SIAM J. ComPuT.
Vol. 4, No. 2, June 1975

THE COMPUTATION OF POWERS OF SYMBOLIC POLYNOMIALS*
ELLIS HOROWITZt anp SARTAJ SAHNIZ

Abstract. Recent results on the computation of powers of symbolic polynomials are reviewed in
perspective. Then a new algorithm is given which computes the nth power of a completely sparse
polynomial using a linear number of multiplications. This is followed by experimental results com-
paring the new algorithm to iteration using both completely sparse and completely dense polynomials
as data.

Key words. polynomial powers, symbolic powers, sparse polynomial powers

1. Introduction. Let P(x,, ---, x,) be a polynomial in » variables with
integral coefficients. Suppose that d = degree (P) in x;, 1 £i = v, and that all
possible terms of P are present. Then P has (d + 1) terms and is said to be com-
pletely dense. If P has (id + 1)" terms 1 < i < n, then P remains completely dense
to power n. Using this worst case assumption of polynomial growth, and the
classical polynomial multiplication algorithm [4, p. 362], Heindel in [2] showed
that computing P" by iteration was faster than using the binary method (binary
expansion of the exponent, see [3, p. 399]). Briefly reviewing that result, we see
that it follows from the completely dense assumption that the cost for iteration
is asymptotically

Yo+ D%d+ 1)< (n—1d+ 1)+ D —1)<nd+ D,
1<isn—1

while the cost for the binary method is bounded by
Yo 2d + 1)* < (nd + 1)*.

1=iZlogan

Thus the ratio of these methods, iteration/binary = n°*'/n*" = 1/n"°" ', and so

for v > 1 variables, iteration becomes asymptotically superior. This was a some-
what nonintuitive result in the sense that the binary method requires only
O(log, n) polynomial multiplications, whereas iteration requires O(n — 1), and
therefore one might naturally conclude (e.g., see Knuth [4]) that binary would
be better.

The binary method and iteration have one thing in common; namely, they
are whole polynomial methods. This is an intuitive idea by which we mean that
at every step where a multiplication is done, it is done with polynomials. There
are however, other methods for computing powers which do not rely on this
whole polynomial property. One such approach, based upon evaluation and
subsequent interpolation, was presented by Horowitz [3]. Using the previous
assumptions, that method will compute P" in time proportional to (n(d + 1))""".
At the heart of this algorithm is a routine which computes the nth power of an
integer using the binary method. Hence this algorithm, in addition to having a

* Received by the editors October 1, 1973, and in revised form June 4, 1974. This work was sup-
ported by the National Science Foundation under Grant GJ-33169.

+ Computer Science Program, University of Southern California, at Los Angeles, Los Angeles,
California 90007.

I Department of Computer, Information and Control Sciences, University of Minnesota,
Minneapolis, Minnesota 55455.

201

202 ELLIS HOROWITZ AND SARTAJ SAHNI

better asymptotic time, showed that one could operate on multivariate poly-
nomials via some transformational technique and return the problem of com-
puting polynomial powers to computing powers of single precision numbers.

At present, the method which has the best asymptotic computing time is
obtained by using the fast Fourier transform and its convolution property; see
Pollard [5].

Table 1 gives the asymptotic computing times for four “polynomial power”
algorithms applied to dense polynomials. The work factor gives the amount of
work per term in the answer that each method requires. A work factor of 1 would
be optimal; however, the best known is log(n(d + 1)). The asymptotic com-
puting times for the first 3 methods were obtained assuming the classical multi-
plication method is used. These could be reduced by using faster polynomial
multiplication methods, though the direct use of the fast Fourier transform
(FFT) would still yield the lowest upper bound.

TaBLE 1
Asymptotic times, P" completely dense

Method Time = Terms * Work factor
Binary n*d + 1)* =n(d + 1)’ % nd + 1)
Iteration n"tid + =n'(d + 1)°# n(d + 1)
Eval-Interp ntid + et = n(d + 1) * nld + 1)
FFT n'(d + 1) log(n(d + 1)) = n"(d + 1)"* log(n(d + 1))

The reliance on the completely dense model alone is somewhat limited
because of the exponential growth of the number of terms in the answer. Practical
computation dictates that dense polynomials in 3 or more variables can only be
raised to quite small powers, e.g. see [3], before either core or time become
excessive.

Existing algebra systems need to handle multivariate problems, but often
these problems are of a sparse nature. In [1], Gentleman suggested the definition
for a totally sparse polynomial, the intuitive opposite of the completely dense

t+i—1 .
terms, 1 £ i £ n, then P is

case. If P initially has ¢ terms and P’ has (

said to be completely sparse to power n. The motivation for this definition is simply

r+i—1

that for P' to grow exactly as (), it must be the case that the fewest

possible number of terms combine as we compute each new iterate. An example
of such a polynomial is

P(xl‘...,xt):xl_F +x“

which is completely sparse for all i. Now in [1], Gentleman gives a result similar
in spirit to Heindel’s: for completely sparse polynomials, computing P" by
iteration is faster than using the binary method. The computing time for iteration

POWERS OF SYMBOLIC POLYNOMIALS 203

(H—i—l) (£+n—1)
t =1t =
1gign—1 t—1 t

No closed formula for the time using the binary method has been obtained, but
in [1] it is shown that the ratio of the costs of binary to iteration needed to com-
pute P2, where P is completely sparse and initially has ¢ terms, is given by

T
i)\t

This implies that the binary method is more costly by at least a binomial factor.

In this paper, we will present a new algorithm for computing a power of an
arbitrary polynomial. Its motivation comes from the definition of a completely
sparse polynomial, and its computing time has a logarithmic work factor. Thus,
this new method corresponds in complexity to the use of the FFT for computing
powers of completely dense polynomials. We then present empirical results com-
paring this new algorithm to iteration.

+ 0(t72),

2. The algorithm. First let us consider a specific instance of a completely
sparse polynomial, namely.,

Plxg, -+, %) =% + <« + X,.

By the multinomial expansion theorem (e.g., see [6, p. 64]), it follows that
n
(2.1) Xy + - +x)= ¥ ()x’}' X
ny+e+n=n iy rmy Ry

where the n; are integers in the range 0 £ n; =< n. The number of distinct ¢-tuples

t+n-—1 . .
, corresponding to the definition of a

which sum to n is precisely (

completely sparse polynomial. The definition of the multinomial coefficient is

(n
Ry, ooeu il

Moreover, we emphasize that each time the n; change, the next multinomial co-
efficient may be obtained from the previous one using one multiplication and
one division, 1.e.,

n . n
(2.2)) =)
Py oy My = Lfypg 4 g it o 1 Rit, £ 1 N0y s My ey o 2y,
.)))]] t+n—1
Thus, if we generate the t-tuples in lexicographic order, it requires 2 1
{ =
coefficient multiplications to compute the nth power of P(x,.---,x). Un-

fortunately, for general sparse polynomials, it becomes necessary to sort the
terms thus adding a log factor to the computing time.

204 ELLIS HOROWITZ AND SARTAJ SAHNI

The general algorithm begins with an arbitrary polynomial, say

Py, -y = X af - 0
1Zist
in v variables with t nonzero terms. Conceptually, the method then proceeds by
setting

(s

xp=ayit -y, 1sist,

producing the new polynomial

Plx,, -, x)=xy + - + X.

The nth power of P is computed in linear time and the substitutions back to the
y, followed by a sort increase the bound by a log factor. This algorithm is now
given in complete detail.

The input polynomial with ¢ terms is assumed to be stored term by term in
the array TERM(1:1). The array N(1:f) contains the exponent vector and is
initialized to:

N(1) «n, N(2)« --- N(t) « 0;

and the global variable POW is set to (TERM(1))". ¢ is a global variable whose
value is the number of terms in the input polynomial. Then the following routine
is called using

(2.3) MULT(TERM(1Y", 1, 1).

ArgoriTHM MULT(POL, COEF, i).
Input: POL, a multivariate polynomial
COEF, an integer
POW, a global variable initialized to (TERM(1))"
i, a nonnegative integer
Output: the global variable POW is set to: (TERM(1) + -+ + TERM(z))"

l. if i- =t then /* move forward */

2 do; do while (N(i)71 = 0);

3 N(i) « N(i) — 1;

4, NGi+1)eNi+1)+1;

5. COEF « COEF = (N(i) + 1)/N(i + 1);
6 POL « (POL/TERM(i)) * TERM(i + 1);
7 POW « POW + POL = COEF;

8. CALL MULT (POL, COEF,i + 1):
9: end;
10. ifi =1 then return
11. else do/= backtrack =/
12. N(i) « N(i + 1);
13. Ni+ 1)« 0;
14. return; '
15: end;
16. end;

17. end POWER ;

POWERS OF SYMBOLIC POLYNOMIALS 205

We now show that algorithm MULT when called as in (2.3) with POW
= (TERM(1))" and N(1) = n, N(2) = 0 results in the desired solution POW
= (Z] <1<, TERM(i))". It is clear that if all the terms of the sum in(2.1) are gener-
ated and then TERM(i) is substituted for x;, we obtain the desired result.

Associated with each term in the sum for (2.1) is a power sequence (n,, ks, *-+, 1)

and a coeflicient . For any power sequence (n,,n,, --,n) and
My, oo sy

2 <i £ t, define the i-prefix to be (n,, -+, n;_,) and, for i = 1, the I-prefix is

(). To see that only correct power sequences are generated and that each such
sequence is generated exactly once, we note that:

(i) Steps 3 and 4, 12 and 13 are the only ones that alter the power sequence.
Both pairs of steps preserve the value of) N(i) and maintain N(i) = 0 (note that
the conditional of step 2 ensures that N(i) = 0 when steps 12 and 13 are executed).
Hence only valid power sequences are generated.

(ii) Each time a call to MULT is made, either initially or from step 8, the
i- or (i + 1)-prefix, respectively, is different from all other calls with the same
i-value. Hence each power sequence is generated only once.

(iii) For any i-prefix, a call to MULT results in the generation of all power
sequences with the same i-prefix.

From (2.2) and steps 3, 4 and 5 of MULT, it follows that at all times the

value of COEF is (") Steps 3, 4 and 6 imply that POL at any time has
N(1) - -- N()

the value [[(TERM(i))™?. Hence it follows that the routine MULT, when called
as described above, results in the computation of (3, .., TERM(i))".

To get an estimate of the computing time, we note that each call to MULT
from step 8 results in 2 multiplication/divisions (abbreviated 2 M/D) in step 5,
2M/D in step 6 and another call to MULT. However, each such call results in

t+n—1

the generation of a new term. There are exactly () such terms. To com-

pute (TERM(1))", log n multiplications are needed. Hence MULT requires

t+n—1 t+n-—1

osn e "= of {4)

The only other cost to be considered is that of the addition in step 7. The

. . t
best way to do this appears to be to just generate all () terms, then sort

them adding together terms with identical power sequences (this will be required
only if the original polynomial P = Y TERM(i) is not sparse to power n). This
sort-add step can be done in

o[22 el)

resulting in an overall computing time of O(T log T), where T is the number of
terms in the answer. This is the same as for FFT over dense polynomials.

206 ELLIS HOROWITZ AND SARTAJ SAHNI

For comparison, let us consider computing P" by computing the sequence
P, P2, ..., P"(ie., iteration). Then the number of multiplications is

t+n1) ((t+n—1))
= 0|n)
t—1 t—1

Here, too, a sort-add step is needed, thus adding a log factor to the computing
time. The total computing time is then bounded by the sort-add time, which is

t+n—1
Oln logt|.
t—1

Hence we see that as far as an M/D count is concerned, MULT is optimal
to within a constant factor. It requires about O(n) times fewer multiplications.
than iteration.

n—1
Yot
i=1

3. Empirical results. In this section we present the results of several tests
that were made to determine the global efficiency of these 2 algorithms. Though
asymptotic analyses are important, the value of practical testing should not be
underestimated. This is especially true when dealing with symbolic problems,
since the domain of actual computation is often moderately small, thus placing
added importance on constants and less on asymptotic results. All tests were
carried out on an IBM 360/65 using the SAC-1 System which provides, in part,
for arithmetic operations on multivariate polynomials.

Both completely dense and completely sparse polynomials were used as
test data for these algorithms. For completely sparse polynomials in v variables
the polynomials used were

Plxg,«voy%,) =X 4+ o+ +.x,,

except when v = 1, in which case P(x;) = x; + 1. The completely dense poly-
nomial in | variable had degree = 7, while the corresponding polynomial in 2
variables had maximum degree = 2 in each variable. Completely dense poly-
nomials in 3 and 4 variables each have maximum degree = | in each variable.
All coefficients of P were one. Table 2 gives the results in milliseconds for com-
pletely sparse powers, while Table 3 contains the completely dense results. The
addition of step 7 was done using a standard polynomial add routine rather than
a sort-add at the end as described in the analysis of MULT. Finally, a non-
recursive version of MULT was programmed so as to reduce the overhead of
repeated procedure calls.

Similarly the additions required by iteration were not carried out by a sort-
add. Considering that only relatively small problems were tested, it is unlikely
that the advantage of using the asymptotically superior sort-add would have
been reflected in the computing times of Tables 2 and 3.

4. Conclusion. We have seen that there are two basic complementary models
for which one does an analysis of powering algorithms: completely dense and
completely sparse polvnomials. The main result here has been to exhibit an

POWERS OF SYMBOLIC POLYNOMIALS 207

TABLE 2
Completely sparse P"

No. of
variables 1 2 3 4

" Iter Mult Iter Mult Iter Mult Iter Mult
2 16.6 16.6 16.6 16.6 332 133.1 133.1 266.2
4 16.6 49.9 §3.2 66.5 3le.l 366.0 8985 1064.9
6 83.2 83.2 183.0 99.8 931.8 665.6 3095.0 2579.2
8 116.4 83.2 3328 1497 1896.9 1098.2 7937.2 5308.1
10 2163 1331 4992 199.6 35776 15808 168729 94348
12 2828 299.8 748.8 2606.2 5990.4 23129 i

14 4326 166.4 10649 2995 90854 2995.2

16 449.2 2329 1248.0 3l6.1 132953 39663

Power could not be computed with 23k words of work space,

TaBLE 3
Completely dense P"

No. of
variables 1 2 3 4
max degree 7 2 1 1
" Iter Mult Iter Mult Iter Mult Lter Mult
2 116.4 3328 116.4 399.3 116.4 915.2 515.8 2362.8
4 7155 3927.0 848.6 3810.5 1913.6 8636.1 9368.3 63763.2
6 1597.4 22763.5 3461.1 17555.2 82534 464755 ¥
8 2812.1 99274.2 7987.2 63015.6 o
10 4509.4 >400sec 14809.6 1726899

** Power could not be computed with 23k words of work space.

algorithm which requires O(T) multiplications and O(Tlog T') exponent com-
parisons (T is the number of terms in the nth power of a completely sparse poly-
nomial). From a complexity point of view, this means the best methods we know
of for computing powers take O(T log T) operations (T is the number of terms in
the result) for both the completely dense and completely sparse models.

In practice, a specific problem may have characteristics that give an ad-
vantage to any one of the other known methods; e.g.. see [7], [8]. In addition to
the number of arithmetic operations, one may have to consider other relevant
factors such as the efficiency/inefficiency of recursion, procedure calls, etc., in
the source language. We have shown that for completely sparse polynomials
using a FORTRAN-based system, our new algorithm is better than iteration. But
for any symbol manipulation system which wants to provide only a single
powering routine, iteration seems the best choice (i) because of its simplicity,
(ii) because it yields all intermediate powers which may be useful, e.g., in sub-
stituting a polynomial for x in P(x), and (iii) because it is uniformly good for both
polynomial models. The best known methods for either model are, on the average,
better than iteration by a factor of 2. Unfortunately, these specialized algorithms,
FFT for dense and MULT for sparse polynomials, perform very poorly on sparse
and dense polynomials. respectively.

208 ELLIS HOROWITZ AND SARTAJ SAHNI

REFERENCES

[1] W. M. GENTLEMAlTa,‘Oplimal multiplication chains for computing a power of a symbolic polynomial,
Math. Comp., 26 (1972}, pp. 935-939.

[2] L. HEINDEL, Computation of powers of multivariate polynomials over the integers, J. Comput.
System Sci., 6 (1972), pp. 1-8.

(3] E. HorowiTz, The efficient calculation of powers of polynomials, 1bid., 7 (1973), pp. 469-480.

[4] D. KNUTH, The Art of Computer Programming. Vol. II: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1968.

[5] J. M. PoLLaRD, The fast Fourier transform in a finite field, Math. Comp., 25 (1971), pp. 365-374.

(6] D.KNUTH, The Art of Computer Programming. Vol. I: Fundamental Algorithms, Addison-Wesley,
Reading, Mass., 1969.

[7] R. FATEMAN, Polynomial multiplication, powers and asymptotic analysis: Some comments, this
Journal, 3 (1974), pp. 196-213.

. On the computation of powers of sparse polynomials, Studies in Appl. Math., 52 (1974),

pp. 145-155.

[8] ==

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008

