Parallel Scheduling Algorithms

ELIEZER DEKEL and SARTAJ SAHNI
University of Minnesota, Minneapolis, Minnesota
(Received March 1981; accepted April 1982)

Parallel algorithms are given for scheduling problems such as scheduling to
minimize the number of tardy jobs, job sequencing with deadlines, scheduling
to minimize earliness and tardiness penalties, channel assignment, and mini-
mizing the mean finish time. The shared memory model of parallel computers
is used to obtain fast algorithms.

WITH THE CONTINUING dramatic decline in the cost of hard-
ware, it is becoming feasible to build economical computers with
thousands of processors. In fact, Batcher [1979] describes a computer
(MPP) with 16,384 processors that is currently being built for NASA. In
coming years, one can expect to see computers with a hundred thousand
or even a million processing elements. This expectation has motivated
the study of parallel algorithms.

Since the complexity of a parallel algorithm depends on the architec-
ture of the parallel computer on which it is run, it is necessary to keep
the architecture in mind when designing the algorithm. Several parallel
architectures have been proposed and studied. In this paper, we deal
directly with only the single instruction stream, multiple data stream
(SIMD) model. SIMD computers have the following characteristics.

1. They consist of p processing elements (PEs). The PEs are indexed
0,1, .-+, p — 1 and an individual PE may be referenced as in PE(;).
Each PE is capable of performing the standard arithmetic and
logical operations. In addition, each PE knows its index.

. Each PE has some local memory.

3. The PEs are synchronized and operate under the control of a single

instruction stream.

4. An enable/disable mask can be used to select a subset of the PEs
that is to perform an instruction. Only the enabled PEs will perform
the instruction. The remaining PEs will be idle. All enabled PEs
execute the same instruction (though using possibly different data).
The set of enabled PEs can change from instruction to instruction.

N}

Subject classification: 584 parallel scheduling algorithms.
24

Operations Research 0030-364X/83/3101-0024 $01.25
Vol. 31, No. 1, January-February 1983 © 1983 Operations Research Society of America

Parallel Scheduling Algorithms 25

To see how an SIMD computer may be used for parallel computing,
consider the problem of adding together the 8 numbers ao, - - -, @; on an
SIMD computer with 4 PEs. This summation can be accomplished using
the scheme described in Figure 1.

The number below each node in the tree of Figure 1 is a PE index.
During Step 1 of the parallel algorithm, all four PEs are active (or
enabled). Each executes-an add instruction during this step. PEs 0, 1, 2,
and 3, respectively, compute ao + a1, az + as, as + as, and as + a7. In.the
next step, PEs 0 and 1 are active while PEs 2 and 3 are idle. In this step,
PEs 0 and 1, respectively, compute =3a; and Z]a;. PE 0, for example,
computes Z3a; by adding together the sums computed in the first step by
PEs 0 and 1. Finally, in Step 3, PE 0 uses the results computed in Step
2 by PEs 0 and 1 to obtain ja,. During this step, PEs 1, 2, and 3 are idle.

Figure 1. Parallel computation of Z{a;.

Note that if only 1 PE were available, then 7 steps would be needed to
accomplish this summation. One should also note that the scheme just
described can be generalized to add n numbers in O(log n) time using
n/2 PEs. Actually, it is possible to add n numbers in O(log n) time using
only (n/log n) PEs (see Savage [1978] or Dekel and Sahni [1981]).

Throughout this paper, we shall deal with only the SIMD model
explicitly. Our techniques and algorithms readily adapt to the other
models (e.g., multiple instruction stream multiple data stream (MIMD)
and data flow models). This observation follows directly from the defi-
nition of these other models. An MIMD computer, for example, differs
from an SIMD computer in that the PEs are asynchronous and operate
under the control of individual instruction streams. This makes it possible
for different PEs to execute different instructions at any given time (i.e.,
one PE can perform an add while another is performing a subtract, etc.).
One readily sees that an SIMD algorithm can be run on an MIMD
computer by simply replicating the single instruction stream over the
available PEs and synchronizing at the end of each instruction.

In our earlier discussion of the parallel summation algorithm, we
ignored such details as how PE 0 in Step 2 obtained the result of Step 1

.26 Dekel and Sahni

from PE 1. In many SIMD models, the time required to communicate
data from PE to PE often dominates the overall complexity of the
algorithm. Several interprocessor communication models for SIMD com-
puters have been proposed in the literature. Siegel [1979] summarizes
some popular communication models.

The communication overhead of an algorithm varies from one com-
munication model to another. To simplify the discussion, we deal only
with the shared memory model (SMM) in this paper. This model has no
communication delay. In a shared memory computer, there is a large
common memory that is shared by all the PEs. It is assumed that any
PE can access any word of this common memory in O(1) time. When two
or more PEs access the same word simultaneously, we say that a conflict
has occurred. If all the PEs (at least two) that simultaneously access the
same word wish to write in it, it is called a write conflict. If all wish to
read, then it is a read conflict. Write conflicts may be permitted so long
as all the PEs wish to write the same piece of information. As far as our
discussion is concerned, no read or write conflicts are allowed. A descrip-
tion of some of the other SIMD models can be found in Dekel and Sahni.

To illustrate the impact of prohibiting read conflicts on the design of
parallel algorithms, we consider the sorting problem. We are required to
sort n numbers A(1), ---, A(n) into nondecreasing order. Muller and
Preparata [1975] describe how this can be accomplished in O(log n) time
using n* PEs. The steps involved are as follows.

1. Set C(i, p) = 1 if either of the following is true:
(a) p=<tiand A(p) = A()
(b) p>iand A(p) <A@)
Set C(i, p) = 0 otherwise. 1 =i=n,1=p=n.
2. Compute R(Z) = Y 3-1C(i,p), 1 =i=n.

Note that R(i) gives the position A(i) is to occupy in the sorted
sequence. Once R(i) is known, we simply move A() to position B (7).

Performing Step 1 in parallel introduces many read conflicts. For
example, A(1) is needed in the computation of C(1, p) and Cp,1),1=p
< n. To avoid read conflicts, we must first make 2n — 1 copies of each of
the A(i)s. Once this has been done, each of the available n? PEs can
compute a different C(, p) using individual copies of A(z) and A(p).

2n copies of A(i) can be made in O(log n) time using n PEs as shown
in Figure 2. Hence, using n? PEs, 2n copies of each of the A(i)s can be
obtained in O(log n) time. Following this, the n* values C(i, p), 1 < i <n,
1 < p < n can be computed in O(1) time. Finally, all the R(i)s can be
obtained in parallel in O(log n) time by using n/2 PEs to compute each
of the R(i)s. The overall complexity of the parallel sorting algorithm is
O(log n).

Parallel Scheduling Algorithms 27

Most algorithmic studies of parallel computation have been based on
the SMM. Parallel matrix and graph algorithms for the SMM have been
developed by Agerwala and Lint [1978], Arjomandi [1975], Csanky
[1975], Eckstein [1977], Hirschberg et al. [1979], and Savage. Hirschberg
[1978], Muller and Preparata, and Preparata [1978] have considered the
sorting problem for SMMs. The results of Muller and Preparata, and
Preparata will be used in this paper. In these two papers, it is shown that
n numbers can be sorted in O(log n) time (as described above) if n? PEs
are available, and in O(log’n) time when n PEs are available.

Dekel and Sahni develop a design technique for parallel algorithms
based on binary computation trees. This design technique is illustrated
using several examples from scheduling theory. Some of the scheduling
problems considered are as follows.

P1: Schedule many machines to minimize maximum lateness when all
jobs have a processing time p; = 1.

P2: Schedule one machine to minimize maximum lateness. Preemp-
tions are permitted.

P3: Schedule one machine to minimize the number of tardy jobs.

P4: The job sequencing with deadlines problem.

Time

Figure 2. Replicating A(1).

The complexity of their parallel algorithms for all the above problems
is O(log’n).

When measuring the effectiveness of a parallel algorithm, consider
both its complexity as well as its cost in terms of the number of PEs
used. The effectiveness of processor utilization (EPU) is defined with
respect to a parallel algorithm and the fastest known sequential (i.e.,
single processor) algorithm for the same problem. Let P be a problem
and A a parallel algorithm for P. We define:

- 28 Dekel and Sahni

EPU(P, A) = (complexity of the fastest sequential algorithm for P)/
(number of PEs used by A+ complexity of A)

where an asterisk denotes multiplication.

The algorithm of Dekel and Sahni for problem P1 above uses /2 PEs
and has a complexity of O(log’n). The fastest sequential algorithm known
for this problem is due to Horn [1974] and runs in O(n log n) time. So,
the EPU of the parallel algorithm of Dekel and Sahni for P1 is £ (n log n/
(n log’n)) = Q(1/log n). [The notation f(n) = Q(g(n)) (read as “fof n is
omega of g of n”) signifies that there exist positive constants ¢ and no
such that f(n) = cg(n) for all n = n,. Thus, g(n) bounds f(n) from below.]

The best EPU one can hope for is (1). Few parallel algorithms achieve
this EPU. Dekel and Sahni present some algorithms that do. One that
we need here is for the partial sums problem. We are given n numbers a;,
as, -+, Gn and are required to compute A; = @/, a;, 1 =j =< n, where
@ is any associative operator (e.g. max, min, +, *). Their algorithm runs
in O(log n) time and uses n/log n PEs.

In this paper, we consider several scheduling problems. Fast parallel
algorithms are obtained for each. In each case, the complexity analysis is
carried out on the assumption that as many PEs as needed are available.
This is in conformance with the assumption made in almost all the
research work done on parallel computing. This assumption is of course
unrealistic. A parallel algorithm will eventually be run on a machine with
a finite number (say %) of PEs.

It should be easy to see that all our algorithms are easily adapted to
the case of &k PEs. If our algorithm has complexity O(g(n)) using f(n)
PEs, then with 2 PEs, k < f(n), its complexity is O(g(n)f(n)/k).

To see this, note that we may divide the f(n) PEs needed by the
algorithm into % groups, G;, 1 < i < k, such that the number of PEs in
each group is either | f(n)/k] or [f(n)/k]. To each group G of required
PEs, we assign one of the available # PEs. This PE will do all the work
that was previously being performed by all the PEs in G;. It will, of
course, take this PE O(f(n)/k) time to do the work done by the PEs in
G; in one step. Hence, with only % PEs available, the algorithm’s com-
plexity becomes O(g(n) f(n)/k).

As an example, consider the summation of Figure 1. We saw that this
could be done in 3 steps when 4 PEs were available. Suppose that only 2
PEs, A and B, are available. We can use PE A to do the work previously
done by PEs 0 and 2, and use PE B to do the work of PEs 1 and 3. The
summation would proceed as follows. In Step 1, PEs A and B would,
respectively, compute a0 + a1, and az + as. Next, these two PEs will
compute a; + as, and as + a;. In Step 3, Z3a; and Zia; will be computed.
Finally, in Step 4, Zia; will be computed. Note that in this case, computing

Parallel Scheduling Algorithms 29

with 4 PEs is not twice as fast as with 2. This is because the 4 PE
algorithm used all 4 PEs in Step 1 only.

We continue with tradition, and explicitly analyze our algorithms only
for the case when as many PEs as needed are available.

In Sections 1 and 2, we consider two relatively simple examples. The
first of these is to minimize the finish time when m identical machines
are available. The second example is to minimize the mean finish time
when m uniform machines are available. In Sections 3, 4, 5, and 6, we
respectively, consider the following problems: (i) minimizing the number
of tardy jobs when p; = 1, 1 = i < n and 1 machine is available, (ii) job
sequencing with deadlines, (iii) scheduling one machine to minimize the
maximum earliness and tardiness penalties, and (iv) channel assignment.

1. MINIMUM FINISH TIME

When preemptions are permitted, a minimum finish time schedule for
m machines is efficiently obtained using McNaughton’s rule [1959]. Let
D1, D2, + -+ , Pn be the processing times of the n jobs. The finish time, f, of
an optimal preemptive schedule is given by:

= max{maxi<i<.{ pi}, (1/m)Zi=1p:}.

Using f, the optimal schedule may be constructed in O(n) time. Job 1
is scheduled on machine 1 from 0 to p; and job 2 from p; to min{ p: + p2,
f}. If pr + p2 > f, then the remainder of job 2 is done on machine 2
starting at time 0. If p; + ps < f, then job 3 is scheduled on machine 1
from p, + p. to min{ p: + p2 + ps, f}; etc.

Using the parallel algorithms of Dekel and Sahni, max{ p;} and =%, p;,
may be computed in O(log n) time with n/log n PEs. To obtain the actual
schedule, we also need A; = 37_;p;,, 1 =i < n. As mentioned in the
introduction, all the A;s can be computed in O(log n) time using n/log n)
PEs. Let Ay = 0. Each job ¢ can now determine its own processing
assignment by using the following rule:

case
x —[Aira/f1+f — Aina
:x = 0: schedule job i on machine [A;/f] from 0 to p;
:x = p;: schedule job i on machine [A;/f] from f— x to f — x + p;
telse: schedule job i on machine [A;/f] from 0 to p; — x and on
machine [A;/f1 — 1 from f — x to f.
end case

One may verify that x gives the amount of processing time left on the
machine [A;_1/f] after job ¢ — 1 is finished on that machine.

30 Dekel and Sahni

Job | 1 |12 |3 4 1 516 |7 8 9 101112 13|14

i| 5|3 1] 2 7 4 11| 5 2 | 4 6 163
A 518 9 |11 (18|22 |23|28 30|34 40|41 4750

X 015 2 119 2 8 | 7 2 0|6 10|09 3

Figure 3

Example 1. Suppose we have 14 jobs with processing times as given in
Figure 3. Let m = 5. f = max{7, 50/5} = 10. Figure 3 gives the A; and x
values for each job. The schedule obtained is given in Figure 4.

If we have n PEs, all the machine assignments can be computed in
O(1) time. However, using only n/log n PEs, these assignments may be
obtained in O(log n) time (i.e,, each PE computes at most [log n]
assignments). So, the overall scheduling algorithm has a complexity of
O(log n) and uses n/log n PEs. So, its EPU is Q(n/(log n = n/log n)) =
Q(1).

2. MINIMUM MEAN FINISH TIME

A nonpreemptive schedule that minimizes the mean finish time of n
jobs on m identical machines is obtained by using the SPT rule. By
simply using a parallel sorting algorithm, this schedule may be obtained
in O(log n) time with n* PEs or in O(log’n) time with n PEs.

Let us consider the case of m uniform parallel machines. Associated
with machine i is a speed s;. It takes machine i, p;/s; time units to
complete the processing of job i. Horowitz and Sahni [1976] present an
O(n log mn) algorithm that constructs a minimum mean finish time
schedule for this case. Their algorithm is reproduced in Figure 5. This
algorithm assumes that the speeds and processing times have been
normalized and sorted such that s, =1 <=s; =< --- = s, and p1 = p» =<
vor = Pp.

By examining this algorithm, we see that another way to obtain an
optimal schedule is to sort the mn numbers i/s;, 1 =i =n, 1 =j =< minto

1 1 L, 2 3,4
24 5 Bialy
3,6 7, 8 9
4 10 ; 11
5,12, 13 , 14

¢ime 0 1 2 3 4 5 6 7 8 9 10

Parallel Scheduling Algorithms 31

nondecreasing order. Let the resulting sequence be ai, as, as, + -+ , Gmn. If
a; corresponds to g/s;, then job n + 1 — i is scheduled on machine j and
there are ¢ — 1 jobs following it on that machine.

This information may be obtained in O(log*mn) time using a parallel
short and mn PEs or in O(log mn) time with m?n? PEs. If we use the
former sort algorithm, the EPU of our parallel algorithm is Q(n log mn/
(mn log’mn)) = Q(1/(m log mn)). If the latter sort algorithm is used, the
EPU of our scheduling algorithm becomes Q(n log mn/(m?n? log mn))
= Q(1/(m®n)). The actual start and finish times for each job can be
obtained by later using the partial sums algorithm of Dekel and Sahni.

Algorithm MFT
Input: m processors with speeds 1, sy, +++, S, 1 S Sp < +.. < Sm; n jobs
initially sorted so that p; < ps < -.. < p, where the times p; are for

processor 1.
Output: Sets R;, 1 =i =< m. The jobs in R; are to be run on processor i in

increasing order of their execution times.

forj—1ltom—1do

Rj «— ¢; ij «—1/s;

end for

R, — {n}; im < 2/sn,

//Note that the above assigns the job with the largest processing time to the

fastest processor, m.//

fork—n—1to1do

Let u be the largest index such that i, = mini<;<m{i;}; R, « R, U {k}; {u «—

i, +1/s, v

end for

end MFT

Figure 5

3. NUMBER OF TARDY JOBS

Let J = {(p;, di)|1 = i = n} define a set of n jobs. p; is the processing
time of job ¢ and d; is its due time. Let S be any one machine schedule for
J. Job i is tardy in the schedule S iff it completes after its due time d;.

Hodgson and Moore (see Moore [1968]) have developed an O(n log n)
sequential algorithm that obtains a schedule that minimizes the number
of tardy jobs. Dekel and Sahni present an O(log’n) parallel algorithm to
obtain a schedule with the fewest number of tardy jobs. This algorithm
uses O(n) PEs and has an EPU of Q(1/log n).

In this section, we develop a parallel algorithm for the case when p; =
1, 1 = i = n. This algorithm will have a complexity O(log n). It will
require O(n?) PEs and thus have an EPU that is Q(1/n). While the
algorithm of this section has an EPU that is inferior to that of Dekel and

32 Dekel and Sahni

Sahni, it is faster by a log n factor. It is interesting to note that the
simplification p; = 1, 1 < i < n does not lead to a corresponding speed up
for the sequential case. In a recent paper, Monma [1982] has presented
an O(n) solution to this problem.

The problem of finding a schedule that minimizes the number of tardy
jobs is equivalent to selecting a maximum cardinality subset U of JJ such
that every job in U can be completed by its due time. Jobs not in U can
be scheduled after those in U and will be tardy. A set of jobs U such that
every job in U can be scheduled to complete by its due time is called a
feasible set. It is well known that a set of jobs U is feasible iff scheduling
jobs in U in nondecreasing order of due times results in no tardy jobs (for
example see Horowitz and Sahni 1978]).

When p; = 1, 1 = i = n, a minimum cardinality feasible set U can be
obtained by considering the jobs in nondecreasing order of due times.
The job j currently being considered can be added to U iff |U| < dj.
Procedure FEAS is a slight generalization. It finds a maximum subset of
oJ that can be scheduled in the interval [0, 8]. DONE(:) is set to —1 if job
¢ is not selected and is set to a number greater than 0 otherwise. If
DONE(z) > 0, then job i is to be scheduled from DONE() — 1 to
DONEC(Z). The procedure itself returns a value that equals the number of
jobs selected. The correctness of FEAS is easily established using an
exchange argument. Its complexity is O(n log n) as it takes this much
time to order the jobs by due time.

Let JJ be a set of n unit processing time jobs. Let D(z), 1 < i < % be the
distinct due times of the jobs in J. Assume that D(i) < D + 1), 1 <
< k. Let n(i) be the number of jobs in J with due time D(i), 1 =i < k.
Clearly, £%1n(i) = n. Let D(0) = 0 and n(0) = 0. Define F (i) to be the
value of j when procedure FEAS (Figure 6) has just finished considering

all jobs in J with due time at most D(z). It is evident that:
FO)=D(0) =0 "
F@) = min{F(— 1) + n(i), D(), b}, l=i=<k

Expanding the recurrence (1), we obtain:
F(1) = min{D(0) + n(1), D(1), b}

F(2) = min{F(1) + n(2), D(2) b}
= min{D(0) + n(1) + n(2), D) + n(2), b + n(2), D(2), b}
= min{D(0) + n(1) + n(2), D(1) + n(2), D(2), b}

F(3) =min{D(0) + n(1) + n(2) + n(3), D(1) + n(2) + n(3),

D(2) +n(@3), D(3), b}

And, in general
F(m) = min{mino<;=,{D () + Z;-:11n(q)}, b}, I=m=k (2

Parallel Scheduling Algorithms 33

Line Procedure FEAS(J, n, b)
//select a maximum number of jobs for processing//
//in [0, b]. n=|J|//
set J; integer n, b; global DONE(1:n)
sort J into nondecreasing order of due times
DONE(1:n) « —1 //initialize//
Jj<0
fori<—1tondo
case
J = b: return(j) //interval full//
ij<d;: [/select i// j «j + 1; DONE() <
9 end case
10 end for
11 return(j)
12 end FEAS

-3 Ui W N

Figure 6

The maximum number of jobs in J that can be scheduled in [0, 5],
b > 0, so that none are tardy is F'(k). F (k) may be efficiently computed,
in parallel, as follows. Let the due times of the n jobs in J be d(1), d(2),
«++, d(n). Let d(0) = 0. We may assume that d(i) > 0, 1 =i < n. The
computation steps are:

Step 1. Sort d(1:n) into nondecreasing order.

Step 2. Determine the positions (or points) r(0), ---, r(k — 1) in the
sorted sequence of due times in d(0:n) where the due times
changes. le.,, r(i) <r@@+ 1),1=i<kand d(r(@)) # d(r@i) +
1). Let r(k) = n. Clearly, r(0) =0, and n(i) = r(i) — ri — 1)
and D(i) = d(r(i)),1<i< k; D(0) = 0.

Step 3. Since D(i) + =%_..1n(q) = D(i) + n — r(i), we compute
F(k) = min{n + mine<,<:{D (@) — r (i)}, b}.

Example 2. Figure 7a gives the due times of a set J of 15 jobs. In
Figure 7b, have been ordered by due times. The points at which the due

job 1 (2|34 |5|6|7 |89 1101112131415

di 3121512 {91{3J11]9 111|389 |3]9]2

(a) input set of jobs.

L 2.3 .4 5 B 7 8 9.0 .¥,, 12 13 .14%4. .15
job Of2 |4 (1501 |6 |10|13f) 3§11} 5|8 [12]19] 7 9
d 012121213 13]3|315181}59 9 9 9 {1111

(b) jobs sorted in nondecreasing order of due time

Figure 7

34 Dekel and Sahni

times change are shown by heavy lines. We see that k£ = 6; r(0:6) = (0, 3,
7,8,9, 13, 15) and D(0:6) = (0, 2, 3, 5, 8, 9, 11). So, n + minp<;<.{D (@) —
r(i)} = 15 + min{0, —1, —4, =3, —1, —4, —4} = 15 — 4 = 11. If b= 11, then
the maximum number of nontardy jobs is 11.

With n” PEs, Step 1 can be carried out in O(log n) time (see Muller
and Preparata, and Preparata). Using n — 1 PEs, the boundary points
can be found in O(1) time. PE(i) simply checks to see if d(i) < d(i + 1),
1<i=<n— 1.Ifso, then i is a boundary point. 0 and n are also boundary
points. The boundary points have now to be moved into memory positions

; DNONERO]

9
S o
I

)
=W
I
11
N
[
£ S8
w o
)
i

9| |9-13
=1 |=—4

D(0:6) 0 2 3 5 8 9 11

116

Figure 8

r(0), r(1), ---, r(k). This can be done in O(log n) time using n PEs and
the data concentration algorithm of Nassimi and Sahni [1981]. Another
data concentration step moves d(r(0)), d(r(1)), --., d(r(k)) into D(0),
D), ---, D(k). Using £ + 1 PEs, D(i) — r(¢), 0 < i < k can be computed
in O(1) time. min{D(¢) — r(¢)} can be obtained in O(log k) time using the
binary tree computation model of Dekel and Sahni. (Figure 8 shows this
for our example.) As explained in Dekel and Sahni, only O(%/log k) PEs
are needed for this; but using 2/2 PEs is faster. F (k) can now be computed
using an additional O(1) time. The overall complexity is therefore
O(log n) and n® PEs are used. The EPU of the above algorithm is (n log
n/(log nxn?) = Q(1/n).

We have seen how to determine the maximum number of nontardy
jobs. In some applications (see the next section), this is adequate. To
obtain the actual schedule, we may proceed as follows. First, modify
procedure FEAS by adding the line:

Parallel Scheduling Algorithms 35
8.1 :else: DONE(i) «j

and by deleting lines 3 and 7.

It is easy to see that job i is completed at time DONE() iff
DONE(i — 1) # DONE(Z), 1 < i < n. For the modified algorithm, we see
that:

DONE(@©) =0
DONE() = min{DONE@ — 1) + 1, d,}, l1=i=n. (3)
Solving (3), we obtain:
DONE(i) = mino<;<{d,; + i — j}, l=i=n 4)

DONE(i), 1 =i = n may be computed in O(log n) time using n”® PEs
(though n®/log n PEs are sufficient) and the binary computation tree
model (see Dekel and Sahni and Figure 8). Since the initial sort takes
O(log n) time and requires n> PEs, the overall time complexity is O(log n)
and the EPU is Q(1/n). From DONE(:), the schedule is easily obtained.

Example 3. For the sorted data of Example 2, we obtain DONE(0:15)
=(0,1,223,333,4,5,6,7,8,9, 10, 11}. So the set of nontardy jobs
is {2,4, 1, 3,11, 5, 8, 12, 14, 7, 9}. By concentrating these to the left, we
obtain the permutation (2, 4, 1, 3, 11, 5, 8, 12, 14, 7, 9, 15, 6, 10, 13) which
represents an optimal schedule.

4. JOB SEQUENCING WITH DEADLINES

In this problem, we are given a set J of n jobs. Associated with job iis
a profit z; and a due time d;, 1 < i <n. Every job has a processing
requirement of one unit. If job i is completed by time d;, then a profit z;,
z; > 0 is made. If job i is not completed by the time d;, then nothing is
earned. We wish to select a feasible subset of J that yields maximum
return (recall that R is a feasible subset iff all jobs in R can be scheduled
to complete on time).

One way to find a feasible subset R of JJ that gives maximum return is
shown in Figure 9. A correctness proof of this procedure may be found in
Horowitz and Sahni [1978]. It is also possible to implement this scheme
by a sequential algorithm of complexity O(nlogn). For the parallel
version, we reduce the job sequencing with deadlines problem into 2n
independent feasibility problems. First, we note that if R1 and R2 are
feasible subsets of J and if R1 is one with maximum return, then
|R2| = |R1]|.

THEOREM 1. Let A be a feasible subset of J that yields maximum return.
Let B be any feasible subset of J. |B| < |A|.

36 Dekel and Sahni

Step 1. Sort JJ into nonincreasing order of z;
Step 2. R « {1}
fori<2tondo
if R U {i} is feasible then R <— R U {i}
end for

_ Figure 9

Proof. Since A and B are feasible subsets, they can respectively be
scheduled in [0, |A|] and [0, | B|] in such a manner that no job is tardy.
Consider such a scheduling SA of A and SB of B. Consider a job i that is
in both A and B. If i is scheduled earlier in SA than in SB, we may change
SA by moving i to the slot it is scheduled in B. This would require moving
the job (if any) scheduled in this slot in SA to the position previously
occupied by i (see Figure 10(a)). A similar transformation may be made
if i is scheduled later in SA than in SB (see Figure 10(b)).

By performing the above transformation on all jobs that are in both A
and B (i.e., in the intersection of A and B), we obtain schedules SA’ and
SB’ that contain no tardy jobs. In addition, jobs that are in both A and
B are scheduled in the same slots in SA” and SB’.

If | B| > | A|, then there must be job j scheduled in SB' in a slot that is
empty in SA’. Also, j is not in A. By adding j to A, we clearly obtain a
feasible set with return larger than that obtained from A. This contradicts
the assumption on A. So, |B| = |A].

From the sequential algorithm for the job sequencing problem and
Theorem 1, we may derive a parallel algorithm. Let T1(i) = { j|z; > z; or
(2, = z:and j < i)} and T2(i) = T1(i) U {i}. Consider a schedule for
T1(i) that has the fewest number of tardy jobs. Let x(i) be the number
of nontardy jobs in this schedule. Let y(i) be the corresponding number
for T2(i). From our discussions; it follows that job i will be included in R
(Figure 9) iff y(i) > x(i). Hence, R may be obtained by computing x (i)
and y(i), 1 =i < n. x(¢) and y(i) may be computed using the parallel
algorithm for F (k) described in Section 3. From R, the optimal schedule
is obtained by scheduling the jobs in R first, in order of due times; and
then scheduling the remaining jobs in any order. This construction can

- T 8

=] -

[
ad

SB) SB U
(a) (b)
Figure 10. Lining up common jobs.

Parallel Scheduling Algorithms 37

be carried out by first concentrating the jobs in R and then sorting them
by due times.

Example 4. Figure 11a shows an example job set with 12 jobs. These
have been ordered by due times in Figure 11b. Figure 12 gives T'2(i),
1 = ¢ = n. The number of nontardy jobs in the optimal schedules for
T'1(i) and T'2(7) is respectively given in (x(i), ¥(z)). It also tells if job i is
to be included in R. R is seen to be {1, 3, 5, 6, 8, 9, 11, 12}. These jobs
may be concentrated to one end to obtain Figure 13. This gives the
optimal schedule.

Complexity Analysis

As far as the complexity is concerned, the initial sort by due times can
be done in O(log n) time using n* PEs. Next, we need to replicate this

"1 | 85]55|65]80|70|85]|60]|80]|75]|60]85]|60
(a)

i] 114 6 |10 | 2 3 13 7 8 9 |11 |12

i)12 12 2 13|16 |66 6 | 6 7 7 8

"1 [85]80[85]60([55[65]70|60|80|75|85]60
(b)

Figure 11

sorted data into n copies, one to be used for each T1(;) and 7'2(z). This
replication can be carried out using n” PEs and spending O(log) time
(the O(log n) time is needed to avoid read conflicts). Now, the n? PEs are
divided into n groups of n PEs each. Group i computes 7'1(i) and then
T2(z). T1(z) is obtained by having the jth PE in group i flag job j iff
2z > z; or (25 = z; and j < 1). Next, the flagged jobs are concentrated
in O(log n) time using the n PEs in each group. Note that this concentra-
tion preserves the due time ordering. The n PEs in group i next compute
x() = F(k:), 1 = i = n. This takes O(logn) time. y(i), 1 < i < n is
computed in a manner similar to that used to obtain x(i).

Having obtained x() and y(i), n PEs are used to determine if y(i) >
x(i), 1 =i = n. The selected jobs can be concentrated in O(log n) time
using these n PEs. The concentration preserves the due time ordering of
the selected jobs.

The overall complexity of our parallel algorithm is therefore O(log n).
It uses n? PEs and has an EPU of ©(1/r). This should be contrasted with
the algorithm presented by Dekel and Sahni for the same problem. That

Dekel and Sahni

T2(1) i1
z21=8 d; 2

include (0, 1)
T2(2) 1146102357891112

22=55 d; 2223 6666677 8
reject (8, 8)
T2(3) 1146358911
23=65 d; 22266677
include (6, 7)
T2(4) 1 14611
z2,=80 d; 2227
reject (3, 3)
T2(5) 114658911
=70 d; 2226677
include (5, 6)

16

26 = 85 di 2.2

include (1, 2)
T2(7) 11463578911
z7=60 d; 222666677

reject (7, 7)
T2(8) 1146811
2s=80 d; 22267

include (3, 4)
T2(9) 11468911
20=T75 d; 222677

include (4, 5)
T2(10) 1146103578911
20=60 d; 2223 666677

reject (7, 7)
T2(11) 11611
2un = 85 di 2217

include (2, 3)
T2(12) 114610357891112
22=60 d; 2223 666677 8

include (7, 8)

Figure 12

feasible jobs late jobs

6 | 31589 |11|12§) 4 |10] 2

2 |6 |6 |67 71812{3]686

85165170{80]|75|85|{60]80]|60]55

Figure 13. The optimal schedule.

Parallel Scheduling Algorithms 39

algorithm has a complexity of O(log’n) but uses only O(n) PEs. Thus, its
EPU is ©2(1/log n).

5. EARLINESS AND TARDINESS PENALTIES

Let J be a set of n jobs. Associated with each job is a target start time
a;, a target due time b;, and a processing time p;. Any one machine
schedule S for o/ may be denoted by a vector (si, sz, -+ -, s,) where s; is
the start time of job i. Schedule S is admissable iff s, = s;.1 + pi-1, 2 <@
< n. The completion time c; of job i is s; + p;. The earliness e; and
tardiness ¢; of job i are given by:)

e; = max{0, a; — s;}
t; = max{0, ¢; — b;}.

If job i is early (i.e., e; > 0) then it incurs a penalty g(e;). If it is tardy
(i.e., &; > 0), then it incurs a penalty A(#). The objective is to find a
schedule S that minimizes the maximum penalty. This problem was first
studied by Sydney [1977]. He obtained an O(n?) algorithm for the case
when:

1. a; < a; implies b; < b, and

2. g() and A() are monotone nondecreasing continuous functions

such that g(0) = A(0) = 0.

Our notations and definitions are taken from Sidney’s paper. Sidney’s
O(n®) algorithm was subsequently improved to O(n log n) by Lakshmi-
narayan et al. [1978]. The parallel algorithm developed here is based on
the improved algorithm.

The algorithm of Lakshminarayan et al. first flnds an admissable
schedule S using procedure ADMIS (Figure 14). This procedure assumes
that the jobs are ordered by target start times (i.e., a; < a;+1) and within
start times by target due times (i.e, a; = a;+1 implies b; < b;+;). The
maximum lateness, A, in S is computed next. If A = 0, then S is clearly
optimal (as max{e;} = max{¢;} = 0). If A > 0, then E* is computed using
one of their lemmas. Finally, all the start times in S are decreased by E *.
The new schedule is optimal.

A can be computed in O(log n) time using n PEs (see Dekel and Sahni).
As described in Lakshminarayan et al., E* may be computed in O(1) time
using 1 PE. Once E* has been obtained, n copies of it can be made in
O(log n) time using n PEs. Finally, the s;’s can be updated in O(1) time
using n PEs. Also, the initial ordering of the jobs can be carried out in
O(log n) time with n” PEs. All that remains is the computation of the
admissable schedule. From Figure 14, we see that

S1 = Q;

(®)

si = max{ai, Si-1 + pi-1}, 2<i=n.

40 Dekel and Sahni

Expanding the recurrence (5), we obtain
s; = maxi=;=i{a; + 5% pu}, 1<=i=n. (6)

It should be easy to see that using (6) and O(n?) PEs, one can compute
all the s;’s in O(log n) time. We devote the rest of this section to the
development of an O(log n) algorithm that utilizes only n/2 PEs. As we
see later, [n/log n] PEs are all that is needed.

For convenience, we assume that the jobs are indexed 0,1,..-,n—1
rather than 1,2, - - -, n. Before describing the algorithm, we develop some
terminology. Let S(0:n — 1) be an array. A 2*-block of S consists of all
elements of S whose indices differ only in the least significant % bits. The
2'-blocks of A(0:10) are [0, 1], [2, 8], [4, 5], [, 7], [8, 9], and [10]; the 22

Procedure ADMIS (a, p, s, n)
//jobs are ordered by target start and due times//
declare n, a;.n, P1.n, Sin
S1 < ay
fori<—2tondo
s; < max{a;, Si—1 + pi—1}
end for
end ADMIS.

Figure 14

blocks are [0, 1, 2, 3], [4, 5, 6, 7], and [8, 9, 10]; etc. Two 2*-blocks are
sibling blocks iff their union is a 2**'-block. Thus, [0, 1] and [2, 3] are
sibling blocks; so also are [0, 1, 2, 3] and [4, 5,6, 7]. However, [2, 3] and
[4, 5] are not sibling blocks.

Let A(O:n — 1) and P(0:n — 1) be the target start times and the
processing times. Let [i, + 1, + 2, -- -,] be the index set for any 2*-
block (a 2*-block has 2* indices unless it is the last 2*-block). With respect
to this 2*-block, we define S(J) =31 P(q), jis an index in this block

T()) = 25~ P(q), (7

J is a block index and r is the highest index in the block, Q(J) =
max;<,<,;{A(q) + =/, P(¢)} and U(j) = Q(r) + P(r), where j is a block
index. For a 2°-block [i], we have:

S@ =0, T@=P@); QU)=AG); U@G) =AG+PG) (8)

Let X=[i, i+ 1, ---,uland Y=[u+ 1, ---, v] be two sibling 2*-
blocks. Their union Z =[i, i + 1, .- -, v] is a 2"*'-block. Let S, T, @, and
U be the values defined in (7) with respect to the 2*-blocks. Let S, T,
@’, and U’ be the values defined with respect to the 2**'-block Z. From
(7), we see that:

Parallel Scheduling Algorithms 41
oo S0 if jeX
S(J)_{S(j)+T(i) it jev koa)
o _ JTG)+Tw+1) if jeX
T(J)“{T(j)+T(i) if jey b}
o (R0 if jex
i {max{@(j>, vG) + Sy i jey %9
U'(j) =Q'(v) + P(v). : (9d)
One also notes that with respect to the entire 2M"°®"\-block [0, 1, 2, 3,

e, n— 1]’
Q(J) = maXo=g=i{ag + /2 p:} =s; of (6).

Our strategy is to compute the admissable schedule obtained by
procedure ADMIS by using (9a-d). We start with the S, T, @, and U

il 01112 |3]|4 5 6 7 8 9
Pl 3 2 2 41113141113 |4
AlO] 1|4 1819 9 [15]15 |16 |17

Figure 15. An example data set.

values for 2°-blocks as given by (8). Next using (9a-d), the S, T, @ and U
values for 2'-blocks are obtained; then for 2%-blocks, then for 2°-blocks;
etc. Until we have obtained the @ values for the entire 2M'¢:"1-block.

Example 5. Figure 15 gives a set of 10 jobs (indexed 0 through 9). The
first row of Figure 16 gives the S, T, @, and U values for the 2'-blocks;
etc. The numbers with arrows give PE assignments. From the bottom-
most row, we obtain S = (0, 3, 5, 8, 12, 13, 16, 20, 21, 24) as the admissable
schedule.

Let us now proceed to the formal algorithm. In the actual algorithm,
processors are assigned to compute the new values of S, T, @, and U.
Assume that the PEs are indexed 0, 1, - - - , |n/2] — 1. With respect to our
example of Figure 16, when & = 0, PE(0) will compute the new values of
S(1), T(0), T(1), (1), U(0), and U(1); PE(1) will compute S(3), T(2),
T(3), Q(3), U(2), and U(3); etc. When £ = 1, PEs 0 and 1 are both
assigned to the new 2%-block [0, 1, 2, 3], being constructed. PEs 2 and 3
are assigned to the block [4, 5, 6, 7]. PE 4 is idle.

Let - - - i3, I3, 11, lo be the binary representation of . The PE assignment
rule is obtained by defining the function f(i, j) such that the binary
representation of the value of f(z, j) is - -+ ij41, I, 0, {1 - - - lo. When 2*-
blocks are being combined, PE(i) computes S(f(i, k) + 2%), T(f(, &)),

42 Dekel and Sahni

T(f(, k) + 25), Q(f(, k) + 2%), U(f(, k)), and U(f(, k) + 2*) (provided
of course that all these indices are less than n). The formal algorithm is
given in Figure 17. This algorithm mirrors Equations 9a-d. Some minor
modifications have however been made. Since 7() is the same for
all indices in a 2*-block, S(j) + T'(i) of (9a) has been replaced by S(j)

0- 1 2 3 4 5 6 7 8 9
S 0 0 0 0 0 0 0 0 0
2% blocks T 3 2 2 4 1 3 1 3 4
Q 0 1 4 8 9 9 L5 15 16 17
U 3 3 6 12 ik 2 19 16 1 2
I » £ Y 7
A W A B A
- v + . v - ¥
S 0 3 0 2 0 1 0 4 0 3
21—blocks T 5 5 6 6 4 4 5 5 77
Q 0 3 4 8 9 1 15 19 16 19
U 5 5 12 12 13 13 20 2 23 23
T (O
(i 1 2 3

S 0 5 7 o 1 4 8 0 3
22 blocks T fl1 11 11 1 9 9 9 9 7 2
Q 0 3 5 8 9 10 15 1 16 19
U 2 12 12 12 20 20 20 2 23 23
+ 11
0123
Vb -
S 0 3 5 7 11 12 15 19 (03
23 blocks T 20 20 20 20 20 20 20 20 77
Q 0 3 5 8 12 13 16 20 16 19
U 21 21 21 21 21 21 21 21 23 23
e,
0 1
il
S 0 3 5 7 11 12 15 19 20 23
o™ foekes 27 27 27 27 27 27 27 27 27 27
Q 0 3 5 8 12 13 16 20 21 24
U 28 28 28 28 28 28 28 28 28 28

Figure 16. Computing the admissable schedule.

+ T(j — 2%). Similarly, T(j) + T(z + 1) of (9b) has been replaced by
T(j) + T(j + 2%); and U() + S(j) of (9c) by U(;j — 2*) + S(j). Note
that, as a result of this change, new T and U values for the right most
block may be incorrect (as j + 2* may be exceed n — 1). This does not
affect the outcome of the algorithm as the 7" and U values of rightmost
blocks are never used. One may verify that max{U(j + 2*), U(j) + T(j

Parallel Scheduling Algorithms 43

+ 28} = @’ (v) + P(v) (Eq. 9d). When % = |log n] — 1, only @ need be
computed.

The complexity of PADMIS is readily seen to be O(log n). It uses n/2
PEs. By dividing the jobs into [n/log n] groups, each of size at most log n,
it is possible to compute the s;’s in O(log n) time. This requires combining
the sequential and parallel algorithms together. We omit the details.

Procedure PADMIS (A, P, s, n)
//obtain the admissable schedule. (s1, s2, =+ -, 8.)//
declare n, A(O:n — 1), P(O:n — 1), S(O:n — 1), T(0:n — 1)
declare Q(O:n — 1), U(O:n — 1), 7, 1
for each PE(2) do in parallel
J<fG0)
//initialize 2°-blocks//
S(j) < 0; T(j) <« P(j); QJ) < A()); U(j) < A(J) + P())
S(j+1)«0;,T(j+1) < P(j+1)
QU+1) <—A(j+1; UG+ <A+ +P(+D
for k < 0 to |logan] — 1 do
//combine 2*-blocks//
J < f@, k) //PE assignment//
if j+ 2" < n then
QU + 2 « max{Q(j + 2%, U(j) + S(j + 21))
U(j+ 2") «—max{U(j + 2%, U(j) + T(j + 2"}
U(j) <« U@+ 25
S(j+2") < S(j+2"+ T(j)
T(j+2) < T+ TG+2Y
T(j) < T(j+2")
endif
end for
end for
si—QU),0=i<n
end PADMIS

Figure 17. Parallel admissable schedule algorithm.

However, this grouping technique has been used in other problems. The
details can be found in Dekel and Sahni. With this grouping technique,
the parallel admissable schedule algorithm (Figure 17) will have an EPU
of Q(1).

The overall complexity of the parallel algorithm to minimize earliness
and tardiness penalties is determined by the sort (to order jobs). This
takes O(log n) time and uses n” PEs. The EPU is Q(1/n).

6. CHANNEL ASSIGNMENT

The channel assignment problem occurs naturally as a wire routing
problem. Components of an electrical circuit are laid out in a straight line

- 44 Dekel and Sahni

as in Figure 18. Certain pairs of components are to be connected using
only two vertical runs and one horizontal run of wire (as in Figure 18).
The horizontal and vertical runs are physically located in different layers.
Each horizontal run of wire lies in a “channel.” No channel can simulta-
neously carry more than one wire. We are required to assign the horizon-
tal wire runs to channels, using the least number of channels. The
assignment of Figure 18 uses 3 channels.

In the mathematical formulation of this problem, we are given n open
intervals (a;, b:), @; < b;, 1 =i < n. Each open interval (a;, b;) corresponds
to a continuous horizontal run of wire that joins a pair of components.
These wires are to be assigned to channels, in such a way that the number
of channels used is minimum. In the example of Figure 18, n = 4; the
intervals are (1, 4), (2, 5), (3, 7), and (6, 8); the channel assignment is:
(1, 4) and (6, 8) in channel 1, (2, 5) in channel 2, and (3, 7) in channel 3.

channel 3 I 1
channel 2 7 '; - ,:
1 1
channel 1 " T ") E r—-———i—-—g
L b ! : Lo
components 1 2 3 4 5 6 7 8

Figure 18. Wiring with 3 channels.

The job sequencing problem with release times and deadlines (Gerts-
bakh and Stern [1978]) is similar to the channel assignment problem.
Suppose we are given a set J of n jobs. Associated with each job is a
release time r;, a deadline d;, and a processing time p;. A feasible schedule
is one in which no job is processed before its release time; all jobs
complete by their respective deadlines; and jobs are processed without
interruption from start to finish. We are required to find a feasible
schedule that uses the fewest number of machines. One readily sees that
when 7; + p; = di, 1 = i < n, this problem is identical to the channel
assignment problem. When this restriction on r;, p;, and d; is removed,
the problem is NP-hard.

The fastest sequential algorithm known for the channel assignment
problem runs in O(n log n) time (Hashimoto and Stevens [1971], Ker-
nighan et al. [1973], and Gupta et al. [1979]). The algorithm described by
Gupta et al. consists of the steps given in Figure 19.

In the three-step algorithm of Gupta et al., the final value of m is the
fewest number of channels needed. The assignment is constructed while
this number is being determined. It is possible to determine this number
without actually obtaining a channel assignment. Let ci1, ¢z, « -+, can be
the sorted sequence of 2n endpoints. Set z; = 1 if ¢; is an a; and 2z; = —1
if ¢; is a by. It is easy to see that r; = 3/, z; gives the number of wires

Parallel Scheduling Algorithms 45

Step 1. Sort the multiset {a,;]1<i=< n} U {b:|]1 =i =<n} of the 2n end points into
nondecreasing order. If an a; equals a b;, then b; precedes a;.
Step 2. m « 0; stack < empty
Step 3. Process the 2n points one by one
if the point being processed is an q;
then if stack empty then m —m + 1 assign this wire run to channel m
else unstack a channel from the stack and assign the wire to this
channel p
endif
else put the channel used by this wire onto the stack
endif

Figure 19

that either start at ¢; or cross the point ¢j. Further, max,<;<»,{r;} is the
number of channels needed to route the n wire segments.

rj, 1 =1 = n can be computed using the partial sums algorithm of Dekel
and Sahni. This algorithm takes O(log n) time and uses [n/log n] PEs.
The largest r; can be found in O(log n) time using [n/log n] PEs. The
initial ordering of the a’s and 4’s can be done in O(log n) time using n>
PEs. If this sorting algorithm is used, the resulting parallel algorithm to
determine the fewest number of channels has a time complexity of
O(log n) and an EPU of Q(1/n). If the O(log’n), n PE sorting algorithm
of Preparata is used instead, the time complexity is O(log’n) and the
EPU is ©(1/log n).

Example 6. Figure 20 gives a set of n wires. Figufe 21 shows the results
of the different steps of the parallel algorithm to determine the fewest
number of channels needed. This number is 4.

The actual channel assignment can be obtained from the ri’s (recall
that r; = 2/, z;), 1 </ < 2n. Assume that ¢j corresponds to a:. Let g be
the largest index such that ¢ < j, r, = r; — 1, and ¢, corresponds to a b
(say bp). If no such q exists, set ¢ to 0. An examination of the algorithm

e |
ag bg

a7 b———— by

as ————— bg ag} — bg
ay + by
agh— — b3
a2 pb————iby

2] — —by

Figure 20

46 Dekel and Sahni

4 %5 % 7 %8 %9 ©10 11 “12 €13 14 15 16
ag by b by b,

Assigned Values 1 1 1 -1 1 ¥ =1 =1 1 -1 1 1 -1 -1 -1 -1

Sort a a

Partial Sum 1 2 3 2 3 4 3 2 3 2 3 4 3 2 1 0
MAX R 4

Figure 21

of Gupta et al. reveals that if g = 0, then the channel used by (ax, bz) has
not been used earlier. If g # 0, then it was most recently used in the
interval (a@p, b,). To see the truth of this, note that at point b,, the
channel assigned to (a,, b,) is put into the stack. This channel remains in
the stack until we reach the nearest point at which the number of wires
that start or cross is one more than the number at b, (if a; = a; and i <
J, then we say that a; is before a;). Define L(j) = 0if ¢ = 0 and L(j) =
p otherwise.

L(j) may be interpreted as a link. The value L(j) links the jth wire to
the previous wire which uses the same channel. Thus the L() values can
be used to create ‘a linked list of wires that are assigned to the same
channel. Figure 22 gives the linked lists for the example of Figure 21.
Each wire is represented by a circle. The circle with index i outside it
represents the wire (a;, b;). L() is shown as a leftward arrow. We leave
it to the reader to see how the L() values may be obtained in O(log n)
time using n?/log n PEs. g

The channel assignment @ (k) for a wire & with L(k) = 0 is obtained
from the r value corresponding to it (i.e., =%, 2;).

If L(k) # 0, we may initially set @(k) = 0. The actual channel
assignments for wires with L(k) # 0, may be obtained by simultaneously
collapsing the linked lists and transmitting the channel assignment within
the lists as below:

C—0O
2 4
3 6

Figure 22. Partitions for example of Figure 21.

Parallel Scheduling Algorithms 47

for j < 1 to [log n] do
for each i for which @ (i) = 0 do in parallel
if L(L(Z)) = 0 then Q(i) < Q(L(i))
L(i) < L(L(z2))
end for
end for.

As an example, consider the partition shown in Figure 23a. The letters
outside the circles identify the wires. The numbers inside give the

(a) 1Initial
A C E G B D F H
(- O

b After 1 iteration

(®)
A E G G B F D H
(c) After 2 iterations
A E C G B F D H
(d) After 3 iterations

Figure 23

values. Thus, initially the channel assignment for wire A is known to be
5. The remaining wires B-H do not know their channel assignments. It
is also known that wires A-H are to be assigned to the same channel. In
the first iteration of the outermost for loop above, wires B-H look two
nodes to the left and update their left links. Wire B also updates its @
value. The result is shown in Figure 23b. The results of the second and

48 Dekel and Sahni

third iterations are shown in Figure 23, ¢ and d, respectively. Performing
any additional iterations has no effect on the @ and L values.

The parallel complexity of the above scheme is O(log n). Therefore,
the overall complexity of our parallel channel assignment algorithm is
O(log n) (i.e., using the O(log n) n® PE sorting algorithm; its EPU is
Q2(1/n). :

8. CONCLUSIONS

The extent to which parallel computers will find application will depend
largely on our ability to find efficient algorithms for them. In this paper
we examined several scheduling problems. The single processor algorithm
for each of these appeared to be highly sequential in nature. A closer
look revealed a parallel structure that led to efficient parallel algorithms.
Several other scheduling problems can be solved efficiently using the
techniques of this paper and of Dekel and Sahni.

Examples are:

a. 2 machine flow shop scheduling to minimize finish time.

b. 2 machine open shop scheduling to minimize finish time.

¢. 2machine flow shop scheduling, with no wait in process, to minimize
finish time.

The parallel algorithms for the above problems involve a straightfor-
ward application of parallel sorting and partial sums. For example,
consider problem (a). Here, we simply divide the job set into two classes:
(i) jobs which need less time on machine 1 than on 2, (ii) remaining jobs.
Jobs in (i) are sorted into nondecreasing order of their machine 1
processing times. Jobs in (ii) are sorted into nondecreasing order of their
machine 2 processing time. The optimal processing permutation consists
of jobs in (i) in sorted order followed by those in (ii) in sorted order. One
readily sees that this permutation satisfies Jackson’s [1955] rule.

ACKNOWLEDGMENT

The research reported in this paper was supported in part by the Office
of Naval Research under contract N00014-80-C-0650.

REFERENCES

AGERWALA, T., AND B. LinT. 1978. Communication in Parallel Algorithms for
Boolean Matrix Multiplication. Proc. 1978 Int. Conf. on Parallel Processing,
IEEE, pp. 146-153.

ARrJoMANDI, E. 1975. A Study of Parallelism in Graph Theory, Ph.D. thesis,
Computer Science Department, University of Toronto.

BatrcHER, K. E. 1979. MPP—A Massively Parallel Processor. Proc. 1979 Int.
Conf. on Parallel Processing, IEEE, p. 249.

CsaNKy, L. 1975. Fast Parallel Matrix Inversion Algorithms. Proc. 6th IEEE
Symp. on Found. of Computer Science, pp. 11-12.

Parallel Scheduling Algorithms 49

DEKEL, E., AND S. SAHNI. 1981. Binary Trees and Parallel Scheduling Algorithms.
Proc. CONPAR 81, pp. 480-492. Springer-Verlag, New York.

EcksrEIN, D. 1977. Parallel Graph Processing Using Depth-First Search and
Breadth First Search, Ph.D. thesis, University of Iowa.

GERTSBAKH, L, aAND H. I. STERN. 1978. Minimal Resources for Fixed and Variable
Job Schedules. Opns. Res. 26, 61-85.

Gurra, U. I, D. T. LEE anND J. Y. LEUNG. 1979. An Optimal Solution for the
Channel-Assignment Problem. JEEE Trans. Computers C-28, 807-810.)
HasHimoTo, A., AND J. E. STEVENS. 1971. Wire Routing by Optimizing Channel
Assignment within Large Apertures. Proc. 8th Design Automation Conference,

IEEE, pp. 155-169.

HirscHBERG, D. S, A. K. CHANDRA aAND D. V. SARWATE. 1979. Computing
Connected Components on Parallel Computers. Commun. A.C.M. 22, 461-469.

HIRSCHBERG, D. S. 1978. Fast Parallel Sorting Algorithms. Commun. A.C. M. 21,
657-661.

Horn, W. A. 1974. Some Simple Scheduling Algorithms. Naval Res. Logist.
Quart. 21, 177-185.

Horowirz, E., AND S. SAHNI. 1976. Exact and Approximate Algorithms for
Scheduling Nonidentical Processors. J. Assoc. Comput. Mach. 23, 317-327.
Horowirrz, E., AND S. SAHNL 1978. Fundamentals of Computer Algorithms.

Computer Science Press, Potomac, Md.

JACKsoN, J. K. 1955, Scheduling a Production Line to Minimize Tardiness,
Research Report 43, Management Science Research Project, University of
California, Los Angeles.

KerNIGHAN, B. W, D. G. SCHWEIKERT AND G. PERSKY. 1973. An Optimum
Routing Algorithm for Polycell Layouts of Integrated Circuits. Proc. 10th
Design Automation Conference, IEEE, pp. 50-59.

LAKSHMINARAYAN, S., R. LAKSHMANAN, R. PADINEAV AND R. RocHETTE. 1978.
Optimal Single Machine Scheduling with Earliness and Tardiness Penalties.
Opns. Res. 26, 1079-1082.

McNAaUGHTON, R. 1959. Scheduling with Deadlines and Loss Functions. Mgmt.
Sci. 6, 1-12.

MOORE, J. M. 1968. An n job, One Machine Sequencing Algorithm for Minimizing
the Number of Late Jobs. Mgmt. Sci. 15, 102-109.

Monma, C. L. 1982. Linear Time Algorithms for Scheduling on Parallel Proces-
sors. Opns. Res. 30, 116-124.

MULLER, D. E., AND F. P. PREPARATA. 1975. Bounds to Complexities of Networks
for Sorting and for Switching. .J. Assoc. Comput. Mach. 22, 195-201.

Nassivi, D., AND S. SAHNI. 1981. Data Broadcasting in SIMD Computers. IEEE
Trans. Comput. C-30, 101-107.

PREPARATA, F. P. 1978. New Parallel-Sorting Schemes. IEEE Trans. Comput.
C-217, 669-673.

SAVAGE, C. 1978. Parallel Algorithms for Graph Theoretic Problems, Ph.D. thesis,
University of Illinois, Urbana.

SIEGEL, H. J. 1979. A Model of SIMD Machines and a Comparison of Various
Interconnection Networks. IEEE Trans. Comput. C-28, 907-917.

SYDNEY, J. B. 1977. Optimal Single-Machine Scheduling with Earliness and
Tardiness Penalties. Opns. Res. 25, 62-69.

