SIAM). COMPLT 1908 Socets lof Industinal énd Appled Mathemabhc
Val. 9, Ma. 2, May 1980 G9T-5307 S0 (ROI-0012 SR O

ON THE COMPUTATIONAL COMPLEXITY OF PROGRAM
SCHEME EQUIVALENCE*

H. B. HUNT I1I%, R. L. CONSTABLE! axp 5. SAHNI'

Abstract. The computadonal complexity of several decidable problems about program schemes,
recursion schemes, and simple programming languages is considered. The strong equivalence, weak
equivalence, containment, halting, and divergence problems for the single vanable program schemes and the
linear monadic recursion schemes are shown to be NP-complete. The equivalence problem for the Loop 1
programming language is also shown to be NP-complete. Sufficient conditions for a program scheme problem
1o be NP-hard are presented. The strong equivalence problem for a subset of the single variable program
schemes, the strongly free schemes, is shown to be decidable deterministicaily in polynomial time.

Key words. computational complexity, P. NP, NP-complete, program scheme, recursion scheme,
equivalence, containment, halting, divergence, and isomorphism

Introduction. Early work with program schemes was motivated by a quest for
program optimization techniques [9], [10], [13]. Ideally one would find a class of
schemes rich enough to model many interesting programs but simple enough to have
decidable problems such as equivalence, halting, or divergence. No attempt was made,
however, to assess the computational complexity of such decidable problems. Here, we
show that a variety of such decidable problems for the single variable program schemes,
the linear monadic recursion schemes, and several simple programming languages are
NP-complete.

The remainder of this paper is divided into four sections. Section 1 contains
definitions and basic properties of p-reducibility, program schemes, and recursion
schemes. In % 2 the strong equivalence, weak equivalence, containment, halting, and
divergence problems for the single variable program schemes and the linear monadic
recursion schemes are shown to be NP-complete. We also present general sufficient
conditions for a problem on the single variable program schemes to be NP-hard. In § 3
we consider subclasses of the single variable program schemes for which strong
equivalence is decidable deterministically in polynomial time. Finally in § 4, we briefly
consider the complexity of the equivalence problem for several classes of simple
programming languages including the Loop 1 languages in [14].

1. Definitions. We present definitions and basic properties of p-reducibility,
program schemes, and monadic recursion schemes needed in §§2, 3, and 4. The
definitions of strings, alphabets, context-free grammars, and derivations used here are
from [7]. We denote the empty word by A.

DEeFINITION 1.1. P(NP) is the class of all languages over {0, 1} accepted by some
deterministic {(nondeterministic) polynomially time-bounded Turing machine.

DerFinimion 1.2, Let £ and A be finite alphabets. Let #(Z, A) denote the set of all
functions from X* into A* computable by some deterministic polynomially time-
bounded Turing machine. Let L, and L, be subsets of £* and A®, respectively. We say

* Received by the editors February 14, 1975, and in final revised form May 2, 1979. This rescarch was
supported in part by the Mational Science Foundation under gramts DCR-74-14701, GJ 35570, and
DCR-75-22505.

+ Department of Electrical Engineering and Computer Science, Columbia University, New York, New
York 10027,

1 Department of Computer Science, Upson Hall, Cornell Unmiversity, [thaca, New York 14853

¥ Department of Computer, Information and Control Sciences, University of Minnesota, Minncapolis,
Minnesota 55455,

306

COMPUTATIONAL COMPLEXITY 397

that L, is p-reducible 1o L., written [| Zpume L2, If there exists a function f in F(E, 4)
such that, for all re * xe L. if and only if, fix)e L.

DEFINITION 1.3. A language L, is said to be NP-hard if, for all L in NP,
L =pimeLo. A language £, is said to be NP-complere if it is NP-hard and is accepted by
some nondeterministic polynomially time-bounded Turing machine,’

DEerNiTION 1.4, A Boolean form fis a Dy-Boolean form if f is the disjunction of
clauses Cy, - - -, C, such that each clause C, is the conjunction of at most three literals,
A Boolean form f is a C;-Boolean form if f is the conjunction of clauses Cn—~, G
such that each clause C is the disjunction of at most three literals.

ProrosiTion 1.5[3]. The sets 7, ={f|fis a nontautological Ds-Boolean form)} and
T2={fIf is a satisfiable Cs-Boolean form} are NP-complete.

ProPOSITION 1.6[3). Let %, and #- be languages. If ¥, is NP-hard and %, is
p-reducible to %5, then ¥ is NP-hard.

DEeFINITION 1.7. Let D be a set. A predicate on D is a function from D into {True,
False}.

We assume that the reader is familiar with the basic properties and results
concerning program schemes, monadic recursion schemes, and interpretations as
presented in [1], [4], [10].

Program schemes are defined as follows. Let #£, ¥, # and 2 be mutually disjoint
sets of labels, variable symbols, function symbols, and predicate symbols, respectively,
A program scheme 8§ is a finite nonempty sequence of

(1) assignment statements of the form & . yefixy, -, x,), where k in #isalabel,

fin Fis an n-ary function symbol, and X1, ** ", Xy, ¥ in ¥ are variable symbols:

(2) conditional statements of the form k. If Pilxy, -+ -, x,) then ky else ko, where

k, k1, and k- are labels, P, in # is an n-ary predicate symbol, and x,, - - -, x, in
V" are variable symbols: and

(3) halt statements of the form k. Halr. where k is a label.

We sometimes allow loop statements of the form k. Loop as abbreviations for the
statement,
k.M Pix,, -, x,) then kelse k.

We frequently assume that the first element of § is its initial statement and the last
element of § is either a loop or halt statement.
The meaning of a program scheme § is defined in terms of interpretations.
Formally, an interpretation 1 of § consists of
(1) a nonempty set D, called the domain of I-
(2) an assignment of an element of D to each variable symbol in 3"
(3) an assignment of a function f' ; D" = D to every n-ary function symbol f in F;
and
(4) an assignment of a predicate P/ : D" > D to every h-ary predicate symbol P, in
P,
The definition of a computarion of a program scheme § under an interpreration I' can be
found in [10]. The value of S under I, denoted by val;(§), is the final value of the
distinguished output variable of § if the computation of § under [halts: and is
undefined otherwise,
A monadic recursion scheme § is a finite list of definitional equations

F|x‘"-= lf PLX thﬂﬂ X EIS:E ,BLI'.
Foe=1f P.x then a,x else 8,x

! Definition 1.3 extends the concept of NP-completeness to languages over arbitrary finite alphabets

308 H. B, HUNT H1. R. L. CONSTABLE AND 5. SAHXI

where F,,- - -, F, are defined function symbols; Py, -- -, P, are inot necessarily dis-
tinct) predicate symbols; and o\, 81, - -, @a, B, are (possibly empty} strings of defined
and basis symbols. A monadic recursion scheme § is said to be linear if at most one
defined function symbol occurs in each of the strings ., £1. -+, & .

The semantics of a monadic recursion scheme § is also defined in terms of
interpretations. Formally, an interpretation [of a monadic recursion scheme § consists
of

{1) anonemptv set I, called the domain of I

(2} an assignment of a function f' - D= D to every basis function symbol f is §;

(3) an assignment of a predicate P! . D= {True, False} to every predicate symbol

P in §; and

(4) an assignment of an element x' of D to x.
An interpretation [of a monadic recursion scheme §, with set of basis function symbols
is said to be free if

{i) the domain D of [equals [#]* - {x}: and

(i) for all f in & and strings wx in [#]* - {x}, f'iwx) equals the string fwx.
For any interpratation £, (i« -+ fax) = () (- - -(F) () -2,

The computations of a monadic recursion scheme can be defined in terms of
context-free grammars as follows. To each scheme

S. Fx:=1If Px then ax else 8.x (l=is=n),

we associate a context-free prammar Gs with terminal alphabet equal to #, nonter-
minal alphabet F equal to {F,, - - -, F.}, and set of productions equal to {F, = a,, F, =
£:]1 =i =n}. Let] be aninterpretation. Following [4]we say that a rightmost derivation
of Gy is legal for I if, for every step in the deviation of the form yFw ?:»yﬁw, where

v ée(FUFfand weF*, d=ua if Pliw')=True and § =8, if Pliw')=False. The
computation of § under [corresponds to the unique legal derivation for L If F, ?* W

for we F* by the legal derivation for I, then va[r{3}=w'[x’h; otherwise, val;i§} is
undefined.

Finally we assume that there is a finite alphabet £ such that each scheme or
program § is presented as a string o over %. We say that the length of the string o is the
size of S.

DeFwITION 1.8, Let § and §° be program or monadic recursion schemes. We say
that

(1) § halts if, for all interpretations I of S, the computation of § under I halts;

(2) § diverges if, for all interpretations I of §, the computation of § under [does
not halt;

(3] § and §' are strongly equivalent if, for all interpretations I, either both of
val;(§) and val;(§") are undefined, or both of val;{5) and val;(§') are defined
and are equal;

(4) § and §' are weakly equivalent if, for all interpretations [for which both of
val;(§) and val;(§") are defined, val; (5] equals val;(§') and

(5) § contains S if, for all interpretations I for which val;(S") is defined. val (&) 1s
defined and equals val;(S').

Let § and §° be program schemes. We say that

i6) § is isomarphic to 8" if, for all interpretations [, the sequences of the instruc-

tions executed by the computations of § and §' under [are the same.

COMPUTATIONAL COMPLEXITY 399

Definition 1.9[10]. Let p be any binary relation on the program schemes or on the
monadic recursion schemes such that, for all schemes § and 5,

(1) if 5 and §" are strongly equivalent, then 5p8': and

{2) if 5p8", then S and §' are weakly equivalent,
Then, the relation p is said to be a reasonable relation.

2. Program and recursion schemes. A vaniety of decidable problems on the single
variable program schemes (abbreviated svp schemes) and on the linear monadic
recursion schemes (abbreviated Imr schemes) are shown to be NP- complete. These
problems include strong equivalence, weak equivalence, containment, halting, and
divergence. This is accomplished in two steps. First, we show that these problems are
NP-hard for the svp schemes. Second, we show that these problems are in NP for the
Imr schemes.

DeFiNITION 2.1. A switching scheme § is a monadic, loop-free, svp scheme such
that each of its statements is either a conditional or a halt statement.

Our first proposition relates the tautology problem for D;-Boolean forms to the
problem of deciding, for a switching scheme § with halt statement labeled B, if the
statement labeled by B is executed during some computations of §. All our NP-hard
lower bounds follow from it.

Prorosimion 2.2, There exists a deterministic polynomially time bounded Turing
machine My such that Mg, given a Ds-Boolean form f as input, ouiputs a switching
scheme S; with exacily two halt statements labeled A and B such that the statement
labelled B is executed during some computation of Sy, if and only if, f is not a tautology.

Proof. We illustrate how M, constructs S; from f by an example. Suppose f equals
X1 E2¥a v Xp 830, v 1 £afs. Then, S is the following:

If Pi(x) then 2 else 4
If P:(x) then 4 else 3
If Piix) then A else 4
If Po(x) then 5 else 7
If Ps:(x) then 7 else 6
If Piy(x) then A else 7
If Piix) then 8 else B
If P,ix) then B else 9
If P:(x) then B else A

. Halt.

. Halt,

We denote the set {S;|f is a D;-Boolean form; and the Turing machine M, of
Propaosition 2.2, given input f, outputs §;} by €.

DEFINITION 2.3. Let § be an svp scheme with exactly two halt statements labeled A
and B. Let & and @ be svp schemes. The program scheme [5, =, #B] is tHe program
scheme that results from § by replacing the statement labeled A in § by & and by
replacing the statement labeled B in § by @, with a suitable renumbering of the
statements in = and 2 as necessary.

For example, let §, &, and # be the following:

§:1. K Pix)then 2 else 3 f: 1. x+ flx)

W@ omonth bW~

2. xex 2. Halt.

A. Halt.

3. xrex @B 1 x+glx)
E. Hal. 2. Halt

400 H. B, HUNT I R, L. CONSTABLE AND 5 SAHNI

Then, [8, &, 5] is the following:

1. If Pyix| then 2 else 3
P i

A xvefix)

4. Halt.

3. x+x

B. x~glxi

5. Halt.

The next theorem gives general sufficient conditions for a predicate on the svp
schemes to be NP-hard,

THEOREM 2.4. Let [T be any predicate on the sup schemes for which there exist sup
schemes A and & such that, for all schemes 8 in €, TN[S, =, &1 equals False if and only if
the statement of S labelled B is executed during some computation of S, Then, the set IS|§
is an svp scheme and T1(8) equals False} is NP-hard. Moreover, if o and 3 are loop-free,
then the ser {S|S is a loop-free svp scheme and TI(S) equals False} is also NP-hard.

Proof. By Propositions 1.5 and 1.6, it suffices to show that the set 7, of nontau-
tological Ds-Boolean forms is p-reducible to the set {S |§ is an svp scheme and [I(5)
equals False}. Let f be a Ds-Boolean form. Let S, be the corresponding element of €.
Then, IL([S, s, #]) equals False, if and only if, the statement in §; labeled B is executed
during some computation of §;. By Proposition 2.2 this is true, if and only if, fisnot a
tautology. Since [, o/, B] is constructible from f by a deterministic polynomially
time-bounded Turing machine, the theorem follows. QED

The next two corollaries vield some applications of Theorem 2.4, Henceforth, we
denote the svp scheme 1. Halt. by &

COROLLARY 2.5. Let 1 be any of the following predicates on the sup schemes:

i} & diverges;
(i) § halts;
{iil) § is strongly equivalent to 3,
liv) & conrains ¥,
iv) JF contains §;
ivi) §is weakly equivalent ro ¥, and

(vii} for all reasonable relations p on the sup schemes, Sp.¥.

Then, the set 15|8 is an svp scheme and TUS) equals False} is NP-hard.

Proof. Each of the predicates in (i) through (vii) satisfies the conditions of Theorem
2.4, where the corresponding schemes =« and 38 are as follows:

i) Ais |, Loop. #is 1. Halt

(i) o is 1. Halt, & is 1. Loop.

{iii) through (viii}#f is 1. Halt. & is 1. x«flx)
2. Hait,

Q.E.D.

CoOROLLARY 2.6. Let p be any of the following binary relations on the sup schemes:

for all svp schemes § and §', SpS', if and only if,
(i) & is isomorphic 10 8"

lil) §is strongly equivalent to 8"

(i) § conrains §°,

(iv) § s weakly equivalefit to §'; and

iv) for all reasonable relations py on the sup schemes, SpoS".
Then, the set {15, 8|S and §' are svp schemes and ~(5p8'"1} is NP-hard. Moreover, the set
118, 5'1[i§ and § are loop-free sup schemes and ~(S8p8')} is also NP-hard.

COMPUTATIONAL COMPLEXITY 40} 1

Proof. The conclusions of this corollary, for the relations of (i) through (v}, follow
easily from Theorem 2.4 and Corollary 2.5. Therefore, we only prove that the
conclusions of this corollary hold for isomorphism. As in the proof of Theorem 2.4, we
show that the set 7, of nontautological D;-Boolean forms i1s p-reducible to the set
{15, §')|S and §" are loop-free svp schemes and § is not isomorphic to §'}.

Let f be a [4-Boolean form. Let §; be the corresponding element of €. Then,
letting 3, denote the scheme

1. xegix)
2. Halt,

the schemes [S,, #, 38,] and [&,, #, #] are isomorphic, if and only if, the statement in 5;
labeled B is not executed during some computation of 5. By Proposition 2.2 thisis true,
if and only if, f is a tautology. Since the schemes [S,, %, 3] and [S. .#, ¥] are loop-free
and are constructible from f by a deterministic pelynomially time-bounded Turing
machine, the corollary follows. Q.E.D,

The importance of Theorem 2.4 and Corollaries 2.5 and 2.6 lies in the weakness of
the hypotheses needed to show that any predicate satisfying their conditions is
MNP-hard. Since no looping except possibly loop statements and only monadic functions
and predicates are required, their conclusions hold for many other classes of program
schemes, e.g. the monadic program schemes with nonintersecting loops, the liberal
schemes, and the progressive schemes, see [10], [12]. In the remainder of this section,
we show that similar results hold for the Imr schemes and that several of these NP-hard
problems are NP-complete.

The effective translation of monadic svp schemes into strongly equivalent Imr
schemes in [4] can easily be seen to be executable by a deterministic polynomially
time-bounded Turing machine. Thus letting #' denote the Imr scheme

Fix:=Ii Pyx then x else x,

one immediate implication of Corollaries 2.5 and 2.6 is the following,
CororrLary 2.7 (1), Let 11 be any of the following predicates on the Imr schemes.
(i) § halts;
{ii) § diverges;
(1ii) § is strongly equivalent to ¥°;
{iv) § contains #°;
(v] ¥ contains S
ivi) 8§ is weakly equivalent to ', and

(vii) for all reasonable relations p on the lmr schemes, S5p.#°. Then, the set {§|5is an
Imr scheme and [1(8) equals False} is NP-hard.

(2) Ler p be any of the following binary relations on the lmr schemes: for all Imr
schemes S and §', S5p8°, if and only if,

iviil) § is strongly equivalent to §';

(ix) 8§ contains S';

ix) & is weakly equivalent 1o §'; and

{xi) forall reasonable relations p, on the Imr schemes, SpoS'. Then, the set {(S, §')|8
and 8' are Imr schemes and ~(85p8’)} is NP-hard.

The next two propositiens will be used to derive upper bounds on the compu-
tational complexity of halting, divergence, strong equivalence, weak equivalence, and
containment for the Imr and svp schemes. The first proposition is new, The second
closely follows results in [4].

402 H. B. HUNT 11, R. L. CONSTARLE AND 5. SAHNI

ProOPOSITION 2.8, Let R be an Imr scheme with n defining equations. Then, R
diverges for some interpretation if and only if there exisis a free interpretation [of R for
which the computation of R under [takes at least 2n +1 steps.

Proof. The “only if”" part is obvious. We show the “if” part. Suppose the compu-
tation of R under I takes at least 2n + 1 steps. Then some defining equation, say

Fx=1If Px then ax else 8x,

must be applied at least three times during it. Hence, the computation of R under |
must contain at least two applications of this equation for which the predicate P! takes
the same value. Thus letting G be the context-free grammar associated with §, there
exist strings by, b2, ¢;, and ¢, of basis function symbols such that

F, — b,Fz..
O

F, == b.Fea,
iy

P:-':C|x]=PHC2£'|I:I

for the legal derivation for I,
If ¢; equals A, then the computation of R under I diverges. Otherwise, let I, be the
free interpretation of R defined by; for all predicate symbols P in ®;

Iy - k -
Pliac,x), if w=eacic, and o is a suffix of ¢33
i E
Pliwx), otherwise.

Pf"l{wxﬁS{

Then, the computation of R under I, diverges.
PROPOSITION 2.9, Let R and § be two Imr schemes, with set of basis function symbols
F and set of defined function symbols F such that
(i) both of R and § have at most n defining equations
{ii) the length of each string a; and B: in a defining equation of R or 8§ is less than m ;
and
(iii) each string a; and B in a defining equation of R or § is an element of
F*F-(FUANUS ULAL
Then, (1) if there exists an interpretation I under which R and S differ but for which both of
val,{R) and val;{8) are defined, then there is a free interpretation I, under which R and §
differ and for which both of val; (R} and val,(5) are defined, such that the minimum of the
lengths of val(R) and val;(§) is less than 3n m. Similarly, (2) if there exists an
interpretation I' for which val;{R) is defined and valy(S) is not, then there is a free
interpretation I, for which val;(R) is defined and val;(5) is not. such that the length of
val, (R is also less than 3n'm.
The proofs of (1) and (2) appear on pages 154-157 in [4].
THEOREM 2.10. The following sets are NP-complete:
(i) §y=1{5!8 is an Imr scheme; and S does not halt};
(ii) §.=18|S is an lmr scheme; and S does not diverge };
(iii) §3=1{(8, 5')\Sand 8" are Imrschemes; and S and 8' are not strongly equivalent);
(iv) §s=1(8.5')|S and §" are lmr schemes: and § and §" are not wealkly equivalent},
aned
(v} $s=1{(S, 8|S and §' are Imr schemes: and § does not conlain S
Proof. By Corollary 2.7 each of these sets is NP-hard. We illustrate how Pro-
positions 2.8 and 2.9 can be used to show that these sets are in NP. We only sketch the
proofs for §; and §,. The proofs for §,. 8., and S5 are similar and are left to the reader.

COMPUTATIONAL COMFPLEXITY 403

it} Let M be the nondeterministic Turing machine that operates as follows:
Step 1. M, given input 8, checks if § is an Imr scheme. If not, M halts without
accepting.
Step 2. M guesses a rightmost derivation IT of the context-free prammar Gg
associated with § of the form F, ?}h,LF,Lc;, ? e ?b,kﬁkc.‘.
= . o
where, letting i, be the number of the defining equations of §, k = 2n,+ 1;
F, F,, -, F, are defined functions symbols of S:and ;. c,,, - -+, by €4,
are strings of basis function symbols of §.
Step 3. M verifies that I is legal for some free interpretation I of §. If so, M
accepts 5. Otherwise, M halts without accepting,
By Proposition 2.8, M accepts §,. Moreover, M is polynomially time-bounded.
This follows since
(1) the lengths of each of the sentential forms Fy, b F,c;,. * -, b Fici, in T s less
thani{2np+1) - {m + 1)+ 1, where m is an upper bound on the lengths of the strings o, 5;
in the defining equations of §; and
(2) Ilislegalfor some interpretation /, if and only if, for each pair (b, Fii by Fiey)
of sentential forms in IT, if

br';F:',fJ,- : bi,'scaﬂ
i

bi Fici, == b 8.
G

Cr

i =Er'_.-s
then & = &',
Clearly conditions (1) and (2) can be checked deterministically in time bounded by
a polynomial in the size of §.
iiv) Let M be the nondeterministic Turing machine that operates as follows:
Step 1. M, given input (5, §°) checks if § and §' are Imr schemes. If not, M halts
without accepting.
Step 2. M converts § and §' into strongly equivalent Imr schemes §, and 51,
respectively, that satisfy the conditions of Proposition 2.9,
Step 3. M guesses a rightmost derivation IT of G,

FI — R ———1 blnEncfA — bjﬁ._|c1*—|
Ga, Gig, sy

and a rightmost derivation [1' of Gs;

- I il [r [
F TJT%* Gr‘n-v biFic, —GT‘-* B s
5 LN 51

where k +1 and [+ 1 are less than 3n°m?, and b, c._, # b} Ci...
[Here, n equals the maximum of the number of defining equations in § and §'; and m
equals the maximum of the lengths of the strings o; and 8, in any of the defining
equations of §; and §1.] .
Step 4. M verifies that both of I1 and IT' are legal for some interpretation._ If so, M
accepts (5, §'). Otherwise, M halts without accepting.
By Proposition 2.9 M accepts 54. Moreover, M is polynomially time-bounded,

40 H, B. HUNT [II. B. L. CONSTABLE AND 5 SAHMNI

This follows by reasoning analogous to that in the proof of {i; and is left to the
reader. Q.E.D.

CorowLary 2,11, The following sers are NP-complere .

{i) 1815 is an svp scheme; and S does not halt},

(1) {815 is an svp scheme ;, and § does not diverge),

(i} {(S, §")|5 and 8" are svp schemes; and they are not strongly equivalent};

{iv) {(5, §"1|S and §' are svp schemes; and they are not weakly equivalent};

(v} {8, 8|8 and §' are svp schemes; and § does not contain §'}; and

(vi} {{5, §')|§ and §° are lpop-free svp schemes; and § and 8§ are not strongly
equivalent}.

3. A deterministic polynomial time decidable eqguivalence problem.

3.1. Strongly free schemes. In & 2 we saw that the strong equivalence problem for
the svp schemes is NP-complete and thus is likely to be computationally intractable.
Here, we inquire if any interesting subclasses of the svp schemes have provably
deterministic polynomial time decidable strong equivalence problems. We note that the
proof above that strong equivalence for the svp schemes is NP-hard involves sieves of
predicates of the type appearing in Figure 3.1 where (a) some predicates, such as Py, Ps,
and P in Figure 3.1, test the same value twice; and (b) the sieve is a directed acyclic

F
D

E
L L]

i
T —
r
: v
p3 wee

Fig, 3.1

graph but not a tree. Schemes with predicates satisfying (a) have the property that not all
paths are executable and thus are unlikely to correspond to well-written computer
programs. This suggesis that we consider svp schemes which have no such predicates,

COMPUTATIONAL COMPLEXITY 405

Using the terminology of [4]. [10], svp schemes with no predicates satisfying (a) or.
equivalently, svp schemes in which all paths are executable are said to be free. Thus, we
are led to the question—

Q1: “Do free svp schemes have a deterministic polynomial time decidable strong
equivalence problem?”

Only a partial answer to question Q1 is presented here. We show that the class of
svp schemes in which no two predicates test the same value in a Herbrand inter-
pretation, called the strongly free schemes, has a deterministic polynomial time
decidable strong equivalence problem.

In a strongly free svp scheme there is a function application between any two
predicates. These schemes behave like deterministic finite automata; and our technigue
for showing that their strong equivalence problem is decidable deterministically in
polynomial time is to consider them as deterministic finite automata {as\dpscﬁbed
below). There is one nontrivial difficulty, however. A strongly free scheme § may have
redundant predicates, i.e. predicates whose left and right branches are equivalent. To
obtain a deterministic polynomial time strong equivalence test, we must find a deter-
ministic polynomial time redundancy test. This is accomplished by modifying the usual
state minimization algorithm for deterministic finite automata.

Before presenting the results of this section, we need some notation. Recall that the
value of a scheme § under interpretation H is denoted by val (S, H). We denote the
value of a scheme § under interpretation Ff starting with statement L, by val (S, H, Ly).
With every svp scheme S, we associate the three languages L(5), L°(S), and L°*(5)
defined as follows.

DeriniTion 3.2. The value language of an svp scheme §, denoted by L(%), is the
set {val (S, H)|H is a Herbrand interpretation for which § halts}.

Value languages were extensively used in [4].

DeFiNITION 3.3. Let § be an svp scheme. Let H be a Herbrand interpretation. The
computation string of § under H, denoted by Comp (5, H is the (possibly infinite) string

t =+ t 3
-t Em-l-lPi.h s P.,ﬂ!zP..ﬂi

such that each a; is a (possibly empty) string of function symbols of 8, P;, is either P; or
P, where P, is a predicate symbol of §, and

P} is P}, if and only if, (P,)" (a; - - - @) = True.

The computation language of S, denoted by L°(S), is the set {Comp (S, H)|H is a
Herbrand interpretation}. The terminating computation language of §, denoted by
L°%(S), is set {Comp (S, H)|H is a Herbrand interpretation for which § halts}.

The proof of the following lemma about terminating computation languages is left
to the reader.

LemMa 3.4. For sup schemes S, and 8, if L°*(8,) = L*®(S;), then

(i} 8§ and 5; halt for the same Herbrand interpretations ; and
(ii) for all Herbrand interpretations for which both 8, and 8§; kalt, Comp (§,, H) =
Comp (52, H).

Recall that an svp scheme S is said to be free if no predicate is tested twice with the
same argument values under any Herbrand interpretation. This implies that there must
be a function application between any two separate occurrences of the same predicate
test. We define a similar but stronger notion of freedom.

DerFmNITION 3.5, An svp scheme § is said to be strongly free if and only if no two
predicates test the same value in any Herbrand interpretation.

4016 (. B. HUNT NIL R. L. CONSTABLE AND 5. SAHNI

For strongly free svp schemes, there must be a function application between any
two predicate tests.
DerFnImioN 3.6, The occurrence of a predicate P in statement L ,inascheme 5, say

L. If Pix) then L, else L

is said to be superfluous, if and only if, val (8, H, L;) = val {§. H. L.\ for all Herbrand

interpretations H. More generally, two statements L, and L: in schemes §, and 53,
respectively, are said to be equivalent, if and only if, val (§,, H, Lyy=val(§;, H, L;) for
all Herbrand interpretations H. Finally, a scheme S is said to be reduced, if and only if, it
contains no superfluous predicate occurrences.

Our first theorem shows how reduced strongly free svp schemes can be charac-
terized by their terminating computation languages. It will be used to show how reduced
strongly free svp schemes behave like deterministic finite automata.

TueoreMm 3.7. IfS, and 8, are reduced strongly free sup schemes, then 8, =5 if and
only if L°® (81) =L "(S2).

Proof. (1) (=) Let §, = S;. We show that L°*(S§,) =L "(8,) by proof by contradic-
tion. Suppose L°™(8,) # L "(S2). Let x =x, - - ' Xy be a string in one of L°7(S,) and
L*(S,) but not both, say x e L7 (8.)-L (82} Let +' be the subsequence of x
obtained by deleting all predicate tests. Then. there exists & sITNg ¥ = ¥w "~ "~ %1 in
L°*(8,) such that

ja) letting y' be the subsequence of y obtained by deleting all predicate tests, we

have y' =x'; and

{b) no other string in L*(8,) satisfies (a) and agrees with x on a longer final

segment.
Such a string v exists since 1! =val (§,, H) for some Herbrand interpretation for which
S, halts and §, = 5, by assumption.

Let k (1=k=min(n, m)) be the least positive integer such that x, - X% #
yi - - *¥1- Let a be the string that results from xe -, - - % by deleting all predicate tests
(@ can be the empty string). Since x'=y'and §; and §; are strong free svp schemes,
both of x, and y, must be predicate tests. Suppose the test in x; is P; and the testin yi 1s
P, By assumption P; # P, Let the corresponding statements in §; and §. be

L, - If Pix) then L, else [.. and
L, 1 P,(x) then L} else L2,

respectively. Then L, cannot be equivalent to both of L! and L3, otherwise the
occurrence of P, in statement L, is superfluous. 5o suppose that L, and L) are not
equivalent. Then there is a Herbrand interpretation H, such that

val (S, Hu, L1) # val (Sz, Hy, L1).

Since §, and S, are free, we can alsochoose a Herbrand interpretation H, such that
Comp (8, Hil=" - Xe¥e-1 - X
Comp (S2, Hi) = -+ * ¥e¥k-1" " " Y-

Let H> be any Herbrand interpretation satisfying the following:
{A) For all proper suffixes a' of & and for all predicate symbols Py

(P)H(a'x) =(P) T a'x);

(B) (P.)"{ax)=True,
(C) (P,)"*(ax}=True; and

COMPUTATIONAL COMPLEXITY 407

1D For all strings o' = w'a such that « is a proper suffix of o " and for all predicate
symbols P,

LP;}H-'E_Q’.:; b= P) e,

Clearly such Herbrand interpretations exists. For each such Herbrand interpretation
H.,
val [5|, H:J # val |:5:. H:f.

contradicting the assumption that §; and §; are strongly equivalent. (2) (<), This
follows immediately from Lemma 3.4,

A reduced strongly free svp scheme § can be viewed as a deterministic finite
automaton A(S) accepting L°*(8). To see how this works, consider the reduced
strongly free svp scheme $; and its associated deterministic finite automaton A{S)
shown in Fig. 3.8. The alphabet of A(S,) is

={f for.fepi.fo1.fez. fep: k:

408 H. B. HUNT III, R. L. CONSTABLE AND S5 SAHNI

and the state set 15
K ={start, P}, P3, P1, halt, error},

where P} is the jth occurrence of predicate P, (in some arbitrary ordering of occur-
rences.) Finally in the state diagram of A(S,), we intend that all unlabeled edges be
implicitly labeled by those elements of £ not occurming as labels on outpoing edges.

Clearly the automaton A(S,) accepts the language L““(S,). Thus rephrasing
Theorem 3.7, for reduced strongly free svp schemes §, and §;, §; = §;, if and only if, the
associated deterministic finite automata A(S,) and A(S;) are equivalent. Noting that,
for a strongly free svp scheme §,, A(S,) is constructable from §,; deterministically in
polynomial time and that the equivalence problem for deterministic finite automata is
decidable deterministically in polynomial time [6], we have the following.

TueoreM 3.9, The strong equivalence problem for reduced strongly free sop schemes
is decidable deterministically in polynomial time.

3.2. Reducing strongly free lanov schemes in deterministic polynomial time. In
order to extend the equivalence algorithm to arbitrary strongly free lanov schemes, we
give a method of reducing such schemes. We can not simply regard these schemes § as
finite automata A(S) and then reduce A(S). The difficulty is illustrated by a simple
example which the reader can provide.

In order to decide whether a predicate test is superfluous we need to apply an
algorithm similar to the usual finite automaton reduction technigque. We search for
nonredundancy. When we find it, we attached the predicate value P; or P; tothe edges
leading from the state. Then we repeat the algorithm.

Informally the algorithm is the usual Moore type reduction algorithm on A(S)
except that if a predicate appears to be superfluous at stage n, that is, both branches lead
to states which are equivalent at stage n, then it is treated as superfluous (the predicate
label is not used in the equivalence algorithm). Whenever a suspected superfluous
predicate turns out to be necessary, then we restore the predicate label and recompute
the equivalence relation. This algorithm succeeds because if it is possible to reduce A(S)
and assume at every stage that a state is redundant, then it is really redundant (we prove
this in Theorem 3.12).

Before we can describe the reduction algorithm we need a number of conventions.
First, given scheme § and its associated automaton A(S) we associate with each state
the predicate P, of S corresponding to it. Labels from each state have the form yP;, yP;
for x, y e (f}*. To remiove a predicate from a label, say from xP; or yP;, means to
replace these labels by x or y respectively.

In the reduction algorithm we will consider various sets of labels for the edges of
the state diagram. At stage n of the algorithm we will use an alphabet denoted
1" :={aj, - -, ap,}. Forany state in the automaton A(S) associated with a strongly free
scheme §, at most two of these labels will apply (will lead to other than an error state).
Call these letters 0, (the predicate is false) and 1, (the predicate is true). After
predicates are removed from labels at a state, there may be only one label remaining.
This gives rise to a nondeterministic transition function &,

As in the Moore type minimization algorithm for finite automata (see [5, 6, 7]), we
will group states into blocks. The blocks at stage n of the algorithm will be denoted B/

The algorithm starts with two blocks, B} := {halt state}, B7 := {all nonhalt states},
and proceeds to split blocks into smaller blocks until no further splitting is possible. It is
possible to split a block B{ as long as condition ** given below holds:

w«* JaeX"Jg,, 52 B such that
&(s1,a)e B and &(s,, a) & B, for § the transition function of A(S).

COMPUTATIONAL COMPLEXITY 4049

That is. there are two states in a block which we can recognize as distinct
linequivalent) by one of §'s transition on the label g,

The informal algorithm is this.

REpucTion ALGORITHM 3.10. Start with X, Ai(8). Form £" as the set of labels
with predicates removed and A"(5) as the automaton with predicates removed from
labels ibut written on the states). Let B contain the half state and BY all non-halt
states. Let N be the srage number, initially N =0. Let &, be the {nondeterministic)
transition function arising from the & of A(S),

BEGIN REDUCTION ALGORITHM
initialize (set N =0, set up BY, BY).
while #+ do
begin (1) compute the output behavior of each state under £V (at stage N)
using each possible transition of &y,
{2} locate the non-redundant states at stage N, 1.e. 8.5, ale B and
Sxis, bie BY, i #f (possibly a = b).
(3) form a new set of labels, "', by restoring the predicates to the
labels on the outgoing edges of non-redundant states located in step
{2). The new automaton diagram is denoted A™*'(§).
{4) recompute the output behavior using AR .
(5) split blocks B to form blocks B™ "' by grouping only those states
of B which have the same output behaviour as computed in (4).
end
Redundant states are those whose outgoing edges do not have predicates restored
to their labels.
END REDUCTION ALGORITHM.

Given the reduced automaton, say A(S), we can construct from it a scheme §
having no redundant predicates, We remove each redundant state, say

L: if P then L, else L,

and connect all incoming edges to L, (that is, replace any goto L by goto L;}.
Combining this algorithm with the reduction algorithm, we have an algorithm for
transforming strongly free lanov schemes § to reduced strongly free lanov schemes §
{we prove this below). The application of Algorithm 3.10 is illustrated in Figs. 3.11a,
3.11b, and 3.11c.
Analysis of runiime. It is easy to see that the Reduction Algorithm is in the worst
case bounded above by O(|Z| - |[K|*). Consider the time for each step, the bounds are

(1} =[Z]- K] 2) s|K|] 3 =2 @) =3 |K| (5 =K.
So the worst case occurs when at most one state is split off of a block on each iteration.
Thus the worst case is
O(K|-[2-|Z]- |Ki+2 - K]+ [E|].
If we use a more efficient algorithm, such as Hoperoft [6] (also see Gries [5]). then
the time is O{|Z| - |K| - log (| K|)).

In any case this is a polynomial time bounded algorithm in either |K|, 2| or in |S].
We now summarize our knowledge n a theorem.

410

{&} {234 s}
The B} blocks are for i = 1,2,3,4,5:
Fic. 3.11A
|
B 82 8y 8 By
{s} {1} {2.3} {e} {s}
Fic. 3.11B

FiG. 3.11C

3.2.1. Correctness of the algorithms.
THEOREM 3.12. There is an algorithm whose runtime is no more than a polynomial

in |S| which produces the reduced scheme § given 8. Thar is,

(i) §=5 and
iii) § contains no redundant predicates.

COMPUTATIONAL COMPLEXITY 411

Proof. The time analysis given above shows that the algorithm is polvnomial in /S .
We need only show (i} and (i1). We first consider (i)

1) Clearly if a predicate P, remains in § then it is not redundant because the
algorithm produces an interpretation under which the true and false branches from P,
are distinct, So we need only show that if a predicate occurrence 1s removed, say at state
5 as

s:if P, then L, else L,

then that occurrence is really redundant. To prove this, suppose some predicate
occurrences were crroneously removed, say P, at state 5.+ +, P, at states 5;. Then
order these by the length of the interpretation under which the true and false branches
are distinct. Suppose P, is one with the least length interpretation. Then that inter-
pretation cannot involve another predicate erroneously removed in an essential wav.
That is, either the two computations, the true one which is x,x,, ., * - * x, or the false one,
Ye¥mi -+ ¥y either (a) do not contain any P, (erroneously removed predicates) or (b if
such a £, does occur, then the true branch from it to the halt state (x, or Vo)15 the same
as the false branch, because otherwise this P, would have a shorter interpretation
showing it to be nonredundant than P, dr.wx, cnntradicting the definition of P,. Thus in
eithcr case (a) or (b], the computations y,, - - - v, and x,, - - - x, appear already in some
A*(S). That is, neither computation requires the presence of an erroneously classified
predicate. Therefore, P, would be discovered to be nonredundant at some state & of the
reduction algorithm,

12} Finally, to show § = § we notice that § and S are nearly isomerphic. For every
state s of S there is a corresponding state § of § unless s is redundant. But if 5 is
redundant, then we know that the edges in § which by-pass s do not change
equivalence. The reader can prove this by carefully considering these “‘near iso-
maorphisms' under any Herbrand interpretation H.

We now state a fact about finite automata,

Fact 3.13. There is an O(Z| - n log (n)) time algorithm to decide the equivalence of
finite automata Sy, §; over £ where n =max (|K,|, |Ka|). K\, K. the state sets of §,, §-.

Using this we have the theorem we need.

THEOREM 3.14. There is a polynomial time bounded algorithm to decide the
equivalence of strongly free Tanov schemes.

3.2.2. Extension to predicate clusters. We now want to mention an extension of
the reduction and equivalence algorithms from strongly free lanov schemes to strongly
free lanov schemes with tree-like predicate clusters substituted for predicates. The idea
is to replace any tree-like cluster of predicates by a single multi-exit predicate.

Let S be a lanov scheme, then a cluster of predicates in § is a loop free subscheme of
§ containing no function applications and such that no edge can be extended without
including a function application. A iree-like cluster is such that the cluster is a tree whose
nodes are predicates,

Notice that in 4 free scheme no predicate can occur more than once on a path from
root to leaf in a cluster, but predicates may indeed oceur more than once.

We represent these clusters by multi-exit predicates and can make this assignment
of multi-exit predicates to clusters uniform if we choose a specified ordering of
predicates. For example, suppose we have P, Q, R, T. We then label all outputs in the
order P, Q. R, T.

To decide equivalence of free lanov schemes S1, S2 we convert the predicate
clusters to multi-exit predicates and then convert the result to a finite automaton, A(S),

412 H. B. HUNT UI, R. L. CONSTABLE AND 5 SAHNI

with labels on predicates given in a standard order. Even in the case of free Ianov
schemes, the generation of multi-exit predicates may require exponential time.

If all the predicate clusters in a lanov scheme are tree-like, then the multi-exit
predicate has the same number of exits as there are leaves in the tree, thus it can be
generated in polynomial time (in the number of edges) given the cluster.

We can use essentially the same type of reduction algorithm as before, but we must
be careful to say exactly when a predicate in a cluster is redundant on the basis of
information gathered about the multi-exit predicate in A(S).

During the reduction algorithm, the edges leaving a multi-exit predicate can be
grouped together into edge-groups, E¥(s); that is a stage N there maybe i=1,---,m
edge-groups associated with state s. We say that a predicate occurrence Q in a cluster C
is redundant with respect to the edge-groups E!" if for all sequences of predicate tests z,
such that 2,07y € E|” there is a sequence z, compatible with z, (no predicate P appears
as P in z, and P~ in z, or vice versa) such that z,Q y € E.". That is, Q does not affect
the decisions made by predicates tested after Q. For example, let the edge-groups be
labeled A, B, C and consider the tree-like predicate cluster and the equivalent
multi-exit predicate in Figs. 3.15a and 3.15b. The sequences in the edge-groups are

A B C
P-raf Pfo- Pv Q-r
P Q

Q
/\
P =
+ - + -
A c B c prot ot ptg” PqQ"
Fi1s. 3.15A Fig. 3.158B

Thus, the predicate @ is redundant with respect to edge-group C. (Therefore in the
reduction algorithm the labels P~ Q" and P~ Q" are replaced by P™.)

This example suggests how inefficient a predicate cluster might be. But we do not
need to consider methods of finding the minimum cluster equivalent to a given cluster in
order to obtain a polynomial equivalence algorithm. We only need a method of
eliminating the redundant predicates from the labels on outgoing edges of multi-exit
predicates.

This example is too simple to illustrate the difficulties in testing for redundant
predicate occurrences. It is not sufficient to see whether xQ ™y and xQ ™ y both appear in
an edge group. For example, consider the tree-like predicate cluster in Figure 3.16.
Then in edge-group B we have P Q "y, § R"Q y, R"Qy. S0 Q is redundant for B
because both S"R™ and R~ are compatible with P~.

In order to mimic the reduction algorithm for strongly free schemes, we need a
procedure to check for redundancy in predicate clusters given as assignment of
edge-groups (this assignment comes from the main algorithm).

COMPUTATIONAL COMPLEXITY 413

/
/‘.f'
'

F/\H

A B S B
o g

B

Fis, 3.1

3.2.3. Multi-exit nonredundancy procedure. Given predicate cluster C and edge-l
groups E;, - * -, E, to test whether a predicate occurrence Q inalabel onanedgein £ ;
is redundant, do the following:

begin
i1} locate Q in the cluster (let v be the path to Q).
(2) list all prefixes of the form z where zQ "y isin E/.
13} for each z in (2) check whether there is a prefix w
where {a) wQ yisin E
ibl w and z are compatible.
i4) if there is a w for each z, then @ is redundant, utherwise it is not and the
predicate is output.
end

The reader can now check the validity of the following claims.

ProposITION 3.17. A predicate occurrence Q in tree-like cluster C is nonredundant
with respect to edge group E, if the multi-exit redundancy procedure generates Q given C
and E,.

It is also easy to check that this procedure runs in polynomial time in the number of
predicates in the cluster,

ProposiTion 3.18. If tree-like predicate cluster C has n predicates, then the
multi-exit redundancy procedure runs in al most n’ steps.

4. Simple programs. We conclude by showing that the equivalence problems for
several very elementary programming languages are also NP-complete. First, we
consider the Loop 1 languages in [12], [14].

DerviTionN 4.1, A loop program is a finite sequence of instructions of the five
types: (1) Do x,(2) End, 3)x <0, (4) x <y, and (5) x «x + 1.

A subset of the variables used in a loop program is designated as the input variables
of the program. One variable is designated as the output variable of the program. Loop
programs compute functions of their input variables. We say that two loop programs are
equivalent if they compute the same function.

DerviTion 4.2, Forall i =4, 1, 2 - - -, L, is the class of all loop programs in which
the maximum level of nesting of Do statements equals i. The set Inequiv (L;) is the set of
all pairs of inequivalent [, programs.

Proprosimion 4.3, Inequiv (L) is NP-complete.

414 H. B. HUNT III, R. L. CONSTABLE AND 5. SAHNI

Proof. To show that Inequiv (L) is NP-hard, it suffices to show that 7, the set of
satisfiable C;-Boolean forms, is p-reducible to it. We show how, for each Cs-Boolean
form f, to efficiently construct an L, program IT; such that, for all assignments of initial
values toits input variables, the value of its output variable upon termination equals 0, if
and only if, f is not satisfiable.

Let f=cyacan -+ ncy where ¢, =¢;y venves and each cy is a literal. Let the

propositional variables of f be x,, - - -, x,. Then, the L, program I1; is constructed as
follows. The input variables of Iy are xy, - - -, x,.; and the output variable of I1; is z. The
program II; has the form—(A,, A5, - A, By, - B Dy, - -, Dy, z+0,ze2+1,

Do Ci, 2«0, End, - - - Do, C; z <0, End), where A, B, and D,, are program blocks
defined as follows:
(1) A; computes the value of &, the negation of x,

A is £ «0
Bei+1
Do x,
.ff'-ﬂ
End.

(2) B; computes the wvalue of the clause ¢, for any given values of
Xis® "y X 1,0 0, En. Weillustrate the construction of B; by an example. Suppose ¢, is
xyv X2V K3, then

E.' is c1 =0
DE}I1
C]{_ﬂ
crecp+1
End
Do #;
cy1=0
c1+=c +1
End
Do x5
cp+ 00
ci+=c1+1
End.

(3) D,, computes the value of &, the negation of ¢,

D, is 6o« 0
Cme=Cm+1
Doc,

Cp = 1)
End.

We leave it to the reader to verify that the program II; outputs a 1 for some
assignment of values to its input variables, if and only if, f is satisfiable. Otherwise, I1;
always outputs 0.

Finally, the fact that Inequiv (L,) is in NP follows immediately from Theorems 4
and 7in[14]. Q.E.D.

We note that the equivalence problem for L, programs can be solved deter-
ministically in linear time, and that the equivalence problem for I, programs is
undecidable [12].

e

COMPUTATIONAL COMPLEXITY 313

DerFiviTioN 4.4, Let v and v be nonnegative integers. Then,
=Y. ExEy.

K=y =
Iln_ otherwise,

DeFiviTION 4.5, 24 is the class of all programs consisting of a finite sequence of
instructions of the form (1) x,«x, +xg, and (2} x,+ 1 =x,, where x, and v, may be
nonnegative integer constants. #; is the class of all programs consisting of a finite
sequence of instructions of the forms x, « x, = xi, where x, and x. may be non-negative
integer constants.

#, and 2, programs compute functions in the obvious manner. We say that two &,
or P, programs are equivalent if they compute the same function. Inequiv | #) (Inequiv
(#5)) is the set of all pairs of inequivalent 2,(#,) programs.

ProrosiTiON 4.6, Inequiv {2#,) and Inequiv () are NP-complee.

Proof. (1) To show that Inequiv (#) is NP-hard, it suffices to show that J: is
p-reducible to it. This is accomplished by simulating the construction in the proof of
Proposition 4.3,

Let f=¢yncan- - acy, where ¢, =¢ veia v e and each ¢, 15 a literal. Let the
propositional variables of f be x;.- - -, x.. The #, program [l; has n input variables
Xy, ke output variable 2, and has the form—iA,. ---. A.8B.--,

B.D, - .D,.Pe1=¢, - Pe1=¢,) Here, A,, B, and D, are—

lay A, is%«~1+-x,

iby lettingc, =x, v £2v x5, B, is ¢, x, + %3, ¢, = ¢; + X3, and

ic) D,isfm+=1"ca

To show that Inequiv (2] is in NP, it suffices to note that there 15 a deterministic
polynomially time-bounded Turing machine M such that M, given a 2, program [l as
input, outputs an equivalent L, program IT". Thus, since Inequiv (L) is in NP, so is
Inequiv (#,).

M operates as follows. It replaces all instruction of the form v, ~ 1 —x, in [1 by the
program fragment

x,+
xe—x,+1
Loop x,
x,+ 1)

End

It replaces all instructions of the form x, < x, +x, in [l by the L, program fragment
I+x

Loop x;
xi+~x+1
End.

i2} The proof that Inequiv (#;) is NP-complete is similar and will not be presented
here. Details can be found in [2].

REFERENCES

(1] E. AsHCROFT, Z. MANNA AND A PEULL Decidable properties of monadic functonal sohesees, J
Assoc. Comput. Mach., 2001 1973), pp. 489-499.

[2] R. L. CoxsTaBrLe, H. B. Hunt 1, anpD S SAaHNL On the compuiationa! complexiny of sl
equivalence, TR-74-201, Department of Computer Science, Cornell University, Ithaca, NY. 1974

416 H. B. HUNT III, R, L. CONSTABLE AND 5. SAHNI

[3] S5 A.Cook, The complexity of thearem proving procedures, Proceedings Third Annual ACM Symposium
on Theory of Computing, May 1971, pp. 151-158.
[4] 5. 1. GARLAND AND D. C. LUCKHAM, Program schemes, recursion schemes, and formal languages, J.
Comput. System Sci. 7 (1973), pp. 119-160,
[3] D. GrIES, Describing an algorithm by Hoperoft, Acta Informas, 2 (1973), pp. 97-10%,
[6] I. E. HOPCROFT, An wlogn algorithm for minimizing states in a finite awtomaton, Theory of Machines
and Computations, 7. Kohavi and A Paz, eds., Academic Press, 1971, pp. 189-196.
[7] 1. E. HOPCROFT anp |, D, ULLsman, Formal Languages and Their Relation to Automara, Addison-
Wesley, Reading, MA, 1969,
[8] I lamowv, On logical algorithm schemata, Cybernetics Problems [, 1058,
[9] D. M. KAPLAN, Regular expressions and the equivalence of programs, JCS5, 4 {1969, pp. 361-386,
[10] D. C. LuckHam, D M. R. PaRK, AND M, 5, PATERSON, On formalized computer programs, Tbid., 4
(1969), pp. 220-249,
[11] Z. Manna, Program schemas, Currents in the Theory of Computing, A, V. Aho, ed., Prentice-Hall,
Englewood Cliffs, NI, 1973, pp. 90=142.
[12] A R MeEYER aND D, RiTcHIE, Computational complexity and program structure, IBM research paper,
May 15, 1967,
[13] M. PaTeERSON, Eguivalence problems in a model of computation, MIT Al Laboratory Technical
Memo. No. 1, Massachusetts Institute of Technology, Cambridge, Ma, 1970,
[14] D. TsicHRITZIS, The equivalerce probiem of simple programs, 1. Assoc. Comput. Mach., 17 (1970), pp.
729-738.

