Preemptive Scheduling of Independent Jobs with _
Release and Due Times on Open, Flow and Job |
Shops

YOOKUN CHO

University of Minnesota, Minneapolis, Minnesota

SARTAJ SAHNI
University of Minnesota, Minneapolis, Minnesota
(Received November 1978; accepted October 1980)

We study the problem of obtaining feasible preemptive schedules for inde-
Pendent jobs. It is assumed that each job has associated with it a release and
due time. No job can begin before its release time. All jobs must be completed
by their respective due times. It is shown that determining the existence of
feasible preemptive schedules for two processor flow and job shops is NP-
hard in the strong sense even when all jobs have the same due time. A linear
Programming formulation for the open shop problem is obtained. Also, a fast
polynomial time algorithm is obtained for a restricted class of open shop
problems.

HZ THIS PAPER we study the problem of preemptively scheduling n

independent jobs, with release and due times, on m processor flow
shops, job shops and open shops. We are concerned with determining the
computational difficulty of deciding whether or not all the jobs can be
scheduled to finish by their respective due times (of course, no job can be
processed before its release time). This problem arises in many real life
situations. For example, in a production shop we may have a list of
“open” (ie. as yet uncompleted) jobs. Each job has several remaining
tasks and a delivery date, We would like to know if all the jobs on hand
can be completed by the promised delivery dates,

the case when there are only two distinct release times and all jobs have
the same due time.
A shop is an ordered set {P, P3, ..., P,) of m = 1 processors (or
machines). n jobs are to be scheduled on these processors. In the case of
511

0030-364X/81/2903-0511 §01.25

Operations Research
© 1981 Operations Research Society of America

Vol. 29, No. 3, May-June 1981

512 Cho and Sahnj

flow shops and open shops, each job has m tasks associated with it. The
task time for task j of Job i is denoted by t:,. Task j is to be processed on
processor P, 1 < j < m. In the case of an open shop, tasks may be
Processed in any order. In the case of a flow shop, task J of job ¢ cannot
start until task j — 1 of that Job has completed. In the case of a job shop
there is a processor P(i, j) associated with each task and job. The jth
task of job i is to be processed on P,,,. Task J cannot start until task
J — 1 has completed. A job may have any number of tasks,

1 has been solved earlier. For the case of flow shops, Johnson (1954) has
an O(n log n) algorithm that can be used when m = 2. His algorithm
works for both Preemptive and nonpreemptive schedules. When m > 2,
it is known that determining the existence of feasible schedules (either
Preemptive or nonpreemptive) is NP-hard in the strong sense (see Garey
et al. [1976], Gonzalez and Sahni [1978]). The term NP-hard in the strong
sense is defined by Garey and Johnson (1978). Informally, a problem Z, is
NP-hard in the strong sense if it remains NP-hard even when restricted

an ordinary NP-hard problem and one which ig NP-hard in the strong
sense is important because some NP-hard problems can be solved by a
pseudo-polynomial time algorithm (i.e. an algorithm whose complexity is

Preemptive Scheduling 513

obtaining preemptive or nonpreemptive feasible schedules is NP-hard in
the strong sense for any fixed m, m > 1, p = g = L. The preemptive
scheduling problem for open shops can be solved in polynomial time
when r = d = 1 (see Gonzalez and Sahnj [1976]). The nonpreemptive
scheduling problem can be solved in 0(n) time when m = 2, r=1 and
d =1, and is NP-hard when m > 2 (see Gonzalez and Sahnj [1976]). It is
NP-hard in the strong-sense when m = 2 and many releage times are
allowed. It is also known that when m = 2,r=2andd=1 then the
nonpreemptive scheduling problem is NP-hard for flow and job shops
(see Lenstra et al. [1977]).

In this paper we extend the results stated above, First, we show that
the preemptive scheduling problem for flow shops (and hence also job
shops) is NP-hard in the strong sense when m=2 d=1 and many
release times exist. We also show that this problem remaing NP-hard for
flow shops when m = 2,r=2and d=1.

Next, we turn our attention to open shops. It was shown by Graham et
al. (1977) that the nonpreemptive scheduling problem for open shops is
NP-hard when m = 2,r=2andqg=1. For the pPreemptive case, we
obtain a linear programming formulation for the case m = 2,r=1and

solution to the linear program can be used in conjunction with the
polynomial time DPreemptive scheduling algorithm of Gonzalez (1978),
and Gonzalez and Sahnij (1976) to obtain a breemptive schedule. In case
there is no preemptive schedule for a given problem Instance then the

Feasible Preemptive open shop schedules can be found in polynomial
aEms&mSmxwﬁ,Snm‘wVHmsmanHE.SVNN,HM
and d = 1. In Cho and Sahni (1978) we have developed the algorithm for
thecasem =2 r>1anq d=1. Subsequently, Lawler et al. (unpublished)
have obtained a simpler and more efficient (i.e., 0(n)) algorithm. In this
paper, we present our Polynomial time algorithm for the case =2

Finally, we look at a class of restricted preemptive schedules for open
shops. In this restriction one is not permitted to schedule a new task for
any job j unless all previously scheduled tasks of this job have been
completed. It is shown that obtaining feasible schedules satisfying this
restriction is NP-hard even when m = 3, r=d = 1. This should be
contrasted with the polynomial time algorithm of Gonzalez and Sahni
(1976) for the case when this restriction is not imposed.

514 Cho and Sahni

In order to show our problems NP-hard, we make use of the following
known NP-hard problem (Karp [1972]):

PARTITION. Given a multi set of n Dositive integers, a, 1l =i<nand
Yiia=2T determine if there exists a subset I sych, that Yoo, = T

For the strong NP-hard hardness result the following problem which
is known to be NP-hard in the strong sense (Garey et al.) is used:

3-PARTITION. Given a Dositive integer B and q multiset A of positive
integers A = {a, -+-, a,) with p = 3n, X% a = nB and B/4 < q, <
B/2 for1=<i< P, does there exist q Ppartition of A into 3 element sets
{Ay, -+, A,) such that Yucs, a = Biori =il . lye

be found in the paper by Garey and Johnson, Graham et al. contains a
good survey of recent results n scheduling theory.

1. FLOW SHOPS AND JOB SHOPS

THEOREM 1. For flow shops, the Preempiive scheduling problem is NP-
hard in the strong sense when m = 2,d=1and an arbitrary number of
release times are Dermitted.

Proof. Let A = {a, @, « .., &%), p=3nand B define an instance of the
3-partition problem. We may assume Y, @; = nB. From this instance
construct the following two processor m + n + 2 job flow shop instance:

tii = 2a;, tiz = a, l=ism; release time ig Ri=0

tm+i1 = B, tm+iz = 2B, release time is 3(i — 1)B, =<5
Imins11 = 0, Im+nt12 = B, release time is Ri=0

bnin+21 = B, tmtntzz = 0, release time is 3nB.

The common due time is (35 + 1)B. Note that since SER g = Y
ti2 = (3n + 1)B, there can be no idle time on either P, or P, in any feasible
schedule for the above flow shop instance. We shall show that there is a

construct a preemptive schedule as in Figure 1.
Now, suppose there is a feasible schedule S. Job m + n + 2 must be

Preemptive Scheduling 515

units will be free on P, to schedule other Jobs. The free time on P; in this
same interval is 2B — x. No job with index Jsm<j=m+ n can be
started in this interval on P; as there is not enough free time on P, in this
interval to process ¢, = 2B > B — . Therefore, only jobs with indices I
J = m may be started in the free time in the interval [3(n — 1)B + B + %!
3(n + 1)B] of P,. The sum of their P; processing requirements is at least
(2B — x)/2. No portion of this can be done before 3(n — 1)B + B + x. But
there is only B — x < B — x/2 free time on P; after 3(n — 1)B + B + x.
Hence, we must have x = 0 and only tasks with indices J»J < m can be
scheduled in the free time in the interval [3(n — 1)B + B, (3n + 1)B].
The preemptions of task 2 of job m + n are easily eliminated (i.e., just
slide the preempted pieces together by leftward shifts; this will move jobs
scheduled in between preempted pieces of job m + n to the right), and
we can assume job m + n is scheduled as in Figure 1. The free time on P,
from 3nB to (3n + 1)B is reserved for the jobs scheduled on P, from
3(n — 1)B + B to 3nB.

By repeatedly using the above argument we see that there is no feasible

B 4B 6B B s 3(n-2)B -3(n-1)B 3nB (3n+1)B
m+2 >M m+3 wh i m+n-1|
__J 2 _»m
Figure 1

schedule for the m + n + 2 Jobs unless there is one in which jobs j, m <
J=m+nandj=m+n+ 2 are scheduled as in Figure 1. It is now clear
that job m + n + 1 must also be scheduled as in Figure 1. Now consider
the free slots left to right. The only way to fill up the slot on P,
corresponding to A, is by scheduling a job set A; on Py in [B, 3B]
with 2Y.c4, @ = 2B or Yaea, @ = B. This is also true for each of the slots
Az, A, .+ A, Hence, the existence of a feasible schedule S implies that
there is a 3-partition of the multiset 4.

Thus, there exists a feasible schedule for the m + n + 2 jobs constructed
above iff there is a 3-partition of A

We know that obtaining preemptive schedules for job shops is NP-
hard in the strong sense whenm = 2, r=land d = 1 (see Gonzalez and
Sahni [1978]). For the flow shop problem however, the problem is solvable
in 0(n log n) time when m = 2,r=1and d = 1. This leaves us with the
question: Is the problem of obtaining preemptive schedules for flow shops
NP-hard for any fixed r? This question is answered in the affirmative by
the following theorem.

THEOREM 2. Determining the existence of preemptive feasible schedules

516 Cho and Sahni

for a flow shop with m = 2 js NP-hard even when the problem instances
are restricted tor = 2 and d = 1.

Proof. The proof of this theorem makes use of the partition problem.
Let {a1, a3, -- ., @,} be any instance of the partition problem.

Assume Y7, a; = 27 Construct the following n + 3 Jjob flow shop
instance FS:

Ly = 2a,, L2 = a;, l=i1=n
th11 = 0, therz = 2T
bitoy =T, thizg =0
bniay = ma“ bnisz = 2T,

7

Figure 2

Jobs 1, 2/.... n 49 have a release time R; = 0 while Jjobn + 3 has a
release time R, = 27 The due time for all jobs is D = gT.

Note that since ey L 67, neither P, nor P, can have
any idle time in any feasible schedule for FS,

It is easy to see that if the a/s have a partition then there exists a
schedule for the n + 3 jobs (in fact there is a honpreemptive schedule).
We shall now show that if there exists a preemptive schedule then the
@'s have a partition.

Suppose that there exists a preemptive schedule S. It should be easy to
see that all preemptions of jobsn + landn + 2 may be removed from S
and there exists a schedule S in which job n + 1 is scheduled on P, from
0 to T while job n + 2 is scheduled on P, from 57 to 67T Further, all
preemptions of job n + 3 may also be removed without affecting the

Preemptive Scheduling 517

feasibility of S’. Hence, if there exists a preemptive schedule for FS then
there must exist one in which jobs n + 1, n + 2 and n + 3 are scheduled
without preemption and as in Figure 2(a). At the risk of increasing the
number of preemptions by 1, the situation of Figure 2(a) can be trans-
formed into that of Figure 2(b). Let a; be the start time for job n + 3. Let
@ be the set of jobs whose P, tasks have been completed in the interval
[0, a1] on P,. Note that @ C {1, 2, ---, n}. Only the P, tasks of jobs in &
can be processed in the period [2T, a; + T} on P.. To avoid idle time on
P; in this interval, we must have a,/2 = a1 — T (note that },eq tj2 =
% ¥ jeq t;,1 and that the length of the interval [2T, oy + T] is oy — T)).
Also, we must have a; = 2T as job n + 3 has a release time of 27.
Combining these two inequalities, we get a; = 2T and },cq £, = 2T.
Hence for a feasible schedule as in Figure 2(b) to exist the a;’s must have
a partition. The schedule takes the form given in Figure 2(c). Hence, FS
has a preemptive schedule iff the a;’s have a partition.

2. OPEN SHOPS

The problem of obtaining feasible preemptive schedules for open shops
appears to be simpler than that for flow shops and job shops. An
algorithm that can be exected to perform well is easily obtained by
formulating the open shop scheduling problem as a linear programming
problem. Let @, < a» < --. < @,+1 be the ordered collection of all distinct
values of R;, 1 =i <rand D;, 1 =i =d. Let R(j) and D(j) respectively
be the release and due times of job ;. By x:,4 we shall denote the amount
of task j of job i that is to be processed in the interval [ax, @s+:]. Let
I, = ax-, — ax. Now consider the following linear program:

Yot e =Ix l<i=n, l=k=<p
Nz k=T L=yi=im, 1<k=p
Mwn_h._..\.w"?;._ 1=j=m, l=i<n (1)
xi,+=0 if R({)=<ar and D(i} = as+
x,6=0 if R(G)>ar or D(i)<a
The first inequality requires that no job be scheduled for more than I,
time units in any interval. The second requires that wrm amount of
processing assigned to any processor be no more than the interval stz‘r
The third equality requires that each job be finished. The constraints on

xi;» ensure that no job is assigned to a processor either before its release
time or after its due time.

LEmMA 1. Let t;;, 1 < i < n, 1 <i < m define an instance of the open
shop problem with n jobs and m processors. Assume that all jobs are

518 Cho and Sahni

released at time 0. The minimum finish time, F, of any preemptive
schedule for these n jobs is given by

F = max; (Y71 tij, Yh=1 ta).

Gonzalez and Sahni (1976) present an O(r(min{r, m?} + m log n))
algorithm to obtain a preemptive schedule with finish time F as defined
in Lemma 1 (r is the number of nonzero tasks). Gonzalez has improved
this algorithm to one with complexity 0(r + min{m*, n*, r%).

It is easy to see that for any feasible solution to (1), max;{ Y Je1 Xijz,
2s=1 Xsi4} =< I. Hence, the scheduling assignments . can be met in
each of the intervals I;. So, from a feasible solution to (1) a feasible
schedule can be constructed using the algorithm of Gonzalez p times.
Conversely, if a feasible schedule exists then (1) has a feasible solution.

A well known rule of thumb (Gass [1969]) is that the number of
Simplex iterations needed to find a feasible solution to a linear program
is “about” equal to the number of constraints. In this case there are
mn + mp + np constraints. So, ‘usually” mn + mp + np iterations of the
Simplex method are needed to find a feasible solution to (1). Note that in
the worst case the number of iterations needed may be exponential in
the number of equations.

Khachian (1979) has developed a polynomial time algorithm to solve
linear programs. However, this algorithm is quite impractical and may be
expected to out-perform the Simplex method only on those instances
where neither algorithm remains feasible. We are thus motivated to
search for a low order polynomial complexity algorithm for open shop
scheduling.

3. OPEN SHOP PROBLEMS WITH m>2,r=2AND d = 1

As remarked in the previous section, the LP formulation does not lead
to a computationally feasible algorithm for open shops. In this section we
consider the special case whenm > 2, r =2 and d = 1.

A polynomial time algorithm for this case may be obtained by trans-
forming each instance into a network flow problem in which there is an
upper and lower bound associated with each edge. Let u; and I be
respectively the upper and lower bounds on the flow through edge i. A
flow is said to be a feasible flow in a network with upper and lower
bounds iff the flow through each edge i is at least ; and at most u:;. Each
edge is a directed edge.

Let I be any instance of the open shop problem with m > 2,r=2and
d = 1. We may assume R; = 0, R; > 0 and D (the due time) is greater
than R. Let n; and n, respectively be the number of jobs released at R;
E&E.ﬁm:c_HMNME.HM.N.MSmE_SLm_.MELM\.MS
respectively be the task times of the jobs released at R, and R».

Preemptive Scheduling 519

Without loss of generality, we may assume that) Mory=D— Ry 1=
j=mand Y7 1, = D — Ry, 1 =i < n; (as otherwise by ﬁmE.Em 1 there
can be no feasible schedule). Define T; =YL, &, .H =j=m and
L; = Y™, tij, 1 = i < ni. The corresponding =mw€8.w. will noﬂm_m.w of n, +
m + 2 vertices. Two of these are the source (s) m:m sink (¢) vertices. The
remaining n;, + m vertices are labeled /;, 1 =i = n, and P;, 1 M J=m.
These are drawn in two columns (Figure 3). The edges and their upper
and lower bounds are as below:

Edge Lower Bound Upper Bound
(s, J) max{L; — R;,0} min{L,D—Re},1=i=m
Anwf Hﬂv 0
(P, t) max {T; — Rz, 0} min{T;,, D - R; — Y2, 1;}, 1=j=m.
The interpretation of a feasible flow is that if the flow in the edge

n

P.L,HMM..M;H_HMM.MS

2

Dot -9
(/ wa:_-m .S.a:_:u_ .c-xm-ﬁmmi)]

(max le_mu..cususﬁru.vlwws

Figure 3. Flow network corresponding to open shop problem.

. P;) is f., then f;; units of task j of job i will be scheduled in E.NM. b.u
M.Mm MLI ?\MEE im.m be scheduled in [0, R;]). With ﬂ:m interpretation, it
is not too difficult to see that there is a preemptive mo.ﬁo&&m for the
n. + nz jobs iff there is a feasible flow for the network of Figure 3. If there
is a feasible flow then the lower bound for edge A.m, J;) ensures that at
most R, units of job i will have to be processed in [0, R:]. The upper
bound ensures that no more than D — R; units are deferred to [Rz, D].
The lower bound on (P,) ensures that the amount to be scheduled on
P; in [0, R] is at most R,. The upper bound ensures ﬁrm.n the m.Ecc:ﬁ wum
P, processing deferred to [R;, D] is no more than the available time on P;
in this interval. The bounds on edge (i, P;) ensure that the amount of
task 7 of job i deferred to [R,, D] does not exceed the task length ;. ..wo.
if there is a feasible flow then Lemma 1 guarantees that the processing
times assigned for the two intervals [0, R;] and E.NN. D] can be mnrmm:rma.
The algorithm of Gonzalez or Gonzalez and mEEW (1976) may be used for
this purpose. On the other hand, if there is a _.ummm%_m schedule then there
is clearly a feasible flow for the network of Figure 3.

520 Cho and Sahni

A feasible flow (if one exists) in a network with lower and upper bounds
may be obtained using the construction of Even (1973). He shows how to
transform a network N with lower bounds into another network N
without lower bounds. From the maximum flow in NV one can easily
determine a feasible flow for N. If NV has v vertices and e edges then N
has v + 2 vertices and e + 2v edges. A maximum flow in an E edge V
vertex network with no lower bounds can be found in time 0(V?) using
the algorithm of Karzanov (1974). Since, for N, v = n, + m + 2, Vfor N
is n; + m + 4. The time to determine a feasible flow (if any) in N is
therefore 0((n, + m + 4)°) = 0(n® + m? (note n; < n). The algorithm of
Gonzalez takes 0(nm + min{n*, m*}) time to construct a schedule for
each interval. So, the total time needed to obtain a schedule is 0(n® +
m® + nm + min{n%, m*}). When n = m this becomes 0(n® + mY).

4. OPEN SHOP SCHEDULING WITH NO PASSING

A close examination of the algorithms of Gonzalez and Gonzalez and
Sahni (1976) reveals that the preemptive schedules constructed by these
algorithms (and hence by our algorithm of Section 3) have a property
that may be undesirable in certain applications. It is quite possible that
in a preemptive schedule constructed by the algorithms cited above (for
m > 2) task j of job i gets preempted and before this task is resumed,
another task of the same job may be processed. Thus it is possible to
start processing a task for some job which has a started but unfinished
other task. A schedule in which no jobs are scheduled in the manner Jjust
described is called a schedule with no passing. It is not too difficult to
show that obtaining feasible schedules with no passing is NP-hard for
every fixed m, m > 2, r=1and d = 1. To see this, let @;,, 1 =i < n be an
instance of the partition problem. Let T = { Y a:)/2. Define the following
open shop instance with n + 3 jobs:

m =3, R, =0, D =6T

Lty = 3T, by =1, ta=3T

lr: =T, t22 = 4T, tia=T

t3, =0, tyy = 1), toa=2T

t, = a, tir = a, ta =0, 4=<i=n+ 3.

Since the sum of the task times for each processor is 67T there can be
no idle time on any processor in any feasible schedule. Figure 4 shows
the only two ways to schedule jobs 1, 2 and 3 without passing and not
exceeding the due time of D = 6T. If there is a partition of the a.’s then
all jobs corresponding to the partition may be scheduled in I1 and the
remainder in /2. Since at the start of I3 all tasks scheduled in /1 have
completed, all jobs ¢, 4 =i = n + 3 may be scheduled in 13 and a feasible

Preemptive Scheduling 521

schedule with no passing obtained.

If there is no partition then since there can be no idle time on any
processor, there is at least one job for which the P, task is only partially
processed by the end of the Il interval on P,. The P; task corresponding
to this job cannot be scheduled on P; in I3 and so there will be idle time
in this interval. So, there is no feasible schedule with no passing in this
case.

5. SUMMARY

We have studied the problem of preemptively scheduling shops with
due dates and release times. For the case of flow shops (and hence also
job shops) we have shown that the preemptive scheduling problem is
NP-hard in the strong sense when m = 2, d = 1 and an arbitrary number
of release times are permitted. When the number of release times is
restricted to be two, we have only been able to show the problem NP-
hard. This leaves open the existence of a pseudo-polynomial time algo-
rithm for the case where only a fixed number of distinct release times
exist.

0 27 4T 6T

JX§“%ASEZ
AN R
i /// Q\&\\\ __F\\\ //// Z\\\b\\ /Aw/

Figure 4. Two alternative schedules.

For the case of open shops, we have been unable to either show the
scheduling problem NP-hard or obtain a polynomial time algorithm. An
NP-hardness proof may be quite difficult to obtain. Two special cases of
the open shop problem are, however, solvable in polynomial time. The
discovery of additional interesting polynomially solvable classes of the
open shop problem will be of interest.

The preemptive scheduling of open shops with no passing is NP-hard
when m > 2, r = 1 and d = 1. This should be contrasted with the
polynomial time algorithm of Gonzalez and Sahni (1976) when passing is
allowed and m =2, r=1andd =1 Whenm =2, r = 1 and d = 1 the
algorithm of Gonzalez and Sahni (1976) generates feasible schedules with
no passing.

The reader is referred to Graham et al. for the status of problems
related to those considered in this paper.

ACKNOWLEDGMENT

This research was supported in part by NSF grants MCS76-21024 and
MCS78-15455. We are grateful to an anonymous referee who suggested

522 Cho and Sahni

a simplification to our original proof of Theorem 2 given in Cho and
Sahni (1978).

REFERENCES

CHoO, Y., AND S. SAHNI. 1978. Preemptive Scheduling of Independent Jobs with
Release and Due Times on Open, Flow and Job Shops, Technical Report No.
78-5, University of Minnesota.

EvEN, S. 1973. Algorithmic Combinatiorics, Chapter 10. Macmillan, New York.

GARreY, M. R,, D. S. JouNsON AND R. SETHL 1976. The Complexity of Flow Shop
and Job Shop Scheduling. Math. Opns. Res. 22, 117-129.

GAREY, M. R., ANp D. S. Jounson. 1978. Strong NP-Completeness Results:
Motivation, Examples and Implications. /. Assoc. Comput. Mach. 25, 499-508.

Gass, S. 1969. Linear Programming. McGraw-Hill, New York.

GonzaLEz, T. 1976. A Note on Open Shop Preemptive Schedules, TR No. 214,
Computer Science Dept., Pennsylvania State University.

GonzaLez, T., AND S. SAHNI. 1976, Open Shop Scheduling to Minimize Finish
Time. J. Assoc. Comput. Mach. 23, 665-679.

GONzZALEZ, T., AND S. SAHNIL 1978. Flow Shop and Job Shop Schedules: Com-
plexity and Approximation. Opns. Res. 26, 36-52,

Granam, R. L., E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNooY KAN. 1977.
Optimization and Approximation in Deterministic Sequencing and Scheduling:
A Survey, Stiching Mathematisch Centrum.

JoHNsoN, S. M. 1954, Optimal Two-and-Three-Stage Production Schedules with
Setup Times Included. Naval Res. Logist. Quart. 1, 61-68.

Karp, R. M. 1972. Reducibility among Combinatorial Problems. In Complexity
of Computer Computations, pp. 856-104, R. E. Miller and J. W, Thatcher (eds.).
Plenum Press, New York.

KarzanNov, A. 1974. Determining the Maximal Flow in a Network by the Method
of Preflows. Sov. Math. Dokl. 15, 436-437.

LAWLER, E. L., AND J. LABETOULLE. 1978. On Preemptive Scheduling of Unre-
lated Parallel Processors by Linear Programming. J. Assoc. Comput. Mach.
25, 612-619.

LAWLER, E. L., J. K. LENSTRA AND A. RINNOOY KAN. 1981. Minimizing Maximum
Lateness in a Two-Machine Open Shop. Math. Opns. Res. 6, 153-158.

LENSTRA, J. K., A. H. G. RiNnNooY KaN AnND P. BRUCKER. 1977. Computational
Complexity of Machine Scheduling Problems. Ann. Discrete Math. 1, 343-362.

KHacHIAN, L. 1979. A Polynomial Algorithm in Linear Programming. Dokl
Akad. Nauk. SSSR 224, 1093-1096,

	neetaPassport0001
	neetaPassport0002
	neetaPassport0003
	neetaPassport0004
	neetaPassport0005
	neetaPassport0006

