Preemptive Scheduling of Uniform Processor Systems

TEOFILO GONZALEZ

The Pennsvivania State University, University Park, Pennsylvania
AND

SARTAJ SAHNI

University of Minnesota, Minneapolis, Minnesota

ABSTRACT. An Of(n) time algorithm is presented to obtain an cptimal finish time preemptive schedule for n
independent tasks on m uniform processors. This algorithm assumes that the tasks are initially ordered by
task length and that the uniform processors are ordered by processor speed.

KEY WORDS AND PHRASES: uniform processors, preemptive schedules, optimal finish time schedules,
independent tasks

CR CATEGORIES: 4.32, 5.39

1. Introduction

Let Py, P,, ..., P, be a system of m uniform processors and let the speed of P; be s,.
Without loss of generality we may assume s; = s, = - - - = 5,. » independent tasks are
to be scheduled on these m processors. Let ¢, be the length of (or processing time
required by) task /. We assume that ¢, = ¢, = -+ - = t,. The execution of task { on
processor P; requires t/s; time, 1 =/ = n and 1 =j < m. The finish time of a schedule
is the time at which all tasks*have been executed. A preemptive schedule is a schedule
in which one may suspend the execution of a task before its completion and resume its
execution at a later time (Possibly on a different processor). In a nonpreemptive
schedule the processing of a task on a given processor cannot be suspended until its
completion. An optimal finish time (OFT) preemptive (nonpreemptive) schedule is a
preemptive (nonpreemptive) schedule with minimum finish time among all feasible
preemptive (nonpreemptive) schedules for the given independent tasks and uniform
processors. The reader is referred to [2] for a more precise definition of these terms.

The problem of obtaining OFT nonpreemptive schedules for a uniform processor
system with m = 2 processors is known to be NP-complete (see Karp [7]). Liu and Liu
[8] present worst-case bounds on a simple heuristic that obtains approximately optimal
OFT schedules. Gonzalez, Ibarra, and Sahni [3] analyze the performance of an LPT
(largest processing time first) type heuristic for obtaining near optimal OFT nonpreemp-
tive schedules. Further approximation methods to obtain near optimal schedules for
uniform processors are given by Horowitz and Sahni [5].

In this paper we are concerned solely with obtaining OFT preemptive schedules. For
this problem Liu and Yang [9] have obtained the following bound on the length of an

This research was supported in part by the National Science Foundation under Grants DCR74-10081 and

MCS76-21024.

Authors” addresses: T. Gonzalez, Department of Computer Science, The Pennsylvania State University,
Liniversity Park, PA 16802: S. Sahni, Department of Computer Science, University of Minnesota, Minneap-
olis, MN 55455. ‘

Journal of the Association for Computing Machinery, Vol 23, No. b Junaary 1978 pp 92- 101

Preemprive Scheduling of Uniform Processor Systems 93

OFT schedule. Let w be the length of an OFT p;cemnme schedule, let T; = 3 £
let§; = ¥,i<;5;. and letn = m; then

w = max { max {T,/S;}, T,,/Sm} . (1)
1=j<iim

[9] also presents an algorithm that obtains an OFT schedule with this lower bound
length for the case s, = 1, 1 <<i =m ands, = 1. Horvath, Lam, and Sethi [6] adapt the
“critical path™ algorithm of Muntz and Coffman [11] to the uniform processor case and
obtain an O(mn?) time algorithm to obtain OFT preemptive schedules. Their algorithm
shows that (1) is in fact always an equality, i.e. the length w of an OFT schedule always
satisfies the equality:

w = max{ max {T;/S;}, T,i/S,,,}... . (2)

1=sj<m

The algorithm of [6] generates schedules with an excessive number of preemptions.
For n tasks and m processors, the schedules generated by this algorithm may have as
many as n*(m — 1) preemptions.

In this paper we first show that for any set of n independent tasks and any uniform
processor system with m = 1 processors, there exists an OFT schedule with at most
2(m — 1) preemptions. Hence, there exists a large gap between the worst-case number
of preemptions using the algorithm of Horvath et al. and the maximum number of
preemptions needed. Our proof that 2(m — 1) is the maximum number of preemptions
needed is constructive and it leads to an algorithm with this property. The time
complexity of the resulting algorithm is O(n). The complexity analysis does not include
the time to sort the tasks and processors into order by task length and processor speed,
respectively. If this is to be done then the complexity becomes O(n + m log n) since
our algorithm requires only the largest m tasks to be sorted (note that heap sort can be
used to obtain the m largest of a set of » numbers in O(m log n) time). This time can be
further reduced to O(n + m log m) since the mth largest task can be found in time O(n),
[1]. Having found this task, the m largest tasks can be found in time O(n) and then
sorted in time O(m log m). For the case of identical processors, our algorithm reduces
to that of McNaughton [10] and so generates OFT schedules with no more than
(m — 1) preemptions.

2. A Bound for the Maximum Number of Preemptions

In this section we show that every uniform processor system can be optimally scheduled
using at most 2(m — 1) preemptions. The proof of this is constructive. We exhibit an
algorithm that generates OFT schedules and show that the resulting schedules have at
most 2(m — 1) preemptions. Qur scheduling algorithm uses four scheduling rules, R1-
R4. It begins by scheduling tasks one at a time in order of nonincreasing task lengths.
Rules R1-R3 are used at this stage. The first task considered is one with largest length.
This continues until the next task to be scheduled satisfies one of two conditions (A1)
or (A2) (to be specified later). At this time, all unscheduled tasks are scheduled using
rule R4. The four rules are specified in a semiformal manner. The mathematical details
of the rules are relegated to Section 3, where the algorithm is presented formally. This
allows us to concentrate on the important features of the scheduling rules that result in
OFT schedules with at most 2(m — 1) preemptions.

Throughout this section and Section 3, we assume n = m. In case n < m then only
the fastest n processors need be considered and the remaining discarded. Before
presenting the rules, we develop some notation and state the conditions (A1) and (A2)

referred to above. / ={P;, P;,, ..., !’,ﬁ} will represent a subset of the m processors. We
shall denote by S, the quantity >, s,. It will be assumed that the n tasks are ordered
such thatt, =, = --- = 1,. T, waH ILpth(ﬂl the sum > % .. w will be the length of

an OFT schedule tor the given n tasks and m processors. w 1s given by (2). By rdle time .

94 . ' T. GONZALEZ AND S. SAHNI

on processor P; we shall mean time in the interval [0, w] when processor P; is not
processing any task. Thus, idle time is relative to a given partial schedule. We shall
denote by npl(iy, iy ..., i;) the number of preemptions in the processors

“P., Py, ..., P A disjoint processor system (DPS) is a set of r = 1 processors
P By wvsogr By such thatj, < i, = - -+ =, and processor P; is idle exactly from u;_, to
u;, 1 =j =r, for some uy, u,, ... , u, with the property uy = 0, u, = w, and u; | <
u;, 1 =j =< r. Note that the np(i, ..., [;) and a DPS are defined relative to a given
(partial) schedule.

For a given subset / of processors and a given partial schedule, J will represent the
subset of I consisting of those processors in [that have some idle time. k will be the
index of the next task to be scheduled by rules R1-R3. As we shall see, when task k is
to be scheduled, the cardinality of I will also be k. g, will denote the cardinality of J at
this time. The scheduling algorithm will begin with I = {P,} and k = 1. At this time no
tasks have been scheduled and so J = {P,} and J is a DPS. We shall see that the
application of rules R1-R3 will always leave J a DPS. Rules R1-R3 are applied until
the next task k to be scheduled is such that either

(ALY k=m
or

(A2) T./S; < w and 1, = sw where s is the speed of the slowest processor that is not
inl.

During the presentation of the rules R1-R3 we shall show that following the
scheduling of task k, the following hold:

(B1) the subset J of I is a DPS,

(B2) nply, iss «o 5 igs1) + Gesr — 1 < 2k where I = {P;, Py, ... , P}

The proof of this is by induction on k. Clearkly, when k = 0, no tasks have been
scheduled and I = {P,}. At this time J is a DPS, g, = 1 and both (B1} and (B2) hold.
" In describing the rules we shall assume that [is partitioned into two disjoint sets /1 =
(P, Py, ..., P} and I2={P,, P,,, ..., P,_} such that j + 1 # [, and [, < [,
< ++- < I,;. It is easy to see that this can always be done for any arbitrary set [of
processors. Depending on the relation between T/S, and w, one of rules R1-R3 will
be used to schedule the next task k.

Rule R1. Condition: T),/S, = w.

Since the processors in [with idle time form a DPS, task k can be scheduled to use
up all the idle time in /. Let P; be the fastest processor such that P; & I. Replace [by [
U {P;}. Note that now J = {P;} is a DPS.

Clearly, the number of preemptions increases by g, — 1 and g,., = 1. Hence we
have:

[F3)

npliy, ooy dked) + Qe — 1 = npliy, ooy g + g — 1=2(k — 1) <2k u

Rule R2. Condition: T../§, > w.

Let/ =[1UI2, I1={P, .., P}YandI2 = {P,, ..., P,_}. By definition of /1 and
12, Py, € 1. Also, I2 # & as otherwise j = k and T/S; = w. Rule R3 will be the only
rule that adds processors to I2. Since this addition is done by selecting the smallest
indexed processor r such that ¢/ > s,w where t' = ¢, is the length of the task being
scheduled and since P, € I, it follows that ¢, =< s;,,w. Furthermore, this implies that
the DPS in must include at least one of the processors in /2 as otherwise T,./S, = w.

Having made these observations we readily see that task k may be scheduled as
shown in Figure 1. This figure shows only the DPS J = {P,, ..., P, } of I and the
processor P;,,. The unshaded regions represent idle time in the interval [0, w] before
task k is scheduled. In scheduling this task, all the idle time in /1 is used up. All this
idle time can be used since T./S, > w. Enough idle time from [, is used so that the
remaining processors with idle time form a DPS. The observation f;, = s;.,w guarantees
that task k may be so scheduled. If the processing of task k is assigned to P;,, and to k'
of the processors in J then the number of preemptions increases by k’ and the DPS left

Preempiive Scheduling of Uniform Processor Systems

9 A

s, Y%

Processors in J from Il

Pac+l ///A k 7////// Processors in J from I2

G,

e
Fa /A
Fig. 1. Scheduling task k& under rule R2

=

kl

behind consists of at most ¢, — &' + 2 processors. Hence, replacing [by 7 U {P;,.,} we
have:

Ap(iy, ooy bger) T Gieey — 1= npliy, o0, 4y)
tkT A gk 2-1=2k 1)+ 2 =2k

One may readily verify that the new J satisfies B1. The exact distribution of task k
“over the processors will be specified in Section 3. At this time it is sufficient to realize
that the distribution can be done in the manner described above, ['

Rule R3. Condition: T,/S, < w.

Let P; be the highest indexed processor such that P, & [and 1, > s;w. One may show
that j is larger than the largest index of a processor in I. To see this, let P, be the
largest indexed processor in /. If P, was included in an application of either R1 or R2
or if r = 1 then clearly P, € [for alli < r. Hence j must be greater than r. If P, is
included during an application of R3 then let k' be the value of & when P, is included.
From R3 it follows that 1, < s for all i < r and P; & I. Hence, if t, > sw, j=>r.
Also, note that since (A2) does not hold for task k, P; must exist. Task « is assigned to
P; and to some of the processors J = {P, , ...} in / that form a DPS. Figure 2 shows the
processor P; and the set J. The assignment is carried out in such a way as to leave
behind a DPS. Clearly, the conditions under which this rule is applied guarantee that
this may be done. The details are left to the algorithm. Unshaded areas in the figure
represent idle time before task & is scheduled.

1 is replaced by I U {P;}. The analysis showing that np{i,, ... , ipi} + gryy — 1 = 2k is
Adentical to that for rule R2. One may readily verify that the new / has all the desired
properties. [)

Rule R4. Condition k = m or (1, = spw for all Py notin /] and T,/S, = w).

First, let us assume k # m. Let P., P, be the processors not in [, ordered so
that ry = ry = -+ = ;. Let i be the smallest index such that Y, 1, = w Foigyardy e B
there is no such i, leti = n.

96 :) -) T. GONZALEZ AND S. SAHNI

7N
N, A

A s

A0
N

P k

idle time after task k is scheduled

k' processors of J

Fic. 2. Scheduling task k& under rule R3

(i) When i t; =W 212y, then the tasks k, k + 1, ...,/ may be scheduled on
P, P, ..., P, using a procedure similar to that suggested by McNaughton [10] for
identical processors. Processors are scheduled in the order P, before P, before P, ,
etc. Each processor is scheduled right to left (Figure 3). Since for any task k' withk =
k' i and processor P; with r, < r; = r, we have tp, = ws,, it follows that if k' is
preempted, it can be completed on the next processor without any overlap in processing.
The scheduling of tasks k, & + 1, ..., i in this way introduces at most |
preemptions. If i # n then Y,cicit; = W <= 5, and by definition of w, the remaining
tasksi + 1, ... , n may be trivially scheduled on the g, processors forming the DPS of /.
This is similar to Figure 4 and introduces at most another ¢, — 1 preemptions. Hence,
in this case, at most g, + / — 2 additional preemptions are needed. Since the cardinality
of [isk, { = m — k. For the partial schedule created by rules R1-R3 we have from
(B2):]
nP(fu igs e s Ik) + e — 1= 2(k = 1)

Hence, for the complete schedule resulting from the application of rule 4 we have:
np(1, 2, eom) =2k -V —gqrtl+q+m—k—-—2=m+k-1=2m-1).

(ii) If Y4ej=it; > w ¥ s, then all but the ith task may be scheduled on P, , P,,
P, as described in Figure 3. A fraction of task / to fit the remaining space on P, is
scheduled on P, . The rest of task i is scheduled on the DPS of I beginning with the
fastest processor in / (Figure 4). In this figure, the processors in [are drawn in
nondecreasing order of speed. To see that task i can be so scheduled without
overlapping its processing on P, , let P, be the last (slowest) processor in the DPS of /
on which task i also gets scheduled. If s,. = s,, then this follows from the fact that T/ S,
= w and t; = t,. When s, > s,, the nonoverlap is ensured by the condition ¢, =
t; = s,w. The remaining tasks / + 1, ..., n may now be trivially scheduled in the idle
time remaining on the processors that formed the DPS of /. This is similar to scheduling
tasksi + 1, ..., n in case (i). Once again, before the application of rule R4, we have:

apliy, iy oo s i) + g — 1= 2(k = 1).

The scheduling above introduces at most [+ k' — 1 preemptions for the tasks k, ... ,
i and another g, — k' for the remaining tasks. Hence, for the complete schedule we

have:

Preemptive Scheduling of Uniform Processor Systems 97

14 k+1 k
T
P k+3 k+2 k+1
L
2
x x-1 x-2
Pr i o x+1 x
A
Fig. 3. Schedulingon P,, ..., P,

SN N 77700044/
AR

A 2
vt

Fic. 4. Completing task in the DPS of [

np(1,2, m)<2k -1 —qge+1+gi+m—-k—-1=m+k—2<2m-1).

(iti) When & = m, the tasks k, ... , n have to be scheduled on the DPS of /. From
the definition of w, there is enough space here for this. The scheduling is similar to the
DPS scheduling of (i). At most g, — 1 preemptions are introduced. Hence, we have

np(1,2, ... m=2m -1 —q,+1+qg,—1=2(m - 1). a

The analysis of the above rules leads to the following theorem:

THEOREM. For every system of m uniform processors and n tasks there exists an
OFT schedule with at most 2(m — 1) preemptions.

It is interesting to note that if all processors are identical then condition (A2) holds
for k = 1 and the theorem calls only for the application of R4. R4 in this case behaves
exactly as McNaughton’s rule [10] and so at most im — 1 preemptions are introduced.
The following example shows that for every m, there exists a system of m uniform
processors and m tasks such that every OFT schedule requires at least 2(m — 1)
preemptions. Hence, the bound of the theorem is tight.

Example. Letk > 1, s;,=k, 1=i<m,ands, = 1. Lett;=k —(k — 1)/m, 1 =i
=m.

For this system we have T/§; <1, 1 =i <m, and T,,/S,, = 1. Hence,w = | and in
every OFT schedule, none of the m processors is idle in the interval [0, 1]. As a result
of this, all m tasks must finish at the same time. If this is to happen then each of the m
tasks must spend some time on P,. Let the sequence of task executions of P, in an
OFT schedule with minimum preemptions be «,, @, ... , a, where p = m. Clearly, for

98 T. GONZALEZ AND S. SAHNI

tasks a; and «, there is at least one preemption and for the remaining tasks at least two
preemptions. Hence, the total number of preemptions is at least 2(m — 1). O

3. The Algorithm

Our algorithm to obtain an OFT schedule with at most 2(m — 1) preemptions is simply
a restatement of rules R1-R4. It is presented as a series of five procedures: SCH,
RULE_R1, RULE R2, RULE_R3, and RULE_R4. SCH schedules n tasks on m
uniform processors. We may assume n = m. SCH makes use of RULE_R1, RULE_R2,
RULE_R3, and RULE_R4. Since these four procedures are invoked only from one
point in SCH, any implementation of these five procedures would probably combine all
five procedures into one.

Before presenting the procedures, we describe the significance of various variable
names and also the data structures used. Procedure SCH obtains an OFT schedule for
n tasks on m processors. The length of this schedule is at most w. The task times are
T{1) = T(2) = - = T(n) and the processor speeds are §(1) = §(2) = -+ = 5(m). Using
the notation of Section 2, we represent the set f = /1 U 72 using different representations
for /1 and J2. [1 is simply represented by the integer j which is the highest index of a
processor in /1. [2 is represented as a singly linked list where each node has exactly
one field: LINK. f points to the first node in this list and e to the last node. s is the
index of the slowest processor not in /. When the processor with index m has been
included in [then either the next task to be scheduled has index m or for the next task
k we have T(k) << wS(s). In either case application of rules R1-R3 terminates. Hence it
is sufficient to just set §(m + 1) = M for some number M for which T(k) < wM. This is
done in line 4.

The DPS of / is represented as a sequential list in the one-dimensional array D with p
and g being pointers to the first and last elements in the DPS, respectively. The DPS is
made up of processors D(p), D(p + 1), ..., D(g) and S(D(p)) = S(Dp + 1) = -+ =
S(D(q)). Since the DPS will always have at least one processor, it isn’t necessary to
explicitly check for an empty DPS. Another one-dimensional array F is used to indicate
the end of the idle interval on a processor in the DPS. Thus processor D(q) is idle from
0to Flg) and if p # g then processor D{i) is idle from Fi + 1) to F(i), p =i < g.

To aid in the implementation of 1ule R3 the variable v is used. At any time v is the
largest index such that P, € | .~

For each task being sciieduled, tite output includes a list of processors together with
the time for which the task is to be processed on each processor.

The procedures for the four rules are written with no parameters as they will actually
be written into SCH. Hence, all variable names have the same meaning as in SCH. w is
as given by (2). The procedures are written in SPARKS. The reader unfamiliar with
some of the constructs used is referred to [4] for clarification.

procedure SCH(n, m, T, S, w)
#obtain an OFT schedule with length less than or equal to w#
1 declare T(n), Stm + 1) LINK(m), D(m). F(m)
2 je«1; f < 0 Zinitialize /1 and /2 %
3 Dip) «—p « g < 1; Flp) «— w Finitialize DPS#
4 Sim + 1)« T(l)/w + 1, 5 & m
5 T, e T(1); 85« Sk <1
#use rules RI-R3,7
6 while k < m and (T,/S, = w or T(k) > w * 5(s)) do
7 print{**Schedule for task™, k)
8 case
9 :T,/S, = weeall RULE R1
10 T,/S, > wicall RULE R2
11 T,/8, < wieall RULE R3
2 end
13: kek+1;Tre=T+ Tk

Preemptive Scheduling of Uniform Processor Systems 99

14 end
15 call RULE_R4
16 end SCH

procedure RULE_R1
#schedule task k when T,/S, = w/#

1 Tl1<0

2 fori < g top by —1 do Fuse up DPS/#

3 print(*‘Processor’, D(i), “From”, T1, “To", F(i))
4 T1 « Fi)

5 end

6 jej+lipe—ge1;8 <5+ 8 Al —1U{P.}/
7 D(p) « j; F(p) « w #update DPS/

8 whilej + 1 = f do Zupdate 1 and /27

9 jej+1

10 [= LINK(f)

11 end

12 end RULE_RI1

procedure RULE _R2
#schedule task k when T,/S, > w/#

1 Tl <0

2 while D(p) = j do Ause up processors from /, #

3 print(*‘Processor”, D(p), “From”, Flp + 1), “To". F(p))
4 T1«T1 + (Fip) — Fip + 1)) * S(D(p))

5 pp+1

6 end

7 Flg + 1) <0

#use some processors from /27
8 while T(k) — T1 — (Fp) — Flp + 1)) * S(D(p)) > S(+ 1) * Fp + 1) do

9 print(*“Processor™, D(p), “From™, Fp + 1), “To", F(p))
10 T1«T1 + (Flp) — Flp + 1)} * S(D{p)

11 p+—p+1

12 end

13 T2« (Tth) — T1 = Fip) = SN/ (SG + 1) = S(D(p))

14 print(“‘Processor”™, j + 1, “From”, 0", “To™, T2)

15 print(“‘Processor™, D(p), “From™, T2, “To", F(p))

16 ifT2+ Flp + 1) then [Flp) « T2;:p «—p — 1]

17 j«j+ 1; D(p) < j; Fip) «—w; §, < 5, + S(j) #update DPS and 17
18 while j + 1 = fdo Fupdate /1 and /27

19 jej+1
20 f < LINK()
21 end

22 end RULE_R2

The algorithm for rule R2 begins by scheduling the task k preemptively on the
processors of /1. This is done in lines 2-6. From the discussion of this rule in Section 2,
we know that /2 is not empty and that not all of task k can be scheduled in /1. T1
denotes the amount of processing that has been thus far assigned to processors. Lines
8-12 use up all idle time on prdcessors in /2 until we reach a processor Py, that
permits the construction of the new DPS. The condition of line 8 correctly determines
this processor. Line 13 allocates the remaining processing to P;,, and Py, in such a
way that the processors of / with idle time form a DPS. Thus task & is scheduled on P;.,
from time 0 to time T2 and on Py, from T2 to F(p). T2 must therefore satisfy the
following equality:

T1 + T2=*8G + 1) + (Fp) — T2) * S(D(p)) = T(k),
from which we get
T2 =(T(k) — T1 — Fip) = S(D)/(SG + 1) — S(D(p))).

Lines 16-21 simply update the DPS, /1, and /2. Note that the values of v and s
remain unchanged.

100 T. GONZALEZ AND S. SAHNI

In the algorithm for rule R3 lines 1-3 determine the next processor to include in /.
Lines 4-8 update /1 or /2. From the definition of v it follows that if /1 is being updated
then /2 must be empty. In line 9 s is updated tom + 1 in case the slowest processor P,
has been included. It is now the case that for the remaining tasks the task time is less
than the processor time available on any processor not in /. T1 represents the real time
up to which the schedule for task & has been built and T2 represents the amount of
T(k) that has been scheduled up to time T1. T3 is the processing capability left on the
next processor P, to be considered. If the entire capability 73 is used then to
schedule the remainder of task & on P, we will have to schedule task k on P, from T4
to w. The three cases of lines 14-25 appropriately schedule task k. In case T4 = Flg)
then it is necessary to use the entire interval from T1 to F(g) on Pp,. If T4 = Flg) then
the processing of task k can be completed on P from T4 to w. This will leave behind a
DPS (Figure 2). If T4 < F(g) then more of task & has to be scheduled on the DPS of /.
When T4 > F(g) then not all of the idle time on Py, is to be used. In this case we
determine a time TS such that if k is processed on Py, from T1 to TS then it can be
completed on P, from T5 to w. This would leave behind a DPS in /. T'5 must be such
that the processing on Py, (i.e. (TS — T1) = §(D(g))) plus the processing on P, (i.e.
(w — T5) * S(v)) equals the remaining processing requirement of task k (i.e. T(k) —
T2). Solving for TS we get

TS = (T(k) — T2 + T1 * S(D(g)) — wS(v))/(S(D(g)) — S(v)).

procedure RULE_R3
#schedule task k when T,/S, < w and T(k) > sw/#

1 repeat #find processor to include in [/

2 vey + 1

3 until T(k) > S(v) * w

4 if v =j + 1 then [j « v] Zupdate [1#

5 else [Aupdate 12/

6 LINK(v) «< 0

7 iff=0then[f «e «v]

8 else [LINK(e) «—v;e < v]]
9 ifv =m then[s —m + 1]; 5, < S; + S(v)

#schedule task k7
10 T1 T2« 0

11 repeat

12 T3 « (Flg) — T1) * S(D(g))

13 T4 —w — (T(k) — T2 — T3)/S(v)

14 case

15 :T4 < Flg):print(*‘Processor”, D(g), “From™, T'1, “To", Fig))
16 ge—g—1;, T2« T2+ T3; T1 « Fg)

17 :T4 = Flg):print(*Processor”, D(g), “From™, T'l, “Ta", Fg))
18 print(“Processor”, v, “From”, F(g), "“To", w)

19 D(g) < v: return

20 ‘T4 > Fg):T5 < (T(k) — T2 + T1 = S5(D(q)) — w= S(v)/(5(D(q)) — S(v))
21 print(*“Processor™, D(g), “From™. T1, “To™, T5)
22 print(“‘Processor™, v, “From™, T'5, “To". w)

23 qg<gq + 1, Dig)«v; Flg) < T35

24 return

25 end

26 forever

27 end RULE_R3

The last procedure, RULE_R4, is straightforward and so is not presented.

ANALYSIS OF THE SCHEDULING ALGORITHM. First, let us analyze RULE_RI
through RULE_R3. Since at most m processors can enter the DPS, the total time for
DPS additions and deletions is O(m). The same reasoning leads us to conclude that the
total update time for /1 and /2 (lines 8-11 of RULE_R1 and lines 18-21 of RULE_R2)
s also O(m). The remaining portions of these three procedures takes Q(1) for each call

Preemptive Scheduling of Uniform Pracessor Systems 101

of the procedure. Since the total number of calls is at most m, the total time spent in

these three procedures is O(m).

The procedure RULE_R4 may be easily implemented to work in O(n) time. Hence,
the time complexity of SCH is O(n + m). Since we may assume n = m, We have O(n)
as the complexity of SCH. O

REFERENCES
1. Bium, M., FLoyp, R.W., Pratt, V.R., RivesT, R.L., anD Tarian, R.E. Time bounds for selection. J
Comptr. Syst. Sci. 7,4 (1972}, 448-461.
2. CorrMan, E.G. Jr. Computer and Job Shop Scheduling Theory. Wiley, New York, 1976.
3. Gonzarez, T., Isarra, O.H., anp SannI, S. Bounds for LPT schedules on uniform processors. SIAM
J. Comptng. 5,1 (1977), 155-166.
4. Horowitz, E., AND Sannt, S. Fundamentals of Data Structures. Computer Science Press. Woodland
Hills, Calif., 1976.
5. Horowriz, E., anp Sanni, S. Exact and approximate algorithms for scheduling nonidentical processors.
J. ACM 23,2 (April 1976), 317-327.
6. HorvaTl, E.C., LaM, S., axDp SETHI, R. A level algorithm for preemptive scheduling. J O ACM 24, 1
(Jan. 1977), 32-43.
7. Kare, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.
8. Liu, J.W.S., anp Liu, C.L. Bounds on scheduling algorithms for heterogeneous computing systems.
Information Processing 74, North-Holland Pub. Co.., Amsterdam, 1974, pp. 349-353.
9. Liv, J.W.S., aND YANG, A. Optimal scheduling of independent tasks on heterogeneous computing
systems. Proc. ACM Annual Conf., San Diego, Calif., Nov. 1974, pp. 38-45.
10. McNaucuTon, R. Scheduling with deadlines and loss functions. Manage. Sci. 6 (1959), 1-12.
11. Muntz, R.R.. anp CorrMan, E.G. Preemptive scheduling of real time rtasks on multiprocessor
systems. J. ACM 17, 2 (April 1970), 324-338.

RECEIVED MAY 19706; REVISED MARCH 1977

Journal of the Assoctation for Computing Machinery, Vol. 25, No. 1. January 1978

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010

