IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988 473

Fast Algorithm for Polygon Decomposition

SURENDRA NAHAR anD SARTAJ SAHNI, FELLOW, IEEE

Abstract—We develop an O (k log (k) + n) algorithm, where n is the
number of vertices in the polygon and k the number of vertical inver-
sions, to decompose rectilinear polygons into rectangles. This algo-
rithm uses horizontal cuts only and reports nonoverlapping rectangles
whose union is the original rectilinear polygon. This algoriihm has been
programmed in Pascal on an Apollo DN320 workstation. Experimen-
tation with rectilinear polygons from VLSI artwork indicates that our
algorithm is significantly faster than the plane sweep algorithm and the
algorithm proposed in [5].

Key words and phrases: polygon decomposition, computational ge-
ometry, time complexity.

I. INTRODUCTION

HE PROBLEM OF decomposing a polygon into basic
components has applications in computer graphics,
data bases, image processing, VLSI layout, and artwork
analysis [5], [15], [13], [3]. The development of efficient
algorithms to decompose a polygon has been the focus of
much research. For example, Keil [8] develops polyno-

mial time algorithms to decompose a simple polygon (i.e.,

one with no holes) into convex polygons, spiral polygons,
star-shaped polygons, and monotone polygons. These al-
gorithms minimize the number of simpler components
without introducing any steiner points. Liu and Ntafos
[10] consider the case when Steiner points are allowed.
They develop a linear time algorithm to partition a simple
monotone polygon into a minimum number of star-shaped
polygons.

Asano et al. [1] present an O (n?®) algorithm (n being
the number of polygon vertices) to decompose a polygon
with no holes into a minimum number of trapezoids. When
the polygon has holes, this decomposition problem is NP-
complete [4], [1]. In [11], an O(n log n) algorithm to
partition a rectilinear polygon into a minimum number of
uniformly monotone rectilinear polygons is developed. An
O(n®) algorithm to find a maximum set of independent
chords in a circle is used, in [12], to partition simple
polygons into a minimum number of uniformly monotone
polygons.

In this paper, we are concerned solely with the decom-

Manuscript received August 19, 1986; revised August 5, 1987, and
November 6, 1987. This work was supported in part by the National Sci-
ence Foundation under Grants DCR-8305567 and DCR-8420935. The re-
view of this paper was arranged by Associate Editor R. H. J. M. Otten.

S. Nahar was with the Computer Science Department, University of
Minnesota, Minneapolis. He is now with AT&T Bell Laboratories, Murray
Hill, NJ.

S. Sahni is with the Computer Science Department, University of Min-
nesota, Minneapolis, MN 55455.

IEEE Log Number 8718828.

position of rectilinear hole-free polygons into a minimum
number of rectangles (cf. Fig. 1). Our work is trivially
extendable to nonrectilinear polygons and also to poly-
gons with holes.

The rectangles in the decomposition of a polygon are
required to be disjoint (or nonoverlapping). When this re-
striction is removed (i.e., overlapping rectangles are al-
lowed), decomposing a rectilinear polygon with holes into
a minimum number of possibly overlapping rectangles is
NP-complete. This is seen by observing that every 0, 1
matrix is the digitized version of some rectilinear polygon
with holes (the 1’s represent polygon interiors, the 0’s
exteriors). Hence the rectilinear picture compression
problem [4] is the same as the polygon decomposition
problem. The rectilinear picture compression problem is
NP-complete.

Lingas et al. [9] use dynamic programming to obtain
an O(n*) algorithm to dissect a rectilinear polygon with
no holes into disjoint rectangles with minimum total edge
length. They also show this to be NP-complete when holes
are present. Ohtsuki [14] develops an O(ns/) algorithm
to decompose a rectilinear polygon into a minimum num-
ber of rectangles using both horizontal and vertical cuts.
This algorithm has been improved to O (n*/* log n) in [7].

In some applications, only horizontal cuts are permis-
sible. Fig. 2 shows the best decomposition when both
horizontal and vertical cuts are permitted, as well as when
only horizontal cuts are permitted. Consider any hole-free
rectilinear polygon P. Let Ryy be the minimum number
of rectangles in a decomposition using both horizontal and
vertical cuts. Let Ry and Ry, respectively, denote the min-
imum number when only horizontal or only vertical cuts
are permitted. It can be shown that

min {Ry, Ry} < 3 * Ryy.

To see this, draw all possible vertical and horizontal line
segments that join two internal corners (see Fig. 3). Let
py be the number of horizontal line segments drawn, py
the number of vertical segments, and p the number of lines
in a maximum independent set of line segments (two line
segments are independent iff they do not intersect).
Clearly, p < py + py. So, p < 2 *max { py, py}. From
[14], it follows that

RHVZH_p_l
RVZH—pV_l
By=H—py—1

0278-0070/88/0400-0473%$01.00 © 1988 IEEE

474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988

(a) (b)
Fig. 1. Rectilinear polygons. (a) No holes (hole-free). (b) With holes.

(a) (b)

Fig. 2. Rectilinear polygon decomposition. (a) Horizontal and vertical
cuts. (b) Only horizontal cuts.

Fig. 3. All possible horizontal and vertical line segments that join two in-
ternal corners.

where H is the number of horizontal segments in the
boundary of the original polygon. Hence,

min {RH, RV} = H — max {pV, pH} -1

SH—'Z'—ISRHV“"

4 P

5
Also, since p segments create p + 1 polygons, p < Ryy.
So,

min {RH’ RV} < % * RHV'

Fig. 4 gives an example that approaches this bound
asymptotically.

One application of horizontal cut decomposition is cor-

ner stitching [15]. This results in fast algorithms for in-
teractive VLSI layout editing. An algorithm for horizontal

H=4%k+2,p=2%k

min { Ry, Ry} (4*k+2) —k—1 3 1
= =— - = as k—oo
Ryy (4*k+2)2%k—-1 2 (4*k+2) 2

Fig. 4. An example where asymptotic bound is reached.

cut decomposition is given in [5]. This is reproduced in
Fig. 5. This algorithm has a worst-case complexity of
O(n?), though it is expected to do better than this on many
polygons. An O(n log n) algorithm for horizontal cut de-
composition is trivially obtained by performing a plane
sweep using a vertical (or horizontal) scan line.

In this paper, we develop a new algorithm to decom-
pose a hole-free rectilinear polygon into a minimum num-
ber of rectangles using only horizontal cuts. Our new al-
gorithm takes advantage of the fact that polygons that arise
in practice have a small number of vertical and horizontal
inversions (defined below) relative to the number of ver-
tices. The number of vertical inversions kj of a hole-free
rectilinear polygon is obtained by traversing the vertices
of the polygon in anticlockwise order. This traversal be-
gins at a vertex with least y coordinate. Of the several
vertices that have this y value, the one with least x is cho-
sen. This vertex, denoted o, is called the start or o vertex.

Consider the sequence of distinct y values encountered
in the traversal. This sequence is initially increasing, then
decreasing, then increasing, then decreasing, etc. The tail
end of this sequence is always decreasing. Each time the
sequence changes from increasing to decreasing, there is
a vertical inversion.

Example: For the polygon of Fig. 6(a), the y value se-
quenceisy; < y, < y3 < ' <y > Y5 > Yo
There is one vertical inversion in the sequence. Fig. 6(b)
shows a polygon with two vertical inversions and Fig.
6(c) shows one with three vertical inversions. J

The number of horizontal inversions is defined in an
analogous manner. This time, the anticlockwise traversal
begins at a vertex with least x value. Of the several ver-
tices that have this x value, the one with the lowest y value
is used. This start vertex is called the 7 vertex. We con-
sider the sequence of distinct x values encountered during
the traversal. This sequence is initially increasing, then
decreasing, then increasing, then decreasing, etc. The tail

NAHAR AND SAHNI: FAST ALGORITHM FOR POLYGON DECOMPOSITION

475

Step 1 Let the given polygon be represented by a set V of vertices
(x> ¥i)

Step 2 Let P, be the leftmost of the lowest vertices in V; P, the next
leftmost of the lowest vertices in V

Step 3 Let P,, be the leftmost of the lowest vertices in V with y value
greater than y, and x coordinate in the range between x; and
x; (including x, and x;)*

Step 4 The next rectangle iS: Xpmin = Xt Ymin = Y5 Xmax = X5 Ymax =
Ym

Step 5 Remove P, and P, from V. Remove (x;, y,) and (x;, y,,) if
present in V else add them to V

Step 6 If V is empty then stop else goto step 2

*Gourley and Green exclude x;. x; has to be included to work
for all cases of this problem.

Fig. 5. Algorithm of Gourley and Green [5] to dissect hole-free rectilinear
polygons using horizontal lines.

Y1z

D| Y2

Yy
(a)

Fig. 6. Polygons having different numbers of inversions. Start vertex for
vertical inversions is labeled ¢. Start vertex for horizontal inversions is
labeled q. (a) ky = 1, ky = 6. (b) ky = 2, ky = 6. (c) ky = 3, ky = 3.

end of the sequence is always decreasing. Each time the
sequence changes from increasing to decreasing, there is
a horizontal inversion. Let ky be the number of horizontal
inversions. For the examples of Fig. 6(a), (b), and (c), ky
= 6, 6, and 3, respectively. We define the number of
inversions k to be: k = min {ky, ky}. For the examples
of Fig. 6(a), (b), and (¢), k = 1, 2, and 3, respectively.
Table I gives inversion statistics for a sample of 2869
polygons taken from VLSI mask data provided by Sperry
Corp. Table II gives the distribution of polygons in this
sample set by the number of vertices. As can be seen, the
number of inversions k is ‘‘small.”’ In fact, over 85 per-

cent of the polygons have only one inversion (i.e., k =
1) and over 95 percent have at most two (i.e., k < 2)!
Neither the scan line method nor that of [5] attempts to
take advantage of this observation. In the next section we
describe a new algorithm for horizontal cut decomposi-
tion that does take advantage of the observation that many
rectilinear polygons that arise in practice have a small
number (k) of inversions. The complexity of this algo-
rithm is O(k log (k) + n). Experimental data provided
in Section III indicate that our algorithm is superior to
the scan line method and to the algorithm of [S] when k
is small relative to n.

476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988

. TABLE I
INVERSION STATISTICS FOR A SAMPLE OF 2869 POLYGONS TAKEN FROM VLSI
Mask DATA PROVIDED BY SPERRY CORPORATION

#of inversions #of polygons #of polygons ##of polygons
i ky =i ky =i k=i
1 2315 1536 2474
2 385 761 290
3 93 373 61
4 40 T 28
5 4 50 4
6 0 51 12
7 0 27 0
8 0 0 0
9 0 0 0
10 16 0]
11 0 0 0
12 0 0 0
13 0 0 0
14 16 0 0

TABLE II
DISTRIBUTION OF POLYGONS BY NUMBER OF VERTICES
Number of Number of
vertices polygons
0<n<10 1739
10<n <20 926
20 <n < 30 84
30 <n < 40 25
40 <n < 90 91

II. OUrR ALGORITHM
A. Terminology

Definition: A vertical wall is a maximal boundary of a
polygon that satisfies the following:

1) The first and last edges of the vertical wall are ver-
tical edges. The first edge is called the rop of the
wall and the last edge the bottom.

2) The y coordinates of the horizontal edges, if any, of
the vertical wall decrease from top to bottom.

The polygon of Fig. 6(a) has two vertical walls. The
top of the first vertical wall is labeled A and its bottom B
in the figure. The top of the second vertical wall is labeled
C and its bottom is labeled D. The polygon of Fig. 6(b)
has four vertical walls. Their tops are labeled A, C, E,
and G while their bottoms are labeled B, D, F, and H,
respectively. The polygon of Fig. 6(c) has six vertical
walls. The tops are A, C, E, G, I, and K and the bottoms
B, D, F, H, J, and L. It is easy to prove the following
lemmas.

Lemma 1: A rectilinear polygon has k vertical inver-

sions iff it has 2 * k vertical walls. O
Lemma 2: No two vertical walls of a rectilinear poly-
gon intersect. O

Definition: A left vertical wall is one for which the area
immediately to the right of its vertical edges is part of the
polygon interior (or, equivalently, the area immediately
to its left is exterior to the polygon). A vertical wall that
is not a left vertical wall is a right vertical wall. O

A vertical wall with top edge A and bottom edge B is
called an AB vertical wall. Wall AB of Fig. 6(a) is a left

vertical wall while vertical wall CD is a right vertical wall.
The left vertical walls of Fig. 6(b) are AB and GH and
the right vertical walls are CD and EF. The vertical walls
AB, EF, and IJ of Fig. 6(c) are left vertical walls while
walls CD, GH, and KL are right vertical walls.

Lemma 3: If the boundary of a rectilinear polygon is
traversed in anticlockwise order, starting at the o vertex,
then the first vertical wall encountered is a right vertical
wall, the next a left, the next a right, and so on. Left and
right vertical walls alternate in this traversal. O

Let XY be a vertical wall. X is its top edge and Y its
bottom edge. ytop (XY) is the maximum y coordinate of
X (note X is a vertical edge). ybottom (XY) is the mini-
mum y coordinate of Y. xtop (XY) and xbottom (XY) are,
respectively, the x coordinate of X and Y. x_coord (XY,
y) is such that (x-coord (XY, y), y) is a point on a vertical
edge of XY. If there are two possibilities for the value of
x_coord (XY, y), then either may be used.

Definition: Let XY and WZ be two vertical walls. XY
is to the left of WZ iff either

ybottom(XY) < ytop(WZ) = ytop(XY)
and
x_coord(XY, ytop(WZ)) < xtop(WZ)

or

ybottom(WZ) =< ytop(XY) < ytop(WZ)
and
xtop(XY) < x_coord(WZ, ytop(XY)). |

Fig. 7 shows two examples of vertical wall pairs XY
and WZ such that XY is to the left of WZ. We write XY
< WZ when XY is to the left of WZ. Fig. 8 shows two
examples of vertical wall pairs XY and WZ such that nei-
ther XY < WZ nor WZ < XY.

Let <* be the transitive closure of < (i.e., XY <¥
WZ iff there exists a (possibly empty) sequence of vertical
walls such that XY < - - - < WZ). It is easy to see that
< * defines a partial order on the vertical walls of any
rectilinear polygon [6] (to see this, we merely observe
that < 7 is irreflexive and transitive).

Horizontal walls and their associated terminology are
defined analogously.

Definition: A horizontal wall is a maximal boundary of
a polygon that satisfies the following:

(i) The first and last edges of the wall are horizontal
edges. The first edge is called the left end of the
wall and the last the right end.

(ii) The x coordinates of the vertical edges (if any) in-
crease from left to right.

An upper wall is a horizontal wall for which the area
immediately below the horizontal edges is part of the
polygon interior. A horizontal wall that is not an upper
wall is a lower wall. UJ

Lemmas 1, 2, and 3 have their obvious analogues for
horizontal walls.

Because the overwhelming majority of polygons used

NAHAR AND SAHNI: FAST ALGORITHM FOR POLYGON DECOMPOSITION

_] x ‘_lw

-

(@)

w

(b
Fig. 7. Examples of vertical wall pairs XY and WZ such that XY is to the

left of WZ, i.e., XY < WZ.
X

I

e

(a) (b
Fig. 8. Examples of vertical wall pairs which do not interact. Neither XY
< WZ nor WZ < XY.

in practice are expected to have a k = min {ky, ky } of 1
of 2, we treat these as special cases. At the top level, our
algorithm is divided into two parts: one for the case k =
ky, and the second for the case k = kg (in case ky = kg,
either part may be used). For each of these parts, there
are three subparts: one for the case k = 1, another one for
the case k = 2, and the third for the case k > 2.

477

Bk:kV

1) k = I: When k = 1, the polygon has two vertical
walls. One is a left vertical wall and the other is a right
vertical wall. The rectangular decomposition may be ob-
tained by starting at the bottom of each vertical wall and
advancing to the top. During this vertical wall traversal,
we use two pointers i and j. The pointer i traverses the
vertical edges of the left vertical wall and j those of the
right vertical wall.

Consider the partial polygon of Fig. 9. Initially, i = a
and j = 1. The first rectangle is obtained by drawing a
horizontal edge from the top of 1 to edge a. This is a
correct rectangle as there can be no vertical wall between
the left and right vertical walls being traversed. The
pointer j is advanced to the next vertical edge, 2, on the
right vertical wall. At this time, a horizontal edge to 2 is
drawn from the top of a and i advanced to b. Since the
tops of i and j edges are the same, i and j are both ad-
vanced following the drawing of the next rectangle. This
process continues until the tops of the left and right ver-
tical walls are reached.

2) k = 2: Polygons with k = 2 have four vertical walls
(Lemma 1). When the boundary of the polygon is trav-
ersed in anticlockwise order beginning at the o vertex, the
vertical walls are encountered in the order R1, L1, R2,
L2, where R1 and R2 are right vertical walls and L1 and

'L2 are left vertical walls (Lemma 3). At the top of vertical

wall R1, there are two choices for the direction of the
horizontal edge (left and right). If the polygon moves right
at the top of R1, then at the bottom of L1 it must also
move right. Otherwise, the remaining two vertical walls
cannot close the polygon. If the polygon moves left at the
top of R1, then at the bottom of L1, it may move either
left or right. Once this choice has been made, the direc-
tion at the top of R2 is determined. The three cases are
shown in Fig. 10.

The three cases of Fig. 10 are handled separately as
described below:

Case (a)

(i) Start at the bottom of L2 and R1 cutting off rect-
angles as for the case k = 1. Stop when the top of
R1 is reached.
(ii) Repeat (i) using L1 and R2. Stop when the top of
L1 is reached.
(iii) Process the remainder of L2 and R2.

Case (b)

(i) Start at the bottom of L2 and R1 cutting off rect-
angles as for the case k = 1. Stop when the bottom
of R2 (or L1) is reached.

(ii) Process the remainder of L2 and R2 as for the case
k=1.

(iii) Process the remainder of R1 and L1 as for the case
k=1.

478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988

7
SL
g

3

2

a

1

Fig. 9. Portion of a k = 1 polygon.

2
L1
12 R1
(a)
R2 R1
(b)

L2

L2

©
Fig. 10. Polygon decomposition: cases for k = 2. (a) Move right at top of
wall R1. (b) Move left at the top of wall R1 and move left at the bottom
of wall L1. (c) Move left at the top of wall R1 and move right at the
bottom of wall L1.

Case (c)

(i) Start at the bottom of L2 and R1 cutting off rect-
angles as for the case k = 1. Stop when the top of
L2 is reached.
(ii) Process L1 and R2 starting at the bottom. Stop
when the top of R2 is reached.
(iii) Process the remainder of L1 and R1.

3) k > 2: While we could develop custom algorithms
for each of the cases k = 3, k =4, - -+ | k = ¢, the
statistics of Table I indicate that not much is to be gained
beyond k = 2. Hence, for k > 2 we develop a general
algorithm. The major steps in this general algorithm are
described below:

Step 1: Traverse the polygon in counterclockwise or-
der determining the top and bottom of each
vertical wall. This traversal may begin at any
vertex. Following this traversal, the o vertex
may be identified.

Step 2: If the number k of vertical inversions is 1 or 2

(i.e., number of vertical walls is less than 6),

then the decomposition is obtained using the

strategy of Sections II-B-1 and II-B-2. So, as-

sume k > 2.

For each pair of vertical walls i, j determine if

i<jorj<i.

Obtain a topological order from the partial or-

der specified by the ‘ <’ relation constructed in

step 3.

Obtain the rectangular decomposition by pro-

cessing the vertical walls in the topological or-

der of step 4.

Step 3:

Step 4:

Step 5:

An example will help illustrate the details of tiie pro-
cessing that is involved. Consider the polygon of Fig.
11(a). It has the eight vertical walls AC, HF, 1J, OK, PP,
QQ, EE, and DD. The relation < is shown in Figure
11(b). A topological order for the vertical walls is: AC,
DD, EE, HF, 1], QQ, PP, OK. It should be evident that
the first vertical wall in topological order will always be
a left vertical wall. This first vertical wall AC is the cur-
rent left vertical wall.

The next vertical wall in the topological order is DD.
Since DD is a right vertical wall, we can process the cur-
rent vertical wall and DD to cut off the rectangles 1, 2,
and 3 shown in Fig. 11(a). Following this, the current left
vertical wall consists of just the segment ¢, c,.

The next vertical wall in the topological order is EE.
Since EE is a left vertical wall, it is just appended to the
current left vertical wall. Actually, the current left verti-
cal wall is maintained as a collection of vertical wall seg-
ments, in this case ¢;, ¢, and EE. Next, the vertical wall
HF is encountered. As it is a right vertical wall; it may
be processed with respect to the current left vertical wall
to get the rectangles 4, 5, 6, and 7 of Figure 11(a). Fol-
lowing this, the current left vertical wall consists of the
segment e, e,. Next, 1J is appended to the current left
vertical wall. Then QQ is processed and so on.

NAHAR AND SAHNI: FAST ALGORITHM FOR POLYGON DECOMPOSITION

R AC

A F £ LK & L L <
pp * + << < < < <
EE *+ * * < < < < <
HF + * *+ * < < < <
- A
00 * + + ot o+ o< <
pp ¢ 4 x b & e e <
Ok + + + + & + &

(b)
Fig. 11. (a) Example polygon decomposition to illustrate major steps in
general algorithm (k > 2). (b) The relation < for the walls of (a).

The correctness of the procedure described above fol-
lows from the fact that when the current left vertical wall
and a right vertical wall are processed, there are no ver-
tical walls in between. This is guaranteed by the topo-
logical order obtained from the relation ‘<.

4) Implementation and Complexity: We assume that
the input is an array of polygon edges in anticlockwise
order. From this, k can be determined in O(n) time by
traversing the edges in the input order. During this tra-
versal, the top (and hence bottom) of each vertical wall
can be identified. With this information the case k = 1 is
easily solved in O(n) time. If k = 2, we can resolve which
one of the cases (a), (b), or (c) the given polygon falls
into by determining the direction the polygon takes at the
top of R1 and bottom of L1. The processing of each case
can easily be done in O(n) time. For the case k > 2, we
describe two different implementations. The first uses
simple data structures and is suitable when k is small. The
second uses more complex data structures, has a smaller
asymptotic complexity, and is suitable when k is large.

a) Implementation for small k: When k is small, the
relation i < j may be constructed in oK log (n/k))
time. There are k(k — 1)/2 pairs (i, j) to be considered
and the computation of x_coord can be done in O (log m)
time using a binary search on a vertical wall with m ver-
tical segments. The topological ordering of the vertical
walls can be done in O(k?) time (see [6] for example).
This leaves us with the processing of step 5.

To implement step 5 efficiently, we need a good data
structure for the current left vertical wall. The current left

479

vertical wall consists of segments of original left vertical
walls. These segments are kept track of in a table
CurrentLeftWall. Each entry of this table has three fields:
first, second, and last, where CurrentLeftWall[i]. X points
to the Xth edge of the ith segment of the current vertical
wall, X e {first, second, last}. This table is maintained
so that segments are in decreasing order of y. Fig. 12 gives
an example current left vertical wall and the Current-
LeftWall table. There are two cases to consider for left
vertical wall processing. The first is when the next verti-
cal wall in topological order is a right wall. At this time
the matching left segments need to be found. The topmost
such segment may be found in log k time using a binary
search on CurrentLeftWall. Next the matching edge
within this segment is to be found. This takes O (log m)
time if a binary search is used within the segment (m is
the number of vertical edges in the segment). Following
the processing, a vertical wall segment may be split into
two (see Fig. 13). The field first enables us to handle the
case of Fig. 13(b) without copying the new segment into
a new part of memory. The actual cutting of rectangles is
linear in the number of rectangles cut.

When the next vertical wall is a left vertical wall, we
need to insert an entry into the CurrentLeftWall table. This
takes O (k) time as there can never be more than 2 * k
vertical wall segments. Hence the time to process the next
vertical wall is O (k + log m + # of rectangles cut). So,
the total time for step 5 is O(K* + klogn + n). Com-
bining with the time for the other steps, we get O (K* log
(n/k) + n) as the complexity of the new algorithm when
the small k implementation is used.

b) Implementation for large k': When k is large, it
is advantageous to construct the partial order * <’ by using
a horizontal scan line that begins at the top of the poly-
gon. All vertical walls cut by this scan line are maintained
in a balanced binary search tree (e.g., AVL or 2-3 tree,
[6]). An in-order traversal of this search tree visits the
walls in the order (left to right) they are cut by the scan
line. Observe that since vertical walls do not cross one
another, this relative order is unchanged as the scan line
moves. An event occurs when the scan line reaches the
top or bottom of a wall. If both the tops of some walls
and the bottoms of others are reached at the same y value,
then the tops are processed before the bottoms. To pro-
cess the tops, we note that the walls whose tops are
reached are currently not in the binary search tree. These
walls need to be inserted into the search tree so that the
in-order sequence corresponds to the left to right order in
which the scan line cuts these walls. This is accomplished
by using the standard insertion algorithm for balanced bi-
nary search trees. To compare the x coordinates of two
walls, we need to walk down a wall till the appropriate y
segment is reached. During this walk, wall segments
above the current scan line are discarded. In addition to
the insertion, wall pairs W, < W, are to be generated. Let
W,, W,, W, - - - be the in-order sequence after the in-

'This implementation was suggested by an anonymous referee.

480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988

first second last
a b b
c d g
h
i h i k
J

(@ (b)
Fig. 12. An example of current left vertical wall and its CurrentLeftWall
table. (a) Current left wall segments. (b) Table.

Current left wall segment

Right wall

(a) (d)
Fig. 13. A vertical wall may split into two during processing. (a) Current
left wall segments. (b) After processing. '

sertion of the new walls. The pairs to be generated are W;
< W, for all i such that

W; is an old wall and W, is a new wall
or
W; and W, are both new walls
or
W; is a new wall and W, is an old wall.

Processing wall bottoms simply requires the deletion of
the walls from the tree. Since individual insertions and
deletions into a balanced binary search tree take logarith-
mic time and since the total number of wall segments we

need to walk down is O(n), all the * <’ pairs can be gen-
erated in O (k log k + n) time. The topological order can
be constructed in less time than this [6].

The implementation of step 5 is essentially the same as
that for the case ‘k small’ except that a balanced tree is
used for the current wall rather than a table. With this
change, step 5 also runs in O(k log k + n) time.

CkzkH

1) k = 1: At this time, the polygon has two horizontal
walls. We begin at the left end of each wall. The vertical
edge that joins these two left ends is the CurrentLeftWall.
In general, the current left wall will consist of several ver-
tical edges (or portions of vertical edges). These are main-
tained as a sequentially ordered list (ordered top to bot-
tom). Two pointers i and j are used to advance along the
upper and lower walls. Since ky = 1, there are no hori-
zontal walls between these two and the rectangular de-
composition can be done in a straightforward way.

Consider the example of Fig. 14. Initially, the
CurrentLeftWall is (1, 3), i = a and j = /. Since the right
end of j is less than that of i, j is advanced to m. The
vertical edge between / and m is a right edge (i.e., the
interior is to its left) and so a rectangle is cut off by draw-
ing a broken line from the left end of m to the Current-
LeftWall. This wall is now updated to be (1, 2). Next, i
is advanced to b (as the right end of i = a is < the right
end of j = m) and the CurrentLeftWall becomes (5, 6),
(1, 2). Now, j is advanced tc n and the CurrentLeftWall
updated to (5, 6), (1, 2), (7, 8). j is again advanced; this
time to o. Since the vertical edge between n and o is a
right edge, rectangles can be cut off. This is done by mov-
ing up the CurrentLeftWall. First, a rectangle is cut off
using the (7, 8) segment. Then one is cut off using the (1,
2) segment and finally a third one is cut off using part of
the (5, 6) segment. The CurrentLeftWall becomes (5, 4)
and j is advanced to p. Processing terminates when i and
J reach the right end of their respective walls.

The processing described above is quite similar to that
for the case k;y = 1. The major difference is the addition
of a list for the CurrentLeftWall. As remarked earlier this
may be maintained as a sequential list as CurrentLeftWall
is essentially a deque® [6]. The scheme described may be
implemented so as to have time complexity O(n). How-
ever the constant factor associated is slightly higher than
for the case ky = 1. So, if a polygon has k = k, = ky =
1 then it should be handled using the k;, = 1 algorithm.

2) k = 2: Now there are four horizontal walls. Two
upper Ul and U2 and two lower L1 and L2. We may label
these by traversing the polygon beginning at the 7 vertex.
As in the case for k, = 2, there are three cases to con-
sider. In the first, the polygon moves down at the right
end of the first lower wall L1. Following this, the polygon
must move left and then down at the end of upper Ul. At
the end of this, it must move right. From the right end of

*A deque is a linear list which permits additions and deletions from
either end.

—

P

Fig. 14. Polygon decomposition example for k, = 1.

the second lower wall L2, U2 must move left. This case
is shown in Fig. 15(a). When the polygon moves up at
the end of L1, there are two cases depending on whether
the polygon moves up or down at the left end of Ul. These
two cases are shown in Fig. 15(b) and (c).

The processing of these three cases is similar to that for |

the case ki = 1. We describe this only for case (a).

Case (a)

(i) Process L1 and U2 left to right as for kg = 1. Stop
when the right end of L1 is reached.
(ii) Process Ul and L2 as for ky = 1 and stop when
the right end of U1 is reached.
(iii) Process the remainder of U2 and L2. To do this,
the CurrentLeftWalls following (i) and (ii) need to
be appended to each other.

Once again, it is easy to see that the required processing
can be done in O(n) time.

3) k > 2: When k > 2, we order the horizontal walls
by their left end points. This is done by sorting these
points into nondecreasing order of x and within x into
nondecreasing order of y. The walls now form an alter-
nating sequence of lower and upper walls. We begin with
all pairs of matching lower and upper walls with the left-
most left end point. These are the first few pairs in the
sorted order just obtained. The left ends of the upper and
lower walls in each such pair are connected by a vertical
edge in the polygon. This edge defines the Current-
LeftWall for that pair.

The pairs of upper and lower walls are processed as for
the case k;; = 1. The processing continues until the left-
most x coordinate of the next wall pair in the sorted order
is reached or until a wall is exhausted. If the former hap-
pens, then the new wall pair either causes a Current-
LeftWall to be split into two or a new CurrentLeftWall to
be added to the collection of active left walls. If the latter

481

(®)

L2
U2

L1
©)

Fig. 15. Polygon decomposition: cases for k = 2.

happens, then either two CurrentLeftWalls get combined
or one becomes empty.

Consider the example polygon of Fig. 16. Following
the sort, the wall ordering is W,, W3, W,, W, W, W,
Ws, Ws, Wy, Wi, * * * .

We begin with the two matched pairs (W4, W3) and
(W2, W1). The CurrentLeftWall for (W4, W3) is {(5,
6) } and that for (W2, W1) is {(1, 2)}. These wall pairs
are processed independently. During this processing a
rectangle with left edge (6, 7) is cut off first and
CurrentLeftWall for (W4, W3) updated to {(5, 7)}.
Next, the right ends of W2 and W3 are reached and the
two left walls merged to get {(1, 2), (3, 4), (5, 7)}.
Next the pair (W7, W8) is encountered. This requires us
to split the CurrentLeftWall by cutting off rectangle 8, 9,
10, 11. We now process the pairs (W7, W1) and (W4,
W8) independently. The CurrentLeftWalls are, respec-
tively, {(12, 13), (1, 2), (3, 10)}, and {(11, 4), (5,
7)}. When the pair (W9, W10) is reached, a new matched
pair is added to the collection of wall pairs being pro-
cessed.

By using appropriate data structures, the scheme just
described can be implemented to have a time complexity
that is O (k log n + r). This implementation requires the
use of balanced search trees to allow fast searching in a
CurrentLeftWall. Use of an AVL tree [6], for example,
permits efficient search, splitting, and combining. In
practice, we do not expect the use of a balanced search
tree to provide good performance as we expect k to be

482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 4, APRIL 1988

1 W5
13
W6
3 W7
2 W2 '
W10
10 -8
w9
11} —
5 9] W8
W3 4 S
The == =
6 W4

Fig. 16. Example polygon decomposition for k > 2.

‘small,” In this case, a more direct implementation with
complexity O (K* + n) is expected to perform better.

The overall complexity of our algorithm is seen to be
O(min {ky log (ky) + n, kylog n + n}). Since k, and
ky can be as large as O(n), this becomes O(n log n).
This is comparable to the plane sweep method and is su-
perior to the method of Gourley and Green [5]. However
for every fixed k, we expect our algorithm to outperform
the others when n is suitably large.

While our description of the algorithm requires the use
of the codes of Sections II-B-1, II-B-2, and II-B-3 when-
ever ky < ky, in practice we may do better using some
other decision rule. Depending on the particular imple-
mentation of the algorithms described, it is quite possible
that for polygons with k, = 6 and k; = 8 (for example),
the code for the algorithm of Section II-C-3 is faster.

III. EXPERIMENTAL RESULTS

We have programmed all three of the rectangle decom-
position algorithms in Pascal. For vertical inversions, we
considered only the case of small k. Even for this, our
implementation differs from the small k£ implementation
described in Section II-B-4 in that the CurrentLeftWall is
maintained as a two entry table (first and last) rather than
a three entry table (cf. Fig. 12(b)). This implementation
results in an increased asymptotic complexity. However,
since ky is small for our test set the number of segments
in the CurrentLeftWall is also small and the coded version
of the algorithm faster than the asymptotically superior
algorithm described in Section II-B-4.

Run times have been obtained on an Apollo DN320
workstation using the 2869 polygon sample set described
in Tables I and II. Table III gives the observed run times.
All times are in milliseconds (ms) and are the sum of the
times for all polygons in the given category. For example,
the plane sweep algorithm took 1767 ms to decompose
the 1739 polygons (cf. Table II) with up to 10 vertices.
The column labeled ‘‘Vertical inversion k,”> gives the
time taken when the vertical inversion algorithm of Sec-

TABLE III
PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS USING VLSI MASK
DATA PROVIDED BY SPERRY CORPORATION

Number of Time taken by algorithms in milliseconds
vertices
[GOURS3| | Plane Vertical Horlizontal min min time
(2) sweep |Inversion ky |inversion ky | {ky.ky} | {ky, ky}
0<n<10 4340 2803 1181 1767 1214 1162
10 <n <20 4794 2662 1311 3325 1051 1040
20 <n < 30 1148 522 3068 857 289 289
30 <n <40 . 693 274 77 375 77 77
40 < n < 00 4069 1440 2350 1458 1115 1114
Total 15053 7703 5316 7584 3747 3692

tion II-B is used irrespective of whether ky, or ky is smaller;
the column labeled ‘‘Horizontal inversion kz’’ gives the
time taken when the horizontal inversion algorithm of
Section II-C is used irrespective of whether k, or ky is
smaller; the column labeled ‘‘min {ky, ky}*’ gives the
time taken when the vertical inversion algorithm is used
if ky < kg and the horizontal inversion algorithm used
otherwise; the last column gives the time required if the
faster of the two inversion algorithms is used on each in-
stance (i.e., each instance is solved by the inversion al-
gorithm that will solve it faster). As can be seen, there is
not much difference in the last two columns. So, for our
implementation choosing between the two inversion al-
gorithms as described in Section II is near optimal. The
plane sweep algorithm is significantly faster than that of
[5]. The inversion algorithm of Section II is, in turn, sig-
nificantly faster than the plane sweep algorithm. In fact,
the inversion algorithm (see column labeled min {ky, ky })
required less than half the time required by the plane
sweep algorithm to decompose the 2869 polygon test set.

IV. CoNcLusIONS

We have developed a fast algorithm for the decompo-
sition of hole-free rectilinear polygons. Experimental re-
sults obtained using VLSI mask data indicate our algo-
rithm is superior to previously known algorithms for this
problem. The method used by our algorithm is trivially
applicable to the case of nonrectilinear polygons (trape-
zoidal decomposition) and polygons with holes.

REFERENCES

[1]1 T. Asano, T. Asano, and H. Imai, *‘Partitioning a polygonal region
into trapezoids,”” J. Ass. Comput. Mach., vol. 33, no. 2, pp- 290-
312, Apr. 1986.

[2] S. Chaiken, D. J. Kleitman, M. Saks, and J. Shearer, ““Covering
regions by rectangles,”” SIAM J. Algebraic and Discrete Methods,
vol. 23, no. 4, pp. 394-410, Dec. 1981.

[3] J. P. Cohoon, ‘‘Fast channel graph construction,”” Department of
Computer Science, University of Virginia, 1985.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability. San
Francisco: W. H. Freeman, 1979.

[5] K. D. Gourley and D. M. Green, ‘‘A polygon-to-rectangle conver-
sion algorithm,”” IEEE Computer Graphics, vol. 3, no. 1, pp. 31-36,
Jan./Feb.

[6] E. Horowitz and S. Sahni, Fundamentals of Data Structures In Pas-
cal. Rockville, MD: Computer Sci. Press, 1984.

[7]1 H. Imai and T. Asano, ‘‘Efficient algorithms for geometric graph
search problems,”” SIAM J. Comput., vol. 15, no. 2, pp. 478-494,
May 1986.

NAHAR AND SAHNI: FAST ALGORITHM FOR POLYGON DECOMPOSITION

[8] J. M. Keil, ‘‘Decomposing a polygon into simpler components,’’
SIAM J. Comput., vol. 14, no. 4, pp. 799-817, Nov. 1985.

[9]1 A. Lingas, R. Y. Pinter, R. L. Rivest, and A. Shamir, ‘‘Minimum
edge length decomposition of rectilinear polygons,”’ Extended Ab-
stract, Massachusetts Institute of Technology, 1981.

[10] R. Liu and S. Ntafos, ‘‘On partitioning rectilinear polygons into star-
shaped polygons,”” University of Texas at Dallas, UTD Tech. Rep.
#216, 1985.

[11] R. Liu and S. Ntafos, ‘‘Partitioning rectilinear polygons into rectilin-
ear parts,”’ University of Texas at Dallas, UTD Tech. Rep. #217,
1985. '

[12] R. Liu and S. Ntafos, ‘‘On decomposing polygons into uniformly
monotone parts,”” University of Texas at Dallas, UTD Tech. Rep.
#218, 1985. -

[13] S. Nahar and S. Sahni, ‘‘A time and space efficient net extractor,”’
in Proc. 23rd Design Automat. Conf., 1986, pp. 411-417.

[14] T. Ohtsuki, ‘‘Minimum dissection of rectilinear regions,’” in Proc.
1982 Int. Symp. Circuits Syst., 1982, pp. 1210-1213.

[15] J. K. Ousterhout, ‘‘Corner stitching: A data-structuring technique for
VLSI layout tools,”” IEEE Trans. Computer-Aided Design, vol. CAD-
3, no. 1, pp. 87-100, Jan. 1984.

483

Surendra Nahar received the Bachelor of Tech-
nology degree in electrical engineering from the
Indian Institute of Technology, Kanpur, in June
1982. He received the M.S. and Ph.D. degrees in
computer science from the University of Minne-
sota in March 1985 and June 1986, respectively.
From June 1983 to June 1986, he worked part-
time in the Computer Aided Design Department
at Sperry Corporation (Unisys), Minneapolis,
MN, developing CAD algorithms.

He joined AT&T Bell Laboratories, Murray
Hill, NJ, in July, 1986, where he is a Member of the Technical Staff in the
Computer Aided Design and Test Laboratory. He is currently working on
layout analysis and verification tools. His research interests include design
and analysis of VLSI design automation algorithms.

Sartaj Sahni (M’79-SM’86-F’88), for a photograph and a biography,
please see p. 472 of this issue.

