree of
which it is root represent elements from the same segment.

Lemma 2.1 The minimum number of leaves in a winner tree of height h that re-
presents a portion (or all) of a segment is 2/=2 + 1 for h > 2 and 1 for h = 1.

Proof. When h = 1, the winner tree is unique and consists of only a single leaf
(i-e., no other nodes are in the tree). For A = 2, the winner tree is also unique and is
shown in Figure 5(b). It has 2 leaves. Let Nj, be the minimum number of nodes in
any winner tree of height h, h > 2. Let T be such a tree. Since the leaves must be on
two adjacent levels of 7" and since 7' has a minimum number of leaves, all leaves in the
right subtree of T are on level A —1. Their number is 2*~3 (Figure 5(c)). Furthermore,
the left subtree of T' is a minimum winner tree of height & — 1. So, it has Nj_q leaves.

34 A. Lim, S. Sahni

Hence, we obtain the recurrence:

Ny = Nu1+2V3 h>3

Ny = 2
Tts solution is Ny = 22 + 1, h > 2. a
Lemma 2.2 The following are true for every segment of size s, s > 1.

(a) No winner tree in its representation has height > logy(s— 1)+ 2.
(b) The number of winner trees in its representation is at most

2(s + 1) s+1
3 2

Proof. (a) Follows from Lemma 2.1.

(b) Suppose that a collection of ¢ winner trees represents some segment of size s.
Assume that the leaves of these winner trees are all at the same level. If ¢ = 2k 4+ 1
is odd, then since each winner tree has a number of leaves that is a power of 2, s is at
least

maz{2{log, J, 2llog, 2221 4 1)

20 Lol 4 4okl ok okl 490

In this sum, each term represents the number of leaves in one of the winner trees that
represents the segment. Note that no segment’s representation can have more than two
winner trees of the same size. From the lower bound on s, we obtain

s>3x2F—2

So, k < [log, 22| (the floor results from the observation that k is an integer). Hence,
g < 2logy *52] +1. :
If ¢ = 2k is even, then we get

s > 204204, 42kl 4ot 420

grtl g
So, k < [log, 2| and ¢ < 2[log, #£2|. Combining the two cases, we get
s+2 s+2
g < maz{ 2|logy ——/, 2(logy ——] +1}

One may verify that this is a tight bound.

Next suppose that the leaves of the winner trees are on two levels with sy leaves at
the lowest level A and s, on the preceding level B. s = s1 + sy. Extend the sy leaves
by adding their children (Figure 6). This results in a new segment of size s’ = s1 + 25,
with all leaves on the same level. We shall refer to the new 2s; leaves on level A as
extended leaves and to the segment of size s’ as the extended segment. The number of
winner trees, ¢, in this extended segment of size s’ is the same as that in the original
segment of size s. However, the rightmost tree for the extended segment must have an
even number of leaves on level A. When ¢ = 2k, we get

& > 20494 ok lpok okl 4ol

= 3x2F—3

Segmented Winner Trees 35

s1 leaves 2s9 extended leaves

Figure 6: Leaf extension

So, k < |log, *£2] and ¢ < 2[log, ££2| < 2[log, 242943 | Since sy + 85 = s,
for any fixed s, s > 1, s1 + 289 is mammlzed when s; = 1 and s = s — 1. So,

q < 2llog, ﬂQij = 2llo g2MJ When ¢ = 2k + 1, we get

d = Pl b L TFLFL gl
oEH2 3

Hence, k& < |log, #J and ¢ < 2[log, #J + 1 < 2|log, 21| 4+ 1. Combining the
bounds for the two cases, we get

2(s +1) +1

q < maz { 2|log, ———=|, 2|log
Since this bound is at least as large as that for the case when all leaves are at the same
level, the lemma is proved. One may verify that this is a tight bound in that for every
8, s > 1 one can construct a segment of size s that has the stated number of winner
trees. a

[+1}).

Lemma 2.3 Consider a segment Iy : r1 all of whose elements are represented by lea-
ves at the same level. The height , h, of the rightmost winner tree in its representation
is min{|logy(r @ (r+1)], [logy(r—1+1)]}+1 (® denotes the exclusive or of the binary
representations of its two opemnds) where v = Position(r1) and | = Position(ly), and
the position of the root of this winner tree is Lzh .

Proof. Let h be the height of the rightmost winner tree for the segment. Since all
leaves are at the same level, the number of elements in this winner tree is 2°~1. The

36 A. Lim, S. Sahni

total number of elements in the segment is 71 —l; + 1 =7 -1+ 1. So,

oh=1 < p—_l41
or h < |loge(r—14+1)]+1

If 7 is even, then the rightmost winner tree has height 1. If r is odd, then elements 7,
and 7y — 1 (if it is in the same segment) can combine into the same tree. If the parent,
g, of 7 is even then no further combining is possible. If ¢ is odd, then 7,79 — 1,71 — 2,
and r; — 3 can combine provided r; — 3 > {y. In general, the tallest winner tree the
rightmost element 71 can be in is determined by its nearest ancestor that is even (see
Figure 4). Le., it is determined by the position of the rightmost zero in the binary
representation of 7. So, when r is even the rightmost zero is in bit position 0 and the
height is 1; when r is of the form X X ... X X01, the rightmost zero is in position 1 and
the height is at most 2; and so on. The position of the rightmost zero in the binary
representation of r is given by |log,(r @ (7 +1))]. So, h < [logy(r @ (r +1))] + 1. The
only time the height is smaller than this bound is when the segment has fewer than
2h=1 glements. At this time, the height is [logy(r — I 4 1)] + 1. Combining, we get:

h = min{|logy(r & (r + 1))], [logy(r =1+ 1)} + 1.

The rightmost leaf of the winner tree is at r. Its parent is at |5], its grandparent at
|%], etc. Since the height of the winner tree is A, its root must therefore be at [i=nd &
O

3. The Algorithms

3.1. Initialize(ly)

To initialize the one element segment [y : Iy, we need merely set ¢[Position(ly)] =
v[l1]. Note that a one element segment is represented by a single winner tree that has
just the node that represents the element. Initialization clearly takes O(1) time.

3.2. FindMin(ll,rl,x)

To find the smallest element in the segment {1 : r; we need to examine the roots of
the winner trees that correspond to this segment and determine the least value in these
roots. We examine these winner trees right to left. Lemma 2.3 is used to determine
the root of the rightmost winner tree. However, since Lemma 2.3 applies only to the
case when all segment elements are represented by leaves at the same level, we need to
simulate the case when this is not true by an equivalent but hypothetical segment for
which it is true. This is done by considering the corresponding extended segment as
in Figure 6. The FindMin algorithm is given in Figure 7. Since the maximum number
of winner trees for a segment of size s is O(logs) (Lemma 2.2), the complexity of the
algorithm PindMin is O(logs). We assume that the XOR (&) is done in constant time.

3.3. Update(ly,r1,i1,Yy)

To update element i; of segment Iy : 71 we need to replay the tournaments played
by element 7 in its winner tree. Le., we need to follow the path from element ¢ to the

Segmented Winner Trees

procedure FindMin(ly,r1,2);
/* The minimum value in the segment
Iy : 7y is returned in z */
begin
[:=Position(ly);
r :=Position(ry);
z = t[r];

/* convert two level case to extended segment */
if (I >7)thenr:=2x+7r41;

/* examine winner tree roots */

while r > [do

begin
k= min{[logy(r ® (r+ 1)), loga(r — L+ D[} /<h—1%/
root = r div 2;
T := min{z,t[root]};
r:=r—2F /*1ight of remaining segment */

end;

end;

Figure 7: Find minimum value in segment Iy : 7y

37

38 A. Lim, S. Sahni

root of its winner tree. The procedure for this is given in Figure 8.

In this procedure [, 7, and ¢ are initialized to the positions of Iy, r1, and 71, respectively
and then t[7] is updated to its new value y. To restructure the winner tree that contains
element 41, variable ¢ will move up the tree resetting values as needed. In order to handle
the cases when the leaves are on two levels the same as when they are on one, we again
use the concept of an extended segment. In case the leaves are on two levels, r is
changed to 2 x r + 1 (line 6) to correspond to the right end of the extended segment.
The variable a gives the number of elements (or extended elements) in the winner tree
with root ¢. When [and ¢ are on different levels, ¢z has two extended elements below
it. Otherwise subtree ¢ has just one element. left and right, respectively, give the
positions of the leftmost and rightmost elements (or extended elements) in the subtree
with root <. These variables are initialized to conform to this definition in lines 7 — 17.
In lines 19 and 20 left and right are updated to correspond to the positions of the
leftmost and rightmost elements (or extended elements) in the subtree whose root is
the parent of .

Now we are ready to move up the tree containing i. The parent of 7 is a member of
a winner tree iff all its elements (extended elements) are from the same segment. Ie.,
iff left > [and right < r. So long as this is true, we move up to #'s parent. This is
done in the while loop of lines 21 — 31. If ¢ is odd then its sibling is 2 — 1 and the
value in its parent should be min{t[i],¢[t — 1]}. When 1 is even, its sibling is 7 + 1 and
its parent should have value min{t[é],t[¢ + 1]}. As we move up the tree, left and right
are updated to maintain the invariant: The (extended) elements in the subtree whose
root is the parent of ¢ occupy positions left,. .., right (lines 27 — 30). It is possible to
terminate the upward movement of ¢ earlier than in procedure update. In fact, if ¢[p] is
unchanged on any iteration (lines 25 and 26), then it will remain unchanged in future
iterations. We have not done this so as to keep the code simple. Since the height of
the winner tree containing element ¢ is O(logs) where s = r1 — 1 + 1 (Lemma 2.2),
the complexity of procedure update is O(logs).

3.4. Merge(ly,r1,72)

This is easily accomplished by the invocation of Update(ly,rq,r1,t[Position(ry)]).
A slightly more efficient procedure results by beginning the update while loop (lines
21 — 31) at the root of the rightmost winner tree of the first segment rather than at
a leaf node. This is done in procedure Merge of Figure 9. In this procedure, ! and r,
respectively, denote the positions of the first and last elements of the first segment. b
and ¢ are the corresponding variables for the second segment. The variables a, left,
and right have the same significance as in procedure Update. In lines 8 — 13, ¢ is
set to the root of the rightmost winner tree of the first segment and the variables a,
left, and right appropriately initialized. The following while loop is identical to that
of procedure Update. The complexity of this procedure is readily seen to be O(logs)
where s is the size of the new segment that results from the merge.

Segmented Winner Trees

procedure Update(ly,71,1,7);

/* Update element iq of Iy : 71 to y */

1 begin

2 l :=Position(ly);

3 r :=Position(ry);

4 1 := Position(iy);

5] == y;

6 if (I > r) then r:= 274 1; /* leaves on two levels */
7 if (1 >1)

8 then

9 begin

10 /* 1 and 7 on two levels */

11 a:=2;left:=2%1; right :=left + 1;
12 end

13 else

14 begin

15 /* 1 and 7 on same level */

16 a:=1; left :=1; right := 4

17 end;

18 if ¢ is odd

19 then left :=left —a

20 else right := right + a;

21 while (left > 1) and (right < r) do
22 begin

23 p:=1div 2; a :=2 % a;

24 if 2 is odd

25 then t[p] := min{t[s], t[i — 1]}
26 else t[p] := min{t[7], t[i + 1]};
27 1= p;

28 if 7 is odd

29 then left :=left — a

30 else right := right + a;

31 end;

32 end;

Figure 8: Updating of the element ¢; in segment [y, ...

39

40

procedure Merge(ly,r1,73);

1 begin

2 1 :=Position(ly);

3 r :=Position(r1);

4 b :=Position(ry + 1);

5 ¢ :=Posttion(rs);

6 if (I > ¢) then ¢ := 2 ¢+ 1; /* two levels */
7 /* find the rightmost tree in first segment */
8 ki minlloga(r @ (r-+ 1)), loga(r — 1+ 1))s /% b= 1%/
9 a:= 2%

10 t:=rdiva;left:=i*a; right := i+ 1) *xa—1;
11 if 7 is odd

12 then left :=left —a

13 else right := right + a;

14 while (left > 1) and (right < ¢) do

15 begin

16 p:=1div 2; a:=2%*a;

17 if 7 is odd

18 then t[p] := min{t[7],t[s — 1]}

19 else t[p] := min{t[d], t[¢ + 1]};

20 1= p;

21 if 7 is odd

22 then left :=left —a

23 else right := right + a;

24 end;

25 end;

/* Merge the segments ly : 7y and 71 + 1 : 79 */

Figure 9: Merge two segments

A. Lim, S. Sahni

Segmented Winner Trees

procedure Add(ly,r1,);
/* add z to the end of the segment [y : 7y */
begin
=11+ 1;
1 :=Position(ly); v := Position(ry);
tr] = ;1 =1y
if (I1>7)
then
begin
a:=2;left :=2x*r;
end
else
begin
ai=1; lefti=r;
end;
left :=left — a;
while (left > 1) and 7 is odd do
begin
p:=1div 2; a:=2*a;
tp] = mindtfi], i — 1]};
1:=p; left .= left — a;
end;
end;

Figure 10: Procedure to add an element to'a segment

3.5. Add(ll,rl,x)

This is equivalent to the code :

rii=r1+ 1
Update(ly,r1,71,2);

41

As in the case of the merge operation one can obtain a slightly more efficient imple-
mentation by customizing the code. The result is procedure Add of Figure 10. Its

complexity is O(log s) where s =71 — {3 + 1.

3.6. Split(ly,ry,q)

To split a segment no work is to be done. This procedure is a null procedure and its

complexity is O(1).

42 A. Lim, S. Sahni
n Leftist Tree Fibonacct Heap Seg. Winner Tree
merge | deletemin || merge | deletemin | delete || merge | delete | deletemin
10000 38 204 16 4735 | 3741 64 71 160
25000 57 234 16 5245 | 4280 64 75 163
50000 76 245 16 5560 | 4645 67 7 171
100000 93 280 16 5919 | 4921 67 78 168

. Table 2: Run time comparison

4. Experimental Results

The asymptotic complexity of segmented winners tree was compared to that of the
competing data structures: leftist trees and Fibonacci heaps in Table 1. Because of
the need to perform updates and splits in the targeted applications, segmented winner
trees are expected to generally outperform leftist trees and Fibonacci heaps.

To demonstrate the practicality of segmented winner trees, we benchmarked this
data structure against the other two for operations on which these other two structures
are known to be very practical. Specifically, we considered the merge and deletemin
operations for leftist trees and the merge, deletemin, and delete operations for Fibonacci
heaps. For segmented winner trees, the deletemins are accomplished by first finding
the minimum element in the segment and then updating this to to have a large value.
A delete operation is simply an update to a large value.

The code for the test operations was written in C and run on a SUN SPARCstation
SLC. Run times were obtained for n = 10,000, 25,000, 50,000 and 100,000. For each
value of n we generated n random values. These formed the n initial segments of size
one. Random pairs of adjacent segments were merged until only one segment remained.
The time for the last 1000 of these merges was measured and averaged. This experiment
was repeated twenty times and the average of the averages obtained. This is reported in
Table 2 in the columns labeled “merge”. The times are in microseconds. The Fibonacci
heap has the best merge times.

For deletemins, we started with the structures that resulted from the n merges and
performed 1000 deletemins. The average time for these was computed and the experi-
ment repeated twenty times. The average of the averages is reported in Table 2 in the
columns labeled “deletemin”. The segmented winner tree outperformed the other two
data structures.

The experiments for the “delete” operation were performed in an analogous manner
and the average of the averages reported in Table 2. Once again, the segmented winner
tree exhibited superior performance.

5. Conclusion

We have developed an efficient data structure to perform find min, update, merge,
add, and split operations in segmented data (i.e., data partitioned into segments of
adjacent elements). This structure is very practical both in terms of run times and
space utilization. It was pointed out that leftist trees and Fibonacci heaps do not
support all the required operations efficiently. In addition, the space requirements of

Segmented Winner Trees 43
leftist trees and Fibonacci heaps are considerably greater.

Acknowlegement

The authors would like to thank the referee for providing insightful comments.

References

(1] Lim, A., S. Cheng, S. Sahni: Optimal Joining of Compacted Cells. IEEE transac-
tions on Computers 42 3, pp. 597-607.

[2] Horowilz, E., S. Sahni: Fundamentals of Data Structures in Pascal. Computer
Science Press, 3rd ed., 1990.

(3] Fredman, M., R. Tarjan: Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithm. Journal of ACM 34 (1987) 3, pp. 596-615.

(Received: October 13, 1993; revised version: April 6, 1994)

Authors’ addresses:

Andrew Lim

Information Technological Institute
National Computer Board

71 Science Park Drive

Singapore 0511

Republic of Singapore

E-mail: alim@iti.gov.sg

Sartaj Sahni

Department of Computer and Information Sciences
University of Florida

Gainesville

Florida 32611

U.S.A.

