Open Shop Scheduling to Minimize Finish Time

TEOFILO GONZALEZ AND SARTAJ SAHNI

University of Minnesota, Minneapolis, Minnesora

ABSTRACT. A linear time algorithm to obtain a minimum finish time schedule for the two-processor open shop
together with a polynomial time algorithm to obtain a minimum finish time preemptive schedule for open shops
with more than two processors are obtained. It is also shown that the problem of obtaining minimum finish time
nonpreemptive schedules when the open shop has more than two processors is NP-complete.

KEY WORDS AND PHRASES: open shop, preemptive and nonpreemptive schedules, finish time, polynomial
complexity, NP-complete

CR CATEGORIES: 4.32,5.39

1. Introduction

A shop consists of m = 1 processors (or machines). Each of these processors performs a
different task. There are n = | jobs. Each job i has m tasks. The processing time for task
Jofjobiist;;. Taskjof jobiistobe processed on processorj. 1 =j=m. Aschedule for
a processor j is a sequence of tuples (/;, sy, fi,), 1 =i = r. The [, are job indexes, s, is
the start time of job [, and f, is its finish time. Job [; is processed continuously on
processor j from s;, to f;- The tuples in the schedule are ordered such that s, < f, =
Si.» 1 =1 < r. There may be more than one tuple per job and it is assumed that /; #
lisy, 1 =i <r.lItisalso required that each jobi spend exactly ¢;; total time on processor .
A schedule for an m-shop is a set of m processor schedules, one for each processor in the
shop. In addition these m processor schedules must be such that no job is to be processed
simultaneously on two or more processors. A shop schedule will be abbreviated to
schedule in future references. The finish time of a schedule is the latest completion time
of the individual processor schedules and represents the time at which all tasks have been
completed. An optimal finish time (OFT) schedule is one which has the least finish time
among all schedules. A nonpreemptive schedule is one in which the individual processor
schedule has at most one tuple (i. s, f;) for each job i to be scheduled. For any processor j
this allows for f;; = 0 and also requires that f; — s; = t;;. A schedule in which no
restriction is placed on-the number of tuples per job per processor is preemptive. Note
that all nonpreemptive schedules are also preemptive. while the reverse is not true.
Open shop schedules differ from flow shop and job shop schedules [2, 3] in that in an
open shop no restrictions are placed on the order in which the tasks for any job are to be
processed. It is easy to conceive of situations where the tasks making up a job can be
performed in any order, even though it is not possible to carry out more than one task at
any particular time. For example. consider a large automotive garage with specialized

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish. but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference 1s
made to the publication. to its date of issue. and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

This research was supported in part by the National Science Foundation under Grant DCR 74-10081 and by
University of Minnesota Graduate School Research Grant 468-0100-4909-06.

Authors’ present addresses: T. Gonzalez, Computer Science Department. The Pennsylvania State University.
University Park. PA 16802 S. Sahni. Department of Computer Science, 114 Lind Hall, University of Minnesota,
Minneapolis, MN 55455,

Journal of the Association for Computing Machinery, Vol 23, No. 4. October 1976, pp. 665-679

666 T. GONZALEZ AND S. SAHNI

shops. A car may require the following work: replace exhaust pipes and muffler, align
wheels, and tune up. These three tasks may be carried out in any order. However, since
the exhaust system, alignment, and tune-up shops are in different buildings, it is not
possible to perform two tasks simultaneously. In this particular example preemption may
not be desirable. Open shop scheduling is also interesting from the theoretical stand-
point. It is well known that determining optimal preemptive and nonpreemptive sched-
ules for the flow shop and job shop is NP-complete. Removing the ordering constraint
from these two shop problems yields the seemingly simpler open shop. As our results will
show, removing the ordering constraints allows us to efficiently solve the preemptive
scheduling problem but not the nonpreemptive one.

In this paper we shall investigate OFT schedules for the open shop. It is clear that
when m = 1, OFT schedules can be trivially obtained. We shall therefore restrict
ourselves to the case m > 1. First. in Section 2 we show that preemptive and nonpreemp-
tive OFT schedules can be obtained in linear time when m = 2. This contrasts with
Johnson’s O(n log n) algorithm [3, p. 89] for the 2-processor flow shop. When m > 2,
OFT preemptive schedules can still be obtained in polynomial time (Scction 3).

For nonpreemptive scheduling, however, the problem of finding OFT schedules when
m > 2 is NP-complete. These results may be compared to similar results obtained for
flow shop and job shop OFT scheduling. In [4, 5] it is shown that the problem of finding
nonpreemptive OFT schedules for the flow shop when m > 2 and for the job shop when
m > 1 are NP-complete. In [5] it is also shown that the problem of finding preemptive
OFT schedules for the 3-processor flow shop and 2-processor job shop are NP-complete.
Thus, as far as the complexity of finish time scheduling is concerned, open shops are
easier to schedule when a preemptive schedule is desired.

2. OFT Scheduling form = 2

In this section a linear time algorithm to obtain nonpreemptive and preemptive OFT
schedules for the case of two processors is presented. For notational simplicity we denote
t,.i, the task time on processor 1, by a; and #,; by b;, 1 =i = n. Informally the algorithm
proceeds by dividing the jobs into two groups A and B. The jobs in A have a; = b;, while
those in B have a; < b;. The schedule is built from the “*middle,” with jobs from A added
on at the right and those from B at the left. The schedule from the jobs in A is such that
there is no idle time on processor 1 (except at the end), and for each job in A it is possible
to start its execution on processor 2 immediately following its completion on processor 1.
The part of the schedule made up with jobs in B is such that the only idle time on
processor 2 is at the beginning. In addition the processing of a job on processor 1 can be
started such that its processing on processor 2 can be carried out immediately after
completion on processor 1. Finally some finishing touches involving only the first and last
jobs in the schedule are made. This guarantees an optimal schedule.

Line

1 Algorithm OPEN__SHOP
this algorithm finds a minimum finish time nonpreemptive schedule for the open shop problem
with task times (a;; b)), | =i=n /#
initialize variables: a,; b, represent a dummy job
T; = sum of task times assigned to processori, | =i = 2
{ = index of leftmost job in schedule
r = index of rightmost job in schedule
§; = sequence for processor i, 1 =i =2y

L)

T, —T,—ay« by« —r«0; 5« null

schedule the n jobs 7

3 fori<« | tondo

4 T, «T+a; T,«—T,+ b

S ifa, = b, then [ifa, = b, then

[# put ron right. | means string concatenation 2

Open Shop Scheduling to Minimize Finish Time 667

6 S8 |rrei
else
[# put i on right #
7 S8
8 else [if b; = a, then
[# put L on left 7
9 S 1|8 1«1
else
[# pution left #
10 S—i|S8])
11 end

finishing touch /7
12 7, —a<T,— b then[S, < S |r|L;S:1]|S]r]
13 else [S, « [|5 |r; Sy —r |1 5]
14 delete all occurrences of job 0 from §; and §,
an optimal schedule is obtained by processing jobs on processor {in the order specified by §;, 1 =i=2.
The exact schedule may be determined using Theorem 2.1. #
15 return
16 end OPEN_SHOP

Example 2.1. Consider the open shop problem with six jobs having task times as
below:

Job
Processor
1 2 3 4 5 6
1 10 7 3 1 12 6
2 6 9 8 2 7 6

Initially / = r = 0 and S = (. The following table gives the values of 5, 7, [at the end of
each iteration of the for loop 3-12.

End of

) i S r !
iteration

0
00
200
4200
42001
420016

Lo L R
bn th — = =
[N ICRNTC TR OCE S 3 T |

We have S = 420016,7 = 5,/ =3, T, =39, and T, = 38. Since T, — a3 > T — bs, we
get §, = 34200165 and §, = 53420016. Deleting all occurrences of the 0’s, we get §; =
342165 and S, = 534216. Processing by these permutations gives the Gantt chart:

3 4 11 21 7 39

o

processor | s a, as a, ag as

processor 2 b, by b, b, b, be

7 15 17 26 32 38

The following two lemmas will be useful in proving the correctness of algorithm
OPEN_SHOP.

Lemma 2.1. Let the set of jobs being scheduled be suchthata; = b;. 1 =i =n, and let
D be the permutation obtained after deleting the O’s from S in line 14 of algorithm

668 T. GONZALEZ AND §. SAHNI

OPEN__SHO P and concatenating r to the right. The jobs 1 — n may be scheduled in the
order such that:

(i) there is no idle time on processor 1 except following the completion of the last task
on this processor; :

(ii) for every job i, its processor 1 task is completed before the start of its processor 2
task

(iii) for the last job r, the difference A between the completion time of task 1 and the
start time of task 2 is zero.

Proor. The proof is by induction on n. The lemma is clearly true for n = 1. Assume
that the lemma is true for 1 = n < k. We shall show that it is also true for n = k. Let the k
jobs be J, - - - . Jy and let #' be the value of r at the beginning of the iteration of the for
loop of lines 3-11 when i = n. From the algorithm it is clear that the permutation D'
obtained at line 14 when the k — 1 jobs Jy, - - -, J_, are to be scheduled is of the form
D'r'. Moreover D = D"r'k or D = D"kr'. From the induction hypothesis it follows that
the jobs J,, * - - . Jx—, can be scheduled according to the permutation D’ so as to satisfy
(i)-(iii) of the lemma, i.e. these k — 1 jobs may be scheduled as in Figure 1. Leti be the
job immediately preceding r’ in D'. In case k = 2, leti = 0 with aq = by = 0.

If A, = b, then D = D'k and it is clear that the job k can be added on to the schedule
of Figure 1, at the right end, so that (i)-(iii) of the lemma hold.

If Ay < b, then D = D"kr’. Now job r’ is moved a, units to the right so that a, can be
accommodated between i and ', satisfying (i). Let f, be the finish time of @; and f, = f, be
the finish time of b;. The finish time of a, is then f; + a, <f; + an asap = b,.. By (iit) the
start time of b,. has to be f, + a, + a,.. Also we know, from the induction hypothesis, that
fi+a.—fo=A =0,ie.f, +a. = f. The carliest that b, may be scheduled is max{f; +
ap, f2} < fi + a.. This implies that there is enough time between the start time of b, and
the earliest start time of by to complete the processing of b,. O

LEMMA 2.2. Let the set of jobs being scheduled be such thata; < by, 1 <i=n,and let
C be the permutation obtained after deleting the O’s from S in line 12 of algorithm
OPEN__SHO P and concatenating | to the left. The jobs may be scheduled in the order C
such that: : '

(i) there is no idle time on processor 2 except at the beginning;
(ii) for every task i, its processor 1 task is completed before the start of its processor 2
task;

(iti) for the first job I, the difference A between the completion time of task 1 and the
start time of task 2 is zero.

Proor. The proof is similar to that of Lemma 2.1. [

“Lemma 2.3, Let (a;,, b)) be the processing times for job i on processors 1 and 2
respectively, | < i < n. Let f* be the finish time of an optimal finish time preemptive
schedule. Then, f* = max{maxda; + b}, T\, T} where T, = Nragiand To = X1 b,

Proor. Obvious. O

. We are now ready to prove the correctness of Algorithm OPEN__SHOP.

TueoreMm 2.1.. Algorithm O PEN_SHO P generates optimal finish time schedules.

3

a,—€d_,—>
3riag e

T NN
I VA7 VAN)

-h >
i
g —

fZ
Fi. 1. Scheduling by D' = D", Shaded region indicate task
processing. Last job is r'. A" = 0.

Open Shop Scheduling to Minimize Finish Time 669

Proor. LetJ,, -, J, be the set of jobs being scheduled. Let A be the subset with
a; = b; and let B be the remaining jobs. It is easy to verify that the theorem is true when
either A or B is empty. So assume A and B to be nonempty sets. Let § be as defined by
the algorithm after completing the loop of lines 5-11. Let £ be the permutation obtained
after deleting the 0’s from/ || S |[r. Then E = CD where C consists solely of jobs in B,
and D consists solely of jobs in A. From Lemmas 2.1 and 2.2 it follows that the jobsin A
and B may be scheduled in the orders D and C to obtain schedules as in Figure 2. In the
schedules of Figure 2 the processor 1 tasks for C and the processor 2 tasks for D have to
be scheduled such that all the idle time appears cither at the end or at the beginning. Itis
easy to see that this can be done. For example, the schedule of Figure 2(b) is simply
obtained from Figure 1 by shifting processor 2 tasks to the right to eliminate interior idle
time on P2.

Let T, = ¥%a;and T, = Y} b;. The schedule for the entire set of jobs is obtained by
merging the two schedules of Figure 2 together so that either (a) the blocks on Pl meet
first — this happens when (a;-«,) = B,; or (b) the blocks on P2 meet first — this happens
when (a,-a;) > B,.

Let us consider these two cases separately.

Case (a) &y — «, = B,. This happens when T, — a;, = T, — b,. In this case line 13 of
the algorithm results in the tasks on P1 being processed in the order C while those on
P2 are processed in the order rCD’, where D’ is D with r deleted. The section ay-a; of
Figure 2(a) is now shifted right until it meets with 8,~8, of Figure 2(b). Task &, is moved
to the leftmost point. The finish time of the schedule obtained becomes max{a, + b,,T;,
T,}, which by Lemma 2.3 is optimal.

Case (b) s — «, > B3,. This happens when T, — «, < T, — b,. In this case line 12 of
the algorithm results in the tasks on P1 being processed in the order C' DI, where C"is C
with [deleted. Tasks on P2 are processed in the order CD. The schedule is obtained by
processing tasks on P2 with no idle time starting at time 0. Tasks on Pl are processed
with no idle time (except at the end) in the order C'D. Task a; is started as early as
possible following C'D. The finish time is seen to be max{a; + b, T,, T.}, which by
Lemma 2.3 is optimal.

This completes the proof. [

CoroLrLary 2.1. Algorithm O PEN_SHO P generates optimal preemptive schedules for
m = 2. :

Proor. By Lemma 2.3 the finish time is the same for both preemptive and non-
preemptive optimal schedules when m = 2. [

LemMa 2.4. The time complexity of algorithm OPEN_SHOP is O(n).

Proor. The for loop of lines 3-11 is iterated n times. Each iteration takes a fixed
amount of time. The remainder of the algorithm takes a constant amount of time. Hence
the complexity is O(n). O

3. Preemptive OFT Scheduling m > 2

In this section we present two algorithms for optimal preemptive scheduling. The first of
these is intuitively simple and so only an informal description of it is given. This
algorithm makes use of basic concepts from the theory of maximal matchings in bipartite

I — fe—idle ;

| | | time 1

1/ I on Pl \
/////// Y, w | Rs\\\\:ﬂ

time |
l |] on P2—={ |
0 ap ay ay 0 Bl By
() (b)

FiG. 2. Partial schedules obtained for sets B and A, respectively

670 T. GONZALEZ AND S. SAHNI

graphs [6] and has a time complexity of O(r?) where r is the number of nonzero tasks.
The second algorithm is a refinement over the first and has a slightly better computing
time, i.e. O(r (min{r, m?} + m log n)) where m is the number of processors, n the number
of jobs, and r the number of nonzero tasks. It is assumed that r = n and r = m. Hence
when r > m? and m > log n, the computing time of the second algorithm becomes
O(rm?), which is better than O(r*). However, when m > r/log n the first algorithm has a
better asymptotic time than the second (this happens, for instance, when each job has
at most k nonzero tasks and m > kn/log n). '

Before describing these algorithms, we review some terminology and fundamental
results concerning bipartite graphs. The following definitions and Proposition 3.1 are
reproduced from [6].

Definition 3.1. Let G = (X U Y, E) be a bipartite graph with vertex set X U ¥ and
edge set E. (If (i) is an edge in E then eitheri € X andj € Yori € Yandj € X.) Aset]
C E is a maiching if no vertex v € X U Y is incident with more than one edge in 1. A
matching of maximum cardinality is called a maximum matching. A matching is called a
complete matching of X into Y if the cardinality (size) of / equals the number of vertices
in X,
 Definition 3.2. Let I be a matching. A vertex v is free relative to I'if it is incident
with no edge in /. A path (without repeated vertices) p = (vy, v)(vg, U3) * + (Vgr—y, Vo) 1S
called an augmenting path if its endpoints v; and vy are both free and its edges are
alternately in E — I and in /.

ProrposiTioN 3.1. 1 is a maximum matching iff there is no augmenting path relative to
1

When a matching I is augmented by an augmenting path P the resulting matching I" is
(1 U P) — (I N P). The cardinality of I is 1 + cardinality (I). Note that the matching I’
still matches all vertices that were in the matching I (however, two new vertices v, and vy
are added on).

ProrosiTion 3.2 If G = ({XUY},E) is a bipartite graph, | E | =e, | X |=n,and | Y |
= m, n = m, then an augmenting path relative to I starting at some free vertex i can be
found in time O(min{m?e}). -

Proor. See Appendix.

" Given a set of n jobs with task times¢;;, 1 =i =n and 1 =<j = m, for an m-processor
open shop, we define the following quantities:

T; = 2 t;; = total time needed on processorj, 1 =j =m,

I=i=n

L; = Z L

1=j=m

"+ = number of nonzero tasks.

length of jobi, 1 =i =n, and

From a simple extension of Lemma 2.3 to m processors, we know that every preemptive
schedule must have a finish time that is at least

a = max; {T;, L}. (3.1)

We will in fact show that the optimal preemptive schedule always has a finish time of a.
In the first algorithm starting from the given open shop problem we construct a

bipartite graph with 2(n + m) vertices. n + m of these are labeled Jy, -+, Jun tO
represent the n jobs together with m fictitious jobs that we shall introduce. The
remaining vertices are labeled M,. - -+, M, to represent the m processors together

with n fictitious processors. The bipartite graph G will contain undirected weighted edges
between J and M type vertices. The weight w(J;, M;) of an edge (J;, M;) will represent the
amount of processing time job i requires on processor j. The weight of a node p(J;) or
p(M,) is the sum of the weights of the edges incident to this node. To begin with, the
following edges with nonzero weight are included in G: »

E,={J,M)|t;,#0, 1 =i=n1=j=m} (3:2)

Open Shop Scheduling to Minimize Finish Time 671

For all edges (J;, M;) € E, we define w(J;, Mj) = t;;. Now a set of edges £, connecting
Jyoooo L JytoM, . -0 . M, are added in such a way thatp(J;)) = a, 1 =i =n.

E,={J . M) | a— L #0,1=i=n} (3.3)

For all edges (J;, M,,,,) € E, we define w(J;, M,,.)) = a — L,. A sct of edges E; is
included to connect M,, - -+, M, to Joiq, *+* , Jusm in such a way thatp(M)) = o, 1 =
=m.

Es={Uws M) | a = T; #0.1=j=m}. (3.4)

For all edges (J,,;, M;) € E; we define w(J,,;, M;) = a — T;. Finally edges connecting
Justr » s Jsm to My, - . M, are added to make the weight of each of these
vertices «. This set of edges E, is of size at mostn + m as each (J;, M)) edge introduced
brings the weight of either J; or M; to «. One may easily verify that £, can be so
constructed.

The bipartite graph G(X, Y, E) is then ({J,, -~ , Joemh, {My, -, Muim},
E,UE,UE,UE,). X is the set of vertices representing jobs, while Y is the set representing
Processors.

We illustrate this construction with an example.

Example 3.1. Letm = 3 andn = 4. The task times are defined by the matrix:

job — 1 2 3 4 T

processor | 10 20 0 0 30
2 10 0 20 0 30
3 10 0 0 20 30
L 30 20 20 20

Therefore a = 30. The bipartite graph obtained using the above construction is shown in
Figure 3. The edge set Ejisemptyas T, = pM)) = o, 1 =j=m. O

Having constructed the bipartitec graph G from the open shop problem as described
earlier, we obtain a complete matching of X = {J,, - -+ [J, .} into Y ={M,, - -~ M,l+,!,}.
Let this matching be e, €;, - - - , €, Let w = min <=, {w(e;)}. The jobs incident to

20
FiG. 3. Bipartite graph for Example 3.1

672 T. GONZALEZ AND S. SAHNI

the edgese,, - - - , €,4, are scheduled on their respective processors for a time period of
w, and the weight of the edges e,, -+ - , €,., is decrcased by w. This results in the
deletion of at least one edge (i.e. the weight of at least one edge becomes zero). By
scheduling a job on its respective processor we mean that if (J;, M;) is one of the edges in
the match, then job i is processed on processorj for p units of time. Ifj = m, then jobi is
not processed in that interval. If i > n, then processorj is idle in that time interval. This
process is repeated until all edges are deleted. Assuming that at each iteration a matching
of size n + m can be found, all n + m processors are kept busy at all times (either
processing real or fictitious jobs). The total processing time needed is Y™ p(M,) =
(n + m)a. Hence the finish time of the schedule is (n + m)a/(n + m) = a and the schedule
is optimal. Since each time a complete match is found one edge is deleted, complete
matchings have to be found at most O(r) times (recall that r is the number of nonzero
tasks and that r = n and r = m). Hence the maximum number of preemptions per
processor is O(r). The first complete matching can be found in time O(r(n + m)?®) (6]
Subsequmt matches require finding augmenting paths, each of which can be determined
in time O(r) (Proposition 3.2 with ¢ ~ Q(r)). Since a total of O(r) such paths may be
needed, the total computing time for the process becomes O(r?).

Example 3.2. Let us try out the informal computational process described above on
the bipartite graph of Example 3.1. The following complete matchings are obtained (this
is not a unique set of matchings):

(@) {(J1, M) (Ja, M), (U3, Me) (Js, M3),(ds, My),(Js, Ms),(J7, M)}, v = 10,
(b) {(J,, M,),(J5, M;),(J5, M,),(J;, Mg) (J5, My),(Js, Mg),(J7, M)}, r = 105
(C) {(Jy, M3).(Jo, M) (T3, M) (J;, M 2,5, My),(Js, Ms),(J7, Ms)}- r = 10.

This yields the following schedule: Deleting the fictitious jobs and
processors, the following preemptive

o |- schedule is obtained:
M1 n I
M2 I 3 W 0 18 1!
M3 B L [. N
M4 Js Js M2 J1 3 L
M5 5 | 2 | 7 M3 Ja J4 3
M6 s | s |
A S N S

. The schedule requires only one preemption, i.e. on M1. Since the edge set E, was
empty, there is no idle time on any of the processors. In general, however, this will not
be the case. and the deletion of the fictitious jobs will leave some idle time on the
processors. [

The success of the algorithm rests in the existence of a complete matching at cach
iteration. The next three lemmas prove that a complete match always exists. The vertices
of the graph are divided into two disjoint sets X = {J,, - -+ [J,}and ¥ = {M,, - - -,
Mn»m}-

Lemma 3.1. Ateach iteration the weight o fevery vertex in the bipartite graph is equal.

Proor. By construction, this is certainly true for the first iteration, i.e. p(M,) = p(J))
=a, | =i=n+ m After a complete match is found the weight of n + m edges
decreases by r. The 2(n + m) vertices of G are each incident to exactly one edge in the
matching. Hence the weight of each vertex decreases by r. Consequently all vertices have
the same weight at all times. [

Lemma 3.2, (Hall's theorem). In a bipartite graph a complete matching of vertex set
Y into vertex set X exists if and only if | A | = | R(A) | for every subset A of Y, where R(A)
denotes the set of vertices in X that are adjacent o the vertices in A.

Proor. See Liu [9. p. 282, Th. 11.1] or Berge [1. p. 134].

Open Shop Scheduling to Minimize Finish Time 673

Lemma 3.3, The conditions of Lemma 3.2 are valid for every bipartite graph with
vertices of equal weight.

Proor. Let a be the weight of a vertex. Let A be any subset of ¥. Then the sum of
the weights of vertices in A is @ | A |. The corresponding sum for R(A) is a | R(A) |.
Since this sum includes all edges incident to A, we have a | A | = « | R(A) [and so | A |
<|R(A)|,asa>0. O

The second algorithm is based upon a computational refinement of the algorithm
described above. Once again a bipartite graph is constructed. This graph consists of the
two vertex sets X = {J,, - - - ,Jyunpand Y ={M,, --- , M,}. The edge set is E,UE; (cf.
egs. (3.2) and (3.4)), i.c. the fictitious processors of the earlier construction are
dispensed with. Now, we look for complete matchings of ¥ into X. While before any
complete match of Y into X was acceptable, now we have to be careful about the
matching that is chosen. To see this, note that if initially the matching {(J,, M,),(Js,
M,),(J,, M;)} is chosen for the job set of Example 3.1, then there is no complete
matching at the next iteration and consequently no schedule with finish time « can be
obtained following this choice of a matching. To assist in proper choice of a complete
matching we make use of an additional vector § called the slack vector. For every job i,
its slack time is defined to be the difference between the amount of time remaining in the
schedule and the amount of processing left for that job. If the slack time for a job
becomes zero, then it is essential that the job be processed continuously up to the
completion of the schedule at a as otherwise the schedule length will be greater than «.
When the slack time for a job becomes zero, the job is said to have become crirical.

Example 3.3. Consider the three-processor open shop problem with four jobs and
the following task times:

Processor T
1 2 3
1 10 8 5 3 26
2 6 7 9 9 31
3 7 8 3 3 21
L 23 23 17 15 a = max, {T, L} = 31

Addition of the jobs J;, J;, and J; introduces three more columns into the above table:

5 0 0
0 0 0
0 0 10

Initially, the slack times are SLACK(i) = a« — L; and we have SLACK = (8, 8, 4, 6, 26,
31, 21). No job is critical.

We first state the algorithm and then prove its correctness. For convenience, the array
S in Algorithm P will represent the latest time a job may start so that its processing may
be complete by «. Thus SLACK(i) = §; — current time. A job therefore becomes critical
when §; = current time. Algorithm P does not require that weights be assigned to the
edges in egs. (3.2) and (3.4). This weight assignment will, however, be used later to
show that the algorithm works.

Algorithm P

// obtain an optimal preemptive schedule for the m processor open shop with 2 jobs and processing time
Ll =i=n 1 sj=smf

// compute length. a. of optimal schedule//

Ty 20y LSf=m

Li—>"r..1l=i<n

a «— max, {7, L;}

{lereate fictitious jobs and compute slack vector//

e b —

4 Ly —a—-T,1<j=m

674 T. GONZALEZ AND S. SAHNI
5 Si—a—-L,1=i=n
6 ST, 1l=j=m
T ne—n+m

/lcompute initial complete matching of ¥ = {M,, --- , M,} into X = {J,, -+ , J,sn}. This match is
obtained as a set, [, of edges (j, /) matching M; to J;//
8 I « INITIAL_MATCHING; TIME « 0 //current time//
9 loop

10 | « index of job not in matching having least slack time

11 (p, q) «— task and job in matching with least remaining processing time
12 A < min{t, ., S, — TIME} //max time for which I can be used//

{/schedule / for A time units//
13 if A > O then [print (A,]);
i —t;; — A for (j, HE!
S; < 8, + A for all jobs i€f
TIME « TIME + A
if TIME = « then stop]
14 delete from [/ all pairs (i, j) such that;; = 0
‘//complete matching / including all critical jobs//
15 if there is a critical job not in / then
' |delete from [all pairs (j, i) such that i is noncritical

)

16 repeat

17 let J, be a critical job not in [

18 augment / using an augmenting path starting at J,

19 until there is no critical job not in /

20 reintroduce into 7 all pairs (j, i) that were deleted in line 15 and such that M, is still free]

{/complete the match//
21 while size of / # m do

22 let M, be a processor not in the matching /
23 augment / using an augmenting path starting at M,
24 end

25 forever
26 end of Algorithm P

In order to prove the correctness of Algorithm P we have to show the following:
(i) There exists an initial complete matching in line 8.

(ii) The matching [can be augmented so as to include the critical job J, in line 18.

(1ii) Augmenting to a complete match including all critical jobs can always be carried
out as required in lines 21-24.

The following three lemmas show that these three requirements can always be met. «
is as defined in line 3 of the algorithm.

Lemma 3.4. There exists a complete matching of Y into X in line 8.

Proor. Let A be any subset of vertices in ¥. The weight of each vertex in A is «. The
weight of any vertex in X is less than or equal to « by definition of a. Since the weight of
R(A) is greater than or equal to the weight of 4, it follows that a | A | = a | R(A) | and so
| A| =| R(A) |. The result now follows from Lemma 3.2. O

Lemma 3.5. In line 18 there exists an augmenting path relative to [starting at J,.

Proor. Consider the bipartite graph G’ formed by the vertices X' and ¥, where X'
consists of all vertices representing jobs in the matching / and the vertex J,. All edges
connecting X' and Y in the original graph are included in G'. By the deletion of line 15 it
follows that all vertices in X" are critical. Hence their weight is a — ¢ if ¢ is the value of
TIME when the loop of lines 16-19 is being executed. Since a — ¢ is the total remaining
time on all the processors, the weight of vertices in Y in the graph G’ is less than or equal
to a — r. Using the same argument as in Lemma 3.4, it follows that there is a complete
match of X’ into Y. Hence [is not a maximum matching in G'. Hence there is an
augmenting path relative to [beginning at J,. [

Lemma 3.6, There is always an augmenting path relative to I beginning at M, in line
23,

ProoF. At any time ¢ the bipartite graph formed by vertices X = {J,, - -+ , J,, .} and
Y' = {M;| M, is in the matching I} {M;} have the following properties: (a) the weight of

Open Shop Scheduling to Minimize Finish Time | 675

vertices in ¥’ is a — ¢, and (b) the weight of vertices in X is less than or equal to & — ¢ (as
no vertex can have a slack time less than 0, see lines 11-13)}. Hence the conditions of the
proof of Lemma 3.4 hold and there is a complete matching of ¥’ into X. By Proposition
3.1 there must be an augmenting path relative to [beginning at the free vertex M.

Note that the complete matching obtained at the end of the while loop 21-24 must
contain all the critical jobs, as the initial matching / contained all of them and augment-
ing paths only add on vertices to an existing matching.

Since all processors are kept busy at all times and the total amount of processing is ma,
the finish time of the schedule generated by Algorithm P is a. This schedule is therefore
optimal. O

All that remains now is to analyze the complexity of Algorithm P. In carrying out this
analysis we shall need a bound on the number of jobs that can become critical. Lemma
3.7 provides this bound. and Lemma 3.8 analyzes the algorithm.

LemMa 3.7. The number of critical jobs at any time is less than or equal to m.

Proor. Since all processors are kept busy at all times, it follows that at any time ¢ the
total amount of processing remaining is m(a —). If at time ¢ there are more than m
critical jobs, then the processing remaining for all these critical jobs is greater than or
equal to (m + 1)(a — £) > m (a — 1), which is a contradiction. Since once a job becomes
critical, it stays critical until the end of the schedule, the total number of jobs that can
become critical is also less than or equal to m.

LemMa 3.8. The asympiotic time complexity of Algorithm P is O(r(min{r, m*} + m
log n)), where n is the number of jobs, m the number of processors, and r the number of

‘nonzero tasks. r is assumed to be greater than or equal to max{n, m}.

Proor. Lines 1-7 take time O(r) if the task times are maintained using linked lists
(see [7]). Line 8 can be carried out in time O(rm*®) (see [6]). If the slack times are set up
as a balanced search tree or heap [7]. then each execution of line 10 takes time O(m log
n). At each iteration of the “loop forever” loop (lines 9-25), either a critical job is
created or a task is completed (sce lines 10-13). Hence by Lemma 3.7, the maximum
number of iterations of this loop is r + m = O(r). The total contribution of line 10 is
therefore O(rm log n). The contribution from lines 11-12 and 14 is O(rm). In line 13 the
change in §; requires deletion and insertion of m values from the balanced search trec.
This requires a time of O(m log n). The total contribution of line 13 is therefore O(rm log
n). Line 15 has the same contribution. The total computing time for Algorithm P is
therefore O(rm log n + total time from lines 16-24). Over the entire algorithm the loop
of lines 16-19 is iterated at most m times. By Proposition 3.2 an augmenting path can be
found in time O(min{r, m?}). The total time for this loop is therefore O{min{r, m*}m + m
log n}. The maximum number of augmenting paths needed in the loop of lines 21-24 is
m + r (as one path is needed each time a critical job is found). The computing time of
Algorithm P then becomes O(min{r, m?} (m + r) + rm log n) = O(r(min{r, m*} + m log
n). O

4. Complexity of Nonpreerﬁprive Scheduling for m > 2

Having presented a very efficient algorithm to obtain an OFT schedule for m = 2
(preemptive and nonpreemptive) and a reasonably efficient algorithm to obtain an OFT
preemptive schedule for all m > 2, the next question that arises is: Is there a similarly
efficient algorithm for the case of nonpreemptive schedules whenm > 27 We answer this
question by showing that this problem is NP-complete [8] even when we restrict
ourselves to the case when the job set consists of only one job with three nonzero task
times while all other jobs have only one nonzero task time. This, then, implies that
obtaining a polynomial time algorithm for m > 2 is as difficult as doing the same for all
the other NP-complete problems. An even stronger result can be obtained whenm = 3.
Since NP-complete problems are normally stated as language recognition problems, we
restate the OFT problem as such a problem.

676 T. GONZALEZ AND S. SAHNI

LOFT. Given an open shop with m > 2 processors, a deadline 7, and a set of n jobs
with processing times ¢;;, 1 =/ =m, 1 =i = n, is there a nonpreemptive schedule with
finish time less than or equal to 7? ‘

In proving LOFT NP-complete. we shall make use of the following NP-complete
problem [8].

PARTITION. A multiset § = {a,, - - , a,} is said to have a partition iff there exists a
subset, u, of the indices 1 — n such that ¥ ,c, a; = (Y., a;)/2. The partition problem is
that of determining for an arbitrary multiset S whether it has a partition. The a; may be
assumed integer.

THEOREM 4.1. LOFT, for any fixed m = 3, is NP-complete.

Proor. It is easy to show that LOFT, for any fixed m = 3, can be recognized in
nondeterministic polynomial time by a Turing machine. The Turing machine just guesses
the optimal permutation on each of the processors and verifies that the finish time is less
than or equal to 7. The remainder of the proof is presented in Lemma 4.1. It is sufficient
to prove this part for the case m = 3.

Lemma 4.1, If LOFT with m = 3 is polynomial sovable, then so is PARTITION.

Proor. From the partition problem S = {a,, a,. - - - , a,} construct the following open
shop problem, OS, with 3n + 1 jobs,m = 3 machines, and all jobs with one nonzero task
except for one with three tasks:

hi=a, hi=1t3;=0 forl=i=n,
Li=a;,, t;=13;,=0, forn+1=i=2n,
tsi=a;, Li=1t; =0, for2n +1=<i =< 3n,
tuaner = toanet = lygneim= T/2,

where T = Y% aq; and r = 3T/2.

We now show that the above open shop problem has a schedule wnh finish time less
than or equal to 37/2 iff § has a parlmon

(a) If S has a partition u then there is a schedule with finish time 37/2. One such
schedule is shown in Figure 4.

(b) If S has no partition, then all schedules for OS must have a finish time greater than
3T/2.

This is shown by contradiction. Assume that there is a schedule for OS with finish time
less than or equal to 3T /2. Since f, 3,41 = t25041 = laansr = 1/2, it follows that in this
schedule job 3n + 1 must be being processed at all times. Since the schedule is
nonpreemptive, there must be a processor j such that ¢;,,,, begins at time 7/2 and
finishes at 7. For this processor there is a set of joL. with¢,, (j — 1)n + 1 =i = jn and
>in et = T. Since S has no partition, it follows that all the T/2 units of time preced-
Ing t; 3,4, ON processor j cannot be used. Hence more than T/2 are needed after time T
to complete the remaining tasks. Hence the finish time must be greater than 37/2.
This contradicts our assumption regarding the schedule. There is therefore no
schedule with finish time less than or equal to 7 = 37/2 when § has no partition. [J

Note that the proof of Lemma 4.1 actually shows that a very simple subcase of LOFT,

T/2
/2 T 31/2 fey, 4
t ; T
1,0+l l<isn} 1,n
|1e t i) P
Pl [Ll’]__ ieu} €] 3ntl { l,igléu} {tz,i!IEU} (t2.5_|1éui
s +1 ¢4 < n
P2 |ty n | g lnrlats) £3,n41
P3 (¢, ;|2n+1 < i < 3n} t
3,i! - = 3, 3n+l t&.n+2
T/2 +¢ T+ g

Fig. 4. Optimal schedule when § has a partition Fig. 5. Optima' schedule when $ has a partition

Open Shop Scheduling io Minimize Finish Time 677

i.e. when only one job has three nonzero tasks and the remaining have at most one
nonzero task ., is NP-complete. Whenm > 3 the proof of Lemma 4.1 can be strengthened
to the case when each job has at most two tasks.

LemMa 4.2. If LOFT is polynomial solvable for m > 3 (using only two tasks per job),
then so is PARTITION.

Proor. From the partition problem § = {a,, a», -+ , a,} the following open shop
problem, OS, withn + 2 jobs,m = 4 machines, and all jobs having at most two nonzero
tasks is constructed.

Li=¢€/n, tyy=a;, ty;=1t;,;=0 forl=i=n,
tl.)H—l = T/Z, {2.n+1 = t-!.u+1 = O- l':}.n.-*—l == ’[/2 g
"l,ur'i = T/Z, v = faner = 0- Lynvr = T/Z t e,

where T = Yya,7=T +te,and 0 <e < 1.

We show that the above open shop problem has a schedule with finish time << T + e iff
S has a partition.

(a) If S has a partition u, then there is a schedule with finish time 7' + €. Figure 5
presents such a schedule.

(b) If § has no partition, then all schedules for OS must have a finish time greater than
T + €.

This is shown by contradiction. Assume that there is a schedule for OS with finish time
less than or equal to T' + €. Since jobsn + [»ndn + 2 need a total time T + € they must
be scheduled all the time, and this will leave processor | free in the time interval [7/2,
T/2 + €]. This is just enough time to process the n tasks,;, 1 =i = n. This means that
all tasks 1, ; that start their processing before time 7/2 must terminate before time T/2 +
e, as otherwise for some jobj, 1, ; and t, ; would be processed at the same time. Let u be
the set of jobs that complete processing on processor 2 before time T/2 + e. Then
Niedtss = T/2 < T/2 + € as the g; are integer. This implies that tasks with total length
greater than or equal to T/2 is left for processing after time 7/2. If the schedule is to fin-
_ ish at time T + € it must be the case that ¥ ,cuts; = T/2, i.e. § has a partition. This
contradicts the assumption. Hence when § has no partition there is no schedule
with finish time less than or equal tor = T + €.

Lemma 4.2 leaves open the status of three-processor scheduling with two tasks per
job.

Appendix

ProposiTioN 3.2. If G = ({XUY}, E) is a bipartite graph, |E | = ¢, | X | = n, and
| Y| =m., n=m,then an augmenting path relative to I starting at some free vertex i can be
found in time O(min{m?, e}).

Proor. We prove this by exhibiting an augmenting path algorithm with a computing
time of O(min{m?, e}). This algorithm assumes that the bipartite graph G is represented
by its adjaency lists. (It is also assumed that the vertex set is indexed | throughn + m
with X = {v,, vy, -~ v band ¥ = {v,y, - -+, vyen)). Three one-dimensional arrays
FREE(1:n + m), MARK(1:n + m), and MATCH(1:n + m) are made use of. At entry to
the augmenting path algorithm we have FREL() = MARK() = 0,1=<i=n+m. The
initial values of MATCH(i), 1 =i < n + m, are not important. In addition, a FIFO
queue, QUEUE, is made use of. The statement QUEUE < p adds p to the end of the
queue while p < QUEUE deletes an element from the front of the queue and assigns it
to p. Algorithm AUG works by generating an augmenting trec with the free vertex 7 as
root and at level 1. The tree is generated level by level. Edges connecting levels g and
g + 1 forg odd are edges not in /. The remaining edges are in /. Thus, the path from the
root to any node is a valid initial segment for an augmenting path. Lines 7-22 gencrate
the next level when the next level is even. Lines 24-28 do this for the case when the next
level is odd. We use the same strategy as in [6] and look for a shortest augmenting path.

678 T. GONZALEZ AND S. SAHNI

Hence if a node has already been added to the tree it is not reconsidered at a later time.
Once a node is included in the tree its MARK bitissetto 1. Lines 14-18 reset all MARK
and FREE bits changed by the algorithm. Hence MARK and FREE have to be initialized
to zero only for the first use of this algorithm.

Let us analyze the computing time of this algorithm. Since m = | Y| = | X[, the
number of edges in [is at most m. The time for lines 1-4 is therefore O(m). Each
iteration of the loop of lines 10-21 takes O(1) amount of time except when a free vertex
is reached. At this time O(m) time is spent in lines 12-17. This happens at most once for
the whole algorithm. For any vertex j the maximum number of iterations of this loop is
m . This is so as at most m of the vertices adjacent toj may be in the matching [and hence
not free. Letr; be the number of nodes on the ith odd level of the augmenting tree. Then
the overall contribution of lines 7-22 is at most Q(YXmr; + m) = Q(m*). Sr, = m as
there are at most m vertices in / and no vertex gets into the tree more than once. Since
each edge in G is examined at most once, another bound is O(e). Hence the time for lines
7-22 is O(min{m?, e}). The number of nodes on an odd level is equal to the number on
the preceding even level as the connecting edges are taken from /. The total contribution
from lines 24-28 is therefore O(¥ r;)) = O(m). From this we conclude that an augmenting
path (if it exists) may be found in time O(min{m?, e}) whene =m. [

The loops of lines 1-4 and 13-16 may be speeded slightly by realizing that it is
sufficient to initialize FREE(j) to 1 only if j is in [and j will be on an even level.
Similarly, MATCH(j) need be initialized only for those j in [that can be on odd
levels of the augmenting tree.

Line Algorithm AUG(,)

1 for each edge (j, k) in [do
2 FREE(j) « FREE(k) < | //not free//
3 MATCH(j) < k; MATCH(k) < j
4 end
5 QUEUE & 'i=’ //= is end of level marker//; MATCH(i) « 0
6 loop
7 loop
8 j < QUEUE //take off a vertex from front of queue//
9 if j = « then exit //end of level//
10 for cach vertex p adjacent to j do
11 if FREE(p) = 0 then [//augmenting path found//
12 trace path from root to p
this is the augmenting path
{[reset FREE and MARK//
13 for each edge (j. &) in [do
14 FREE(j) < FREE(k) < 0
15 MARK(j) « MARK(k) « 0
16 end
17 ‘ return]
18 if MATCH(j) # p and MARK(p) = 0 thén [//p not in tree//
19 QUEUE <« p//add p to tree//
20 MARK(p) < j]
21 end
22 forever
23 QUEUE < = j/end of level//
//next level edges must be from ///
24 loop
25 Jj < QUEUE
126 if j = o then exit
27 QUEUE & MATCHY())
28 forever
29 if QUEUE empty then [stop //no augmenting path//]
30 QUEUE < = //end of level//
31 forever

32 end AUG

Open Shop Scheduling to Minimize Finish Time 679

ACKNOWLEDGMENT. Several organizational changes suggested by the referce have
improved the readability of this paper. We wish to thank the referee for this.

REFERENCES

I:
2.
3.

Berce, C. Graphs and Hypergraphs. American Elsevier, New York. 1973, p. 134

Corrman, E.G. JR. Computer and Job Shop Scheduling Theory. Wiley, New York, 1976.

Conway, R.W., MaxweLL, W L., anD MiLLer, L.W. Theory of Scheduling. Addison-Wesley, Read-
ing, Mass., 1968.

. Gagrey, M.R., Jonnson. D., anp Setai, R. Complexity of flow shop and job shop scheduling. Tech.

Rep. 168, Pennsylvania State U., University Park, Pa., June 1975.

. Gonzarez, T., anp Sanni, S. Flow shop and jop shop schedules. Tech. Rep. TR 75-14. U. of

Minnesota, Minneapolis, Minn., July 1975.

. Hoecrort, J.E., anp Kare, RM. A n®? algorithm for maximum matchings in bipartite graphs.

SICOMP 2 (1973), 225-231.

_ Horowrrz, E., AND SaHNI, S. Fundamentals of Data Structures. Computer Science Press, Los Angeles,

Calif., 1976.

. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations .,

R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-104.

. L, C.L. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968,

RECEIVED JUNE 1975; REVISED MARCH 1976

Journal of the Association for Computing Machinery, Vol 23, No. 4. October 1976,

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015

