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1. Introduction

Computer systems may be broadly classified into four categories [6]. These are: (i)
SISD (Single Instruction Stream, Single Data Stream); (ii) SIMD (Single /nstruction
Stream, Multiple Data Stream); (iii) MISD (Multiple Instruction Stream, Single
Data Stream); and (iv) MIMD (Multiple /nstruction Stream, Multiple Data Stream).
This paper is concerned solely with SIMD-type computers. An SIMD-type computer
system is comprised of some number of processing elements (PEs), each having some
local memory. We assume that the PEs are indexed 0 through p — 1 and refer to the
ith PE as PE(7). The PEs are synchronized and operate under the control of a single
instruction stream. An enable/disable mask may be used to select a subset of PEs
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that will perform the instruction to be executed at any given time. All enabled PEs
perform the same instruction. Four SIMD architectures are relevant to our discussion:

(i) Shared Memory Model (SMM). In this model there is a common memory
available to all PEs. This is in addition to the local memory available to each PE.
Data may be transmitted from PE(7) to PE(/) by simply having PE(i) write the data
into the common memory and then letting PE( /) read it. It thus takes O(1) time to
transmit a word from one PE to another in this model. Two PEs are not permitted
to write into the same word of common memory simultaneously. PEs may.or may
not be allowed to read the same word of common memory simultaneously. Algo-
rithms that require two or more PEs to read the same common memory word
simultaneously will be said to have memory fetch conflicts.

(ii) Mesh Connected Computer (MCC). In this model there is no shared or
common memory. The PEs may be thought of as logically arranged as in a

k-dimensional array A (np—1, ne—s, . . ., o), where n; is the size of the ith dimension
and p = np—1#np—o* « - - xny. The PE at location A (ix—1, . .., io) is connected to the
PEs at locations 4 (ix—, ..., 5 £ 1,..., %), 0 < j <k, provided they exist. Data may

be transmitted from one PE to another only via this interconnection pattern.

(iif) Cube Connected Computer (CCC). Assume that p =29 and let i;—; - - - io be
the binary representation of i for i € [0, p — 1]. Let i¥ be the number whose bi-
nary representation is ig—1 « - fp+1isis1 + - - io, where i, is the complement of i, and
0 = b < g. In the cube model, PE(i) is connected to PE(i”’), 0 < b < ¢. As in the
mesh model, data can be transmitted from one PE to another only via the intercon-
nection pattern.

(iv) Perfect Shuffle Computer (PSC). Letp, g, i, and i be as in the cube model.
In the perfect shuffle model, PE(i) is connected to PE(i‘?), PE(ig—sig—3 - - - ioig—1), and
PE(ioig-1ig—2 - - i1). These three connections will be called exchange, shuffle, and
unshuffle, respectively. Once again, data transmission from PE to PE is possible only
via the connection scheme.

It should be noted that the MCC model requires 2k connections per PE, the CCC
model requires logp (all logarithms in this paper are base 2), and the PSC model
requires only three connections per PE. The SMM requires a large amount of PE to
memory connections to permit simultaneous memory access by several PEs.

Each of these models has received much attention in the literature. Arjomandi
[1], Csanky [4], Eckstein [5], and Hirschberg [7] have developed algorithms for cer-
tain matrix and graph problems using an SMM. Hirschberg [8], Muller and Preparata
[12], and Preparata [18] have considered the sorting problem for the SMM. The
evaluation of polynomials on the SMM has been studied by Munro and Paterson
[13], while arithmetic expression evaluation has been considered by Brent [3] and
others. Efficient algorithms to sort and perform data permutations on an MCC can
be found in Thompson and Kung [23], Nassimi and Sahni [14, 15], Swanson [21],
and Thompson [22]. Thompson’s algorithms [22] can also be used to perform
permutations on a CCC or PSC. The shuffle-exchange connection was originally
proposed by Stone [20]; its usefulness was shown for sorting as well a< some numeric
problems. Permutation capabilities of variants of the shuffle-exchange network have
been studied by Lang [10], Lang and Stone [11], and others.

In this paper we are primarily concerned with the development of efficient
algorithms to sort and permute data on a CCC and a PSC. For both problems we
assume that there are N = 2" records. Initially, record i is in PE(i), 0 < i < N. Each
record 7 has a field 4(i). In the sorting problem the N records are to be rearranged
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into nondecreasing order of A(i), one record to a PE. For the permutation problem,
A@) €0, N —1],0 =i < N, and record i is to be relocated to PE(4(i)), 0 <i < N.
N records can be permuted in O(1) time using the SMM and N PEs. PE(/) first writes
its record into location A(7) of the common memory (assuming the common memory
is large enough to hold N records) and then reads back the record in location i.
Clearly, this algorithm has no read/write conflicts. N records can be sorted on an
N-PE SMM in O(log’N) time, using Batcher’s algorithm [2]. Hirschberg [8] and
Preparata [18] have developed sorting algorithms for SMM for the case when
N'*'* PEs are available. Their algorithms run in O(klogN) time. Hirschberg’s
algorithm has memory fetch conflicts, while Preparata’s does not. Thompson and
Kung [23] and Nassimi and Sahni [14] show how to sort N = n® dataonann X n
MCC in O(n) time. Both these papers also generalize their results to higher dimen-
sional MCCs. For the permutation problem on MCCs, Nassimi and Sahni [15] have
developed an algorithm that is optimal. Their algorithm, however, can be used on
only a special class of permutations.

It is well known that N records can be sorted in O(log?N) time on both an N-PE
CCC and an N-PE PSC [20]. Algorithms to perform certain permutations in less
time on these models can be found in [10, 11, 20]. (Thompson’s algorithm [22] can
perform any permutation in O(log N) time if the permutation is known in advance.
Otherwise, the best known algorithm for arbitrary permutations requires O(log”N)
time on an N-PE CCC or PSC.)

In Section 2 we develop an algorithm to perform arbitrary permutations in
O(klog N) time on a CCC and a PSC with N'*"/* PEs. In Section 3 we develop an
algorithm for the sorting problem. This algorithm has the same asymptotic complexity
as the permutation algorithm of Section 2. Finally, in Section 4 we develop a
generalized connection network (GCN). An (N, N)-GCN is an N-input, N-output
switching network capable of implementing any one-to-many mapping of inputs
onto outputs. The GCN constructed here has O(klog N) delay and O(kN'*"/*log N)
contact pairs. In this respect it is inferior to the GCN construction of Thompson
[22], which has 7.6Nlog N contact pairs (using three-way branching) and a delay of
3.8log N. However, our GCN has the advantage that its switch settings can be
determined in O(klog N) time using a CCC or PSC with N'*/* PEs. In fact, the
algorithm to determine switch settings is almost identical to the permutation algo-
rithm of Section 2. Note that the asymptotically fastest algorithms known to deter-
mine the switch settings for Thompson’s GCN run in O(log?’N), O(N'?), and
O(klog’N) time, respectively, on an N-PE SMM, an N*? x N2 MCC, and an
N'VEPE CCC or PSC [16].

2. Permutations

Let G(i), 0 =i < N = 2", be N records. G(i) is initially located in PE(7). Let A(i) be
a field in record G(i) such that A(0), ..., A(N — 1) defines a permutation of
O, 1, ..., N—1). The records are to be permuted so that following the permutation,
G(i) is in PE(4(7)), 0 = i < N. We assume that this permutation is to be performed
on a CCC or a PSC having N'*'/* PEs, where k = n/m for some integer m, 1 < m
< n. For purposes of discussion we view these N'*'/* = 2"*™ PEs as arranged in a
2™ x 2" array. The PEs are indexed in row-major order, with the result that record
G (i) is initially located in the PE in row 0 and column i, 0 <i < N.

2.1 INFORMAL DESCRIPTION OF THE ALGORITHM. The permutation algorithm to
be described is essentially a parallel version of MSD (most-significant-digit) radix
sort (see [9]). The radix used is 2™. Using this radix, the [n/m] digits of A(i) are
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Fic. 1. Permutation of 8 elements on 4 X 8 PEs.

obtained as follows. First, the binary representation of A4(i) is obtained. The m most
significant bits yield the most significant digit, the next m bits give the next digit, and
so on. For example, if m = 2 and n = 3, then all numbers in the range [0, 7] are
represented as didy with radix 2™ = 4. The representations are: 00, 01, 10, 11, 20, 21,
30, and 31. An example will illustrate how the permutation algorithm proceeds. Let
us assume that m = 2 and n = 3. Hence, 8 records are to be permuted using 32 PEs.
Figure la represents a possible initial configuration. Each square represents a PE,
and the number within a square is the value of A(7). The earlier example gives the d;
and do values of each A(i). Since there are two digits (using radix 2™) in the
representation of the A(i)’s, the permutation algorithm will go through two phases.
In the first the records will be ordered with respect to di and in the second with
respect to do. In phase 1 the record in PE(}) is routed to the PE in column i and row
D1(i), where D1(i) is the di value of A(i). Figure 1b shows the configuration following
this routing. Next, the records are ranked. The rank, R(i), of a record in PE(i) is
equal to the number of records located in PEs with index less than i. (Recall that PEs
are indexed in row-major order.) For example, for the configuration of Figure 1b we
have R(2) = 0, R(4) = 1, R(9) = 2, etc. Having determined the ranks, each record is
routed to the column specified by its rank. (Note that columns are numbered 0
through N — 1.) During this routing, records do not change rows. This results in the
configuration of Figure 1lc. The routing carried out will be referred to as concentration.
This completes phase 1.

Following phase 1, records are ordered (by columns) with respect to dy. It remains
to perform the ordering with respect to do. This is done independently for groups of
records having the same d; value. For the example there are four such groups. Each
group consists of two columns, 2/ and 2i + 1. The procedure for this ordering is the
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same as that for phase 1. Records are routed to row dy without changing the column
(Figure 1d). Records are then ranked within each group and routed to the appropriate
column in that group without changing rows (Figure le). This completes phase 2. At
the end of this phase, record G(i) is located in column A(i). (In general, [n/m]
phases, as described above, will be needed to achieve this condition.) To obtain the
desired final record distribution, the records are routed to row 0 without changing
the column of any record (Figure 1f).

To summarize, our permutation algorithm consists of [n/m] route-rank-concentrate
phases, followed by a routing phase in which all records are routed to row 0.

2.2 PERMUTATION ALGORITHM FOR A CCC.  We now implement the permutation
procedure described above. The algorithm for a CCC is specified first. We shall see
later that the algorithm for a PSC can be easily obtained from that for a CCC. In
specifying the algorithms, we make use of the following notation and assumptions:

(1) Each PE has three registers R, S, and T. R(i), S(i), and T(i) refer to the
corresponding registers in PE(i). In addition, each PE has enough memory to
hold one record G (this includes the field 4).

(2) We shall use the special symbol null. The only requirement is that it be possible
to distinguish between null and a record (a one-bit tag could be used).

(3) Three types of assignments will be used:

(a) := will be used for assignments requiring no routing. For example, T(i) =
S (i) (both T and S are in the same PE).

(b) < will denote an assignment requiring a route. We shall require that the PEs
denoted by the left- and right-hand sides be connected by a direct link in the
PE interconnection pattern. For example, T(i'”) « S(i) is valid for a CCC
(recall that i is obtained from i by complementing bit b in the binary
representation of 7). Each assignment of this type will be referred to as a
unit-route.

(¢) < will denote an exchange requiring a route. The requirements are the same
as for <, and the cost is also one unit-route (note that if two-way transmission
is not allowed, this can be accomplished in two routes).

(4) i, will denote bit b in the binary representation of i, and (i);; will denote the
integer with the binary representation iij—1 -« + i

(5) PE selectivity can be done using a mask. The mask is specified in parentheses
following the statement. Some examples of masks are:

(i) (i» = 1): this enables all PEs for which the binary representation of the PE
index has bit b equal to 1.
(ii) (4(¥) = nulil): this enables all PEs with A() = null.

When no mask is specified, all PEs are enabled. Instructions are executed only on
enabled PEs.

The complexity of an algorithm will be measured in terms of the PE time needed
and the number of unit-routes. In keeping with the assumption made in most
algorithm analysis, we assume that arithmetic operations can be performed in O(1)
time. While this is true only if all numbers are small enough to fit into one word
each, it is quite appropriate in our case here, as our algorithms will not use numbers
larger than the number of PEs. Hence, with hardware to perform 60-bit arithmetic,
additions, comparisons, etc. of integers in the range [-(2* — 1), 2% — 1] can be
carried out in O(1) time. So, our assumption will be valid so long as the number of
PEs is no more than 2%.
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procedure RANK (k) )
//Rank records in groups of 2* consecutive PEs//

global 4, R, S
//initialize for single PE groups//
R(@)=0
S@) =1, (A@F) # null)
Fic. 3. Algorithm 2.1. S@) =0, (A@) = null)

forb=0tok— 1do
TG®) < S(@)
R(@@) = R(@) + T(), G = 1)
S@) = S@) + T()
end
end RANK

procedure CONCENTRATE(k)
//route records to appropriate PEs as determined by R//
global G, R //A is a field in G; G denotes the record//
forb:=0tok—1do F16. 4. Algorithm 2.2.
(G(™), R(®) « (G(i), R(¥)), (A(i) # null and R, # iy)
end
end CONCENTRATE

Finally, let us define a 2*-block as a sequence of 2* PEs (2%, 2% + 1,...,2%i + 1)
— 1), where i € [0, 2**"* — 1]. All indices in a 2*-block are equal in bits n + m —
1, ..., k+ 1, k. The indices vary only in the least significant k bits. In a 2™ X 2"
array of PEs, each row is a 2"-block. Figure 2 shows 2*-blocks in a 2% X 2 array. A
2*_column-block consists of 2* consecutive columns; each row of this block is a 2*-
block. The indices in a 2*-column-block vary in the least significant k bits along each
row and in the most significant m bits along each column. Bitsn — 1, ...,k + 1, k
are invariant. In Figure 1c the dark lines partition the array into 2'-column-blocks.

Before presenting the permutation algorithm PERMUTE we develop two sub-
routines that will be used by PERMUTE. One of these ranks records and the
other concentrates them. Both RANK and CONCENTRATE operate on 2*-blocks,
O=sk=n

The rank of a record in a 2*-block is the number of records preceding it in that
block. Procedure RANK determines this quantity for each record in every block.
The working of RANK is best described recursively. Divide a 2*-block into two 2*7'-
blocks. Let R(7) be the rank of the record (if any) in PE(/) within the 2*"'-block. Let
S (i) be the total number of records in the 2*~'-block containing PE(7). Then the rank
of a record in a 2*-block is R(i) if iz—, = O (note that i, = 0 for the left 2*'-block
of a 2*-block) and R(i) + S(i*™) if ix-1 = 1. Unfolding the recursion yields the
iterative procedure RANK (see Figure 3). It is easy to see that RANK uses O(k) PE
time and exactly k unit routes.

Procedure CONCENTRATE (see Figure 4) concentrates records within each 2*-
block. Recall that during concentration, records are moved to consecutive PEs. Let
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Fi1c. 5. Concentration with n =3, m = 1, and k = 2.

R() be such that the record (if any) in PE(7) is to be moved to the R(i)th PE in the
2%-block. (The R(i) used here differs from the R(7) obtained by RANK by an additive
constant to be determined later.) Concentration is carried out by first moving all
records in the block to PEs such that the PE index and R(i) agree in bit 0. The next
routing ensures that PE indices and R(7) agree in bits 0 and 1; and so on until records
have been routed to the correct PEs.

Example 2.1. Let n = 3, m = 1, and k = 2. Figure 5a shows a possible initial
configuration. There are four groups each containing exactly two records. The
numbers in the PE boxes are the R values. The remaining PEs contain no record.
The numbers outside the boxes identify the ith PE in a 2*-block. The first iteration
of the for loop of CONCENTRATE results in the configuration of Figure 5b. The
second iteration yields Figure 5S¢ and completes the concentration. [

The correctness of CONCENTRATE is not immediate. Suppose at the start of
some iteration b, we have

A@) #null and AG®)#null and R(@)s =iy and R@GE®) # ().

Then, during this iteration the record in PE(7) will get destroyed (overwritten) by the
incoming record from PE(i”’). This will be called a collision in PE(i). To establish
the absence of collisions, consider a pair of records originating from PE( /) and PE(/)
in the same 2*-block. The rankings are such that |j — /| = |R(j) — R({)|. These
records will collide in PE(i) during iteration b only if

i= (jn+m—1:b+1, R(])bO) = (ln+m—1:b+1g R(l)bO)

The right equality implies |j — /| < 2°*" and |R(j) — R(I)| = 2**". Hence |j — I| <
|R(j) — R(I)|, which contradicts the earlier inequality. Therefore no two records will
ever collide, and so every record will get to its destination.

As far as the complexity of CONCENTRATE is concerned, the number of unit-
routes is k (assuming that both G and R can be routed in one route).

We are now ready to discuss algorithm PERMUTE (see Figure 6). As stated
earlier, the permutation is performed in [n/m] phases (lines 3-13 of PERMUTE). In
phase s, the records G(i) are sorted using the digit D(i) = A(i)r-1.- as the sort key,
where k = n — (s — 1)m and r = max(k — m, 0). The sorting in each phase is carried
out independently for each 2*-column-block. The sort is accomplished by first routing
each record, G(i), to row D (i) in the same column. (As will become apparent, at the
start of each phase there is exactly one record per column.) This routing is achieved
by lines 4-8 of PERMUTE. First, in lines 4-6 the record in each column is replicated
over all PEs in that column. Then, in lines 7-8 all copies of a record in a column are
deleted except for the one in the proper row. (The row number of PE() is [i/2"].)

The next step is to rank the 2* records in a 2*-column-block. First, records are
ranked within each 2*-block (line 9). Since each row of a 2*-column-block contains
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line procedure PERMUTE(n, m)
//permute 2" records on a 2™ X 2" CCC according to field 4 of G//
global G, R

1 A(@) = null, ((I)n+m-1 7 0) //initialize remaining rows//
2 k:=n //2*is the number of columns in a group//
3 for s =1 to [n/m] do //[n/m] phases of radix sort//
4 forb:=nton+m—1do //copy records over columns//
5 G(i®) « G(i), (A(F) * null)
6 end :
7 r:=max(k —m,0) //bitsk—1,...,rform the digit//
8 AG) = null, (i/2"] # (AG))k-1)
9 call RANK (k)
10 R(i) == R@) + Li/2"]*2"
11 call CONCENTRATE(k)
12 w:=k; k:=r //each partition is 2" columns now//
13 end
//move records to first row//
14 forb:=nton+w— 1do //elements are in top 2" rows//
15 G(i"®) « G(i), (A@i) # null)
16 end

17 end PERMUTE
F16. 6. Algorithm 2.3.

exactly 2" records (this follows from the fact that 4 is a permutation), the rank of a
record in any 2*-column-block is given by the right-hand side of line 10. The
concentration of line 11 partitions the records from the 2*-column-block into 2'-
column-blocks, each partition containing records whose 4 values differ only in the
least significant r bits. In addition, the (4),-1- values increase from one partition to
the next (left to right). That is, after the concentration we have (4())n-1- = (n-1-
for every record G(i). So, following the last concentration phase, where r = 0, we will
have (4(i))n-10 = ({)n-10. This means that each record has been routed to its
appropriate column and now needs only to be routed to the PE in row 0 of that
column. This is accomplished in lines 14-16. (Actually this code results in the record
being replicated over all PEs in rows 0 to 2 — 1 of the column containing it, where
w = m is the number of bits in the last digit.)

Let f(n, m) be the number of unit-routes required by PERMUTE to perform a
permutation. The number of routes for lines 14-16 is w = n — ([n/m] — 1)m. So, the
total contribution of lines 4-6 and lines 14-16 to f(n, m) is [n/mim + w = n + m.
Lines 9 and 11 each contribute & per iteration of the loop of lines 3-13. Substituting
for k, and recalling that m < n, we get

fo,m)y=n+m+2m+n—m)+n—2m)+ --- +w)
=n+m+ ((n/m]+ Dn
= ([n/m] + 3)n.

The number of unit-routes is therefore O(klog N) when N'*'/* PEs are available.
(The number of records to be permuted is N = 2", and k = n/m.) The PE processing
time is O(f(n, m)).

It should be pointed out that PERMUTE can also be used to perform any
subpermutation. Let (A(0), A(1), ..., A(N — 1)) define the desired subpermutation:
A(@) = null if PE(i) is not transmitting data. (Note that PE(i) transmits its data if
A(i) = j for some j; it receives data if A(j) = i for some j. A given PE may only
transmit, only receive, or both transmit and receive.) The fact that PERMUTE will
correctly handle subpermutations may be easily verified.
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2.3 PERMUTATIONS ON A PSC. The permutation algorithm for a PSC is essentially
a simulation of that for a CCC. The loop of lines 4-6 of PERMUTE can be carried
out as below:

forb:=nton+m—1do
shuffle on G

end

forb:=nton+m—1do
G(i?) « G(i), (A() #~ null)
unshuffle on G

end

During each shuffle (unshuffle), the data in the G space of a PE are routed along
the shuffle (unshuffle) connection. The number of unit-routes needed for this
simulation of lines 4-6 of PERMUTE is 3m. In a similar manner, RANK and
CONCENTRATE can be implemented to run on a PSC using 3k unit-routes. Lines
14-16 of PERMUTE can be carried out in 3w unit-routes. So, permutations on a
PSC require at most three times as many unit-routes as they do on a CCC. Let
h(n, m) be the number of unit-routes needed by the PSC permutation algorithm,
h(n, m) = 3f(n, m) < 3([n/m] + 3)n.

Thus, even though a CCC has (n + m)/3 times as many connections per PE as a
PSC, the permutation algorithm is only three times as fast!

2.4 LeAST-SIGNIFICANT-DIGIT (LSD) Rapix SorT. The permutation algorithm
described so far was based on MSD radix sort. This confined the data routings to
smaller regions of PEs in successive phases of the algorithm. More specifically, after
phase s, 1 = s =< |n/m], all routings become local to each 2""*"-column-block. As a
result, the number of unit-routes in RANK and CONCENTRATE become succes-
sively smaller.

It should be apparent by now that a permutation algorithm could also be obtained
using LSD radix-sort. This would yield a conceptually simpler but less efficient
algorithm. In each of the [n/m] phases, data is vertically routed as before (starting
with the least significant digit, of course). Then, the elements in each row are ranked
and concentrated, this in every phase being identical to the first phase of the MSD
algorithm. That is, RANK and CONCENTRATE always operate on 2"-blocks
rather than successively smaller blocks. The resulting LSD algorithm will still run in
O((n/m)log N) time, though slower than the corresponding MSD algorithm by a
constant factor.

However, the LSD radix-sort technique offers more generality: It can be used
to sort arbitrary (but bounded) integers. Assume N = 2" integers in the range
[0, 29 — 1] for some g. (We have 2""™PEs.) The LSD sorting algorithm will have
[g/m] phases. Each phase starts with vertical routing as before. Now, in contrast to
the permutation algorithm, the rows will not in general end up with an equal number
of elements. The data compression in each phase is performed by the following code:

(1) call RANK(n + m)
(2) call CONCENTRATE(n)

The first line computes the rank of each element with respect to the entire set of PEs,
that is, the rank within the 2"*™-block. The second line concentrates the elements
within each row. The complexity of the resulting algorithm on a CCC is readily
determined. The number of unit-routes for vertical routing, ranking, and concen-
trating is respectively m, n + m, and n (assuming one-word representation for the
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integers). This gives 2(n + m) routes for each phase. After completing the [¢q/m]
phases, the elements must be routed up to row 0. (See lines 14-16 of PERMUTE.)
This will require w’ unit-routes, where w' = g — ([g/m] — 1)m = m. So, the total
number of unit-routes is 2(n + m)[q/m] + w’ = O((¢/m)log N). The number of unit-
routes on a PSC is, of course, of the same order.

Unfortunately, the more efficient MSD algorithm does not lend itself to the sorting
of arbitrary integers. This is because the PE array after the first phase will be
partitioned into groups of adjacent columns, with different number of columns in
different groups. This creates difficulties in subsequent ranking and concentration.

The next section will present a more general sorting algorithm for arbitrary
numbers.

3. Sorting

N = 2" elements can be sorted in O(klog N) time on a CCC or PSC having N'*V/*
PEs. The algorithm is quite similar to that developed by Preparata [18] for the shared
memory model. Preparata’s algorithm consists of three distinct steps:

(1) Counting. Divide the N-element sequence into some number j of subse-
quences. Sort each subsequence recursively. Then, for each element 4; in
subsequence / determine the number, C;,, of elements in subsequence p that are

(a) no greater than 4;, p </,
(b) to the left of 4;, p =,
(c) less than A;, p > 1.

(2) Ranking. The rank, R;, of the element 4; is its final position in the sorted
sequence. This is just the sum of the counts for that element. That is, R; =
Zp Cip.

(3) Routing. Each element is routed to the PE corresponding to its rank.

We shall show that these three steps can be implemented on a CCC or PSC to
obtain a sorting algorithm with the same asymptotic complexity as that of Preparata’s
algorithm. We shall describe our implementation explicitly for a CCC only. The PSC
algorithm may be obtained from the CCC algorithm as described in Section 2. We
assume that 2" 1 = m =< n, PEs are available. These PEs may be viewed as
arranged in a 2™ X 2" array. The elements to be sorted are 4(0: N — 1), and initially
the ith element is in PE(7). For the remaining PEs, 4 = null.

Before discussing the sorting algorithm (procedure SORT), we introduce some
terminology. PE(i) is a diagonal PE under 2"-blocking iff

Li/2"] = Li/2 |mod 2™. 3.1)

Figure 7a shows the diagonal PEs (labeled D) when r = 2, m = 2, and n = 4. Figure
7b shows the diagonal PEs when r = 1, m = 2, and n = 4. Each sequence of 2"
diagonal PEs forms a diagonal 2"-block. A left PE is one for which

Li/2"] > [i/2" |mod 2™, 32)
and a right PE is one for which
[i/2"] < [i/2" jmod 2™. (3.3)

Let DIAG(r, i), LEFT(r, i), and RIGHT(r, i) be Boolean functions that are true
iff (3.1), (3.2), and (3.3), respectively, hold for r and i.
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Fic. 7. Diagonal PEs under 2"-blocking. (a) r = 2. (b) r = 1.

3.1 SORT. Our sorting algorithm consists of [n/m] phases. Let w = n —
([n/m] — 1)m. In phase 1, each subsequence of length 2* is sorted. This is done in
each 2*-column-block. (Only 2* rows of PEs are needed for the first phase.) Each of
the remaining [n/m] — 1 phases performs 2™-way merges to obtain successively
larger sorted subsequences. Phase s, 2 < s < [n/m], starts with sorted subsequences
of length 2", r = w + m(s — 2). Each subsequence resides in a 2"-column-block, one
item per column. At the end of this phase we end up with sorted subsequences of
length 2™, each in a 2""™-column-block. (It is interesting to note that the sorting
algorithm runs somewhat the “reverse” of our MSD permutation algorithm.)

Procedure SORT (see Figure 8) is now examined more closely. The [1n/m] phases
are performed by lines 2-22. Each phase starts with sorted sequences of size 2" and
ends with sorted sequences of size 2*. (For the first phase, » = 0 and k < m. For all
other phases, k = r + m.) First, lines 3-6 replicate the single element in each column
over the entire column. At this point, every 2"-block contains a sorted sequence of
length 2" (in the S registers); all blocks in the same 2"-column-block contain copies
of the same sequence. Lines 7-9 choose the sequence in each diagonal 2"-block; lines
10-12 replicate this sequence horizontally in the containing 2*-block. (Each 2*-block
contains one diagonal 2"-block with a sorted sequence. This is copied to all nondi-
agonal 2"-blocks.) The replicated data is placed in the T registers. Now every 2'-
block contains a sorted sequence in its S registers and another in its 7T registers. For
a 2"-block in the ith group and jth row, the S sequence is from group i and the T
sequence from group j. Procedure COUNT (to be specified later) determines the
count R(i) corresponding to each element S(i), as discussed earlier in our informal
presentation of counting.

The rank of each element is then determined by summing up the count values
for that element. This is done by summing the count values in each column (lines
14-16).

The final step in each phase is to route each element to the appropriate column.
Recall that each row of a 2*-column-block (i.e., each 2*-block) contains one diagonal
2"-block. So, the elements from the 2"-block are spread out within the 2*-block (while
preserving their relative order). This is just the inverse of concentration, and so the
results of Section 2 establish the correctness of lines 17-19. Now each 2*-column-
block contains a sorted sequence; the ith element of the sequence resides somewhere
in the ith column.
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line procedure SORT(n, m)
//Sort N = 2" records on a 2™ X 2" CCC//
global 4, R, S, T, m, n
1 r=0k=n—(n/ml—1)m
2 fors:=1to[n/m]do //[n/m] phases of multiway merge//
//Merge sorted sequences of length 2 to get//
//sorted sequences of length 2k Use 2*7" rows.//

//Counting//
3 S@) =A@
4 forb:=nton+k—r—1do //copy vertically//
5 S(E®) < S@), (S@) # null)
6 end '
7 T@) = S(@i), (DIAG(r, i)
8 T(i) = null, (not DIAG(r, i))
9 A()=T(@F) //A is diagonalized//
10 for b:=rtok — 1do //copy each diagonal 2"-block horizontally//
11 T(i®) « T@), (TG) # null)
12 end
13 call COUNT(r) //merge-and-unmerge in each 2"-block//
//ranking//
14 forb=nton+k—r—1do //column sum//
15 R(i) < R() + R(i"®)
16 end
//routing//
//spread each diagonal 2"-block within its 2*-block//
17 for b :== k — 1 down to 0 do
18 AGED), RGE™)) < (A(@), R@)), (A() # null and (RG))s # is)
19 end
20 r:=k //size of sorted sequences//
21 k=k+m //2"-way merge on next phase//
22 end
23 forb:=nton+ m— 1do //route to the first row//
24 A@®) «— A1), (A@) # null)
25 end
26 end SORT

F16. 8. Algorithm 3.1.

After [n/m] phases the entire sequence is sorted. Lines 23-25 route the single
element in each column up to the first row. (The code of lines 23-25 actually
replicates each element over the whole column.)

3.2 COUNT. Procedure COUNT considers each 2"-block of PEs in parallel.
Each such block contains a sorted S and T sequence. For each element S(7) in the
block, the procedure is to find the corresponding count R(i). If the 2"-block is a
diagonal block, then the S and T sequences are identical. The count, R, for the ith
S in a diagonal 2"-block is i. If the 2"-block is a left block, then the count for the ith
S is the number of T values in the T sequence that are less than it. When the 2"-block
is a right block, then the count for the ith S is the number of T values not greater
than it. The count R is determined by merging the S and T sequences together (a
stable merge is used). Figure 9 shows an S and T sequence. The arrows from row 1
to row 2 show where an S or 7T element gets positioned following the merge. It should
be easy to see that if the ith S value is located in position j following the merge, then
its R value is j — i. The third row of Figure 9 gives the R values for the S sequence.

The S and T sequences are merged using Batcher’s bitonic merge [9]. Informally
speaking, a bitonic merge sorts a bitonic sequence. For our purposes it is sufficient
to know that a sequence of nondecreasing numbers followed by a sequence of
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F1G. 10. Batcher’s bitonic merge.

nonincreasing numbers is a bitonic sequence. A bitonic sequence of length 2” can be
arranged into nondecreasing order as follows:

for i := p — 1 downto 0 do
compare pairs of elements 2’ apart and interchange them if the one on the left is larger than the one
on the right

end

The S and T sequences in each 2"-block together form a 2" sequence (if we
consider the T sequence as following the S sequence as in Figure 9). This 2!
sequence is not bitonic. However, it can be made bitonic by reversing the 7 sequence.
The first row of Figure 10 shows the resulting bitonic sequence. The remaining rows
of this figure show the progress of the bitonic merge algorithm.

The implementation of the outlined procedure, COUNT (see Figure 11), is
straightforward, though tedious. Lines 1-13 of COUNT merge S and T. First, T is
reversed in lines 1-3. In line 4 the original position of S is saved in S’. This allows us
to route the final position of an S back to its originating PE. In lines 5 and 6, T” is set
so that a stable merge (with respect to the original element positions) of S and T can
be carried out. Observe that for i and j in the same 2"-block, $'(i) < T'(j) iff the T
sequence originates from the right of the S sequence. Otherwise, S'(i) > T7(j). Lines
7-13 implement Batcher’s bitonic merge. Note that, initially, elements 2" apart are in
the S and T registers of the same PE. These elements are compared and interchanged
(if necessary) in line 9. On the next iteration we need to compare elements 2" apart.
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line procedure COUNT(r)
//Determine the count for each S in a 2"-block//
global 7, S, R

1 for b:=0tor — 1do //reverse the T sequences//
2 T(®) < T()
3 end
4 S’(i) = imod2" //save initial position//
5 T'(i) = 2", (LEFT(r,i)) //needed to handle equal elements//
6 T'@) = —1,(RIGHT(, 7))
//bitonic merge//
7 b=r—1
8 loop //:=: denotes an interchange within a PE//
9 (S@), $'@)) =: (T(), T'(@)),
(S@) > T(@)or (S(i) = T(i) and S'(¥) > T'(i)))
10 if b < O then exit //go to line 14//
11 (TGD), ') < (SG), S'D)), (s = 1)
12 b=b—-1
13 repeat
14 S() = 2(imod2") //Final position//
15 T@E) =S +1
//destroy old T values//
16 S@E) =null, (S'(G) =2"or S'()) = -1)
17 T@E) =nul, (T'()=2"0or T'() = —1)
//route final S locations back to original PEs//
18 forb=0tor— 1do
19 (S@), S'(1)) = (TG), T'(0)),
((S(@@) # null and (S’(i))s = 1) or (T(i) # null and (T'(i)), = 0))
20 (TE?), T'@™)) < (SG), S'G)), (s = 1)
21 end
22 (8(@), §'(0) = (T@), T'())), (T () # null)
23 R(i) = S(@)— S'(}) //count//
24 R(i) = imod 2", (DIAG(r, i))

25 end COUNT

Fic. 11. Algorithm 3.2.

S 04 6 9 0 4 3 1 0 4 8 5
tert 7ttt
T 8 5 31 8 5 6 9 316 9
(@) b (© FiG. 12. Merging S and T sequences. (a) Com-
pare 2” apart. (b) Exchange of line 9. (c) Compare
S 0165 03 6 8 03 5 8 2" apart. (d) Exchange of line 9. (¢) Compare 2°
/ o ol apart. (f) Final result.
T 3 4389 1 4 5 9 1 4 6 9
@ (e) ()

The interchange of line 11 moves elements 2" apart into the same PE. Figure 12
shows the progress of this loop for the example of Figure 10. When the loop is
completed, the merged sequence is S(0), T(0), S(1), T(1), S(2), T(2), ... (PE indices
are modulo 2"). From this it follows that lines 14 and 15 compute the final position
of each element.

Now the final position of each S element has to be routed back to the PE originally
containing that element. First the S and T values that correspond to elements that
were originally in T are destroyed (lines 16 and 17). The final positions for the S
elements are then routed back in lines 18-22. The correctness of this routing may be
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established by observing that the path traversed by an S element during the merge
(lines 8-13) is traversed backward during the routing of lines 18-22. In line 19 the
(S, S") registers are loaded with data to be routed to a PE with bit b = 0, and the
(T, T’) registers are loaded with data to be routed to a PE with bit b = 1. This routing
is the reverse of that done in line 9. Similarly, the routing performed by line 20 is the
reverse of that done by line 11. Having routed the final positions back to the
originating PEs, lines 23-24 compute the count R. The count for nondiagonal PEs is
computed in line 23 and that for diagonal PEs in line 24.

3.3 ComPLEXITY OF SORT. We first observe that COUNT needs 37 unit-routes.
Let f'(n, m) be the number of unit-routes needed by SORT. Lines 3-21 of SORT
(i.e., one phase) use 4k unit-routes. So,

fi(n,m)=4n+n—m)+n—2m)+ .-« +n— (n/m]— hm} + m
=2n([n/m]+ 1) + m
= 2n([n/m] + 1.5).

(Recall that m = n.)

Procedures SORT and COUNT may be implemented on a PSC using the
transformations described earlier in connection with procedure PERMUTE. The
number of unit-routes needed will be at most 3f'(n, m). The computing time for the
sorting algorithm on both CCCs and PSCs is O(f”(n, m)).

3.4 COMPLEXITY OF DATA BROADCASTING. An immediate consequence of our
sorting results is that “data broadcasting” among N PEs of a CCC or PSC can also
be carried out in O(klog N) time when N'*'/* PEs are available. Let D(i) be a data
item in PE(i), 0 =i =< N — 1. One form of data broadcasting treated in [17] is called
Random-Access-Read (RAR). An RAR is defined by a vector (R(0), ..., R(N — 1))
with R(i) residing in PE(i); R()) € {0, 1,..., N — 1, null}. PE(i) is to receive its data
from PE(R(i)), 0 = i = N — 1. That is, D(i) < D(R()). If R(i) = null, then PE()
receives no data. Note that many PEs may request data from the same PE. The RAR
algorithm of [17] involves a sorting step and runs in O(log’N) time on an N-PE CCC
or PSC. When N'*/* PEs are available, the sorting algorithm developed here may
be used to perform an RAR in O(klog N) time [17].

So far, we have described the permutation, sorting, and broadcasting algorithms
for performing transfers among PEs 0, 1, ..., N — 1. These algorithms can be used
to transfer records among any N PEs. Let G(i-), 0 = r = N — 1, be the selected
records, where G(ir) is in PE(i,). We first “concentrate” the records (i.e., bring G(i»)
to PE(r)). Then we apply the algorithm (permute, sort, or broadcast) to the records
inPEs 0, 1, ..., N — 1. Afterward, we “spread out” the records to the originating
PEs. That is, the record in PE(r) is sent to PE(i,). Since concentrating and spreading
require O(n + m) = O(log N) steps, the overall algorithm will still be O(klog N).

4. A Generalized Connection Network

An (N, N) generalized connection network (GCN) is a switching network capable of
connecting any subset of its N inputs to any subset of its N outputs. An input may be
connected to many outputs, but each output can be connected to at most one input.
A GCN may be represented as a directed graph in which edges represent switches.
A switch may be either “on” (“closed”) or “off” (“open”). Any desired connection
of inputs to outputs in a GCN corresponds to a subgraph of the graph representing
the GCN. This subgraph includes all edges (or switches) in the on state. Input vertex
i is connected to output j if there is a path from i to j in the subgraph just described.
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(Note that paths starting from distinct input vertices must be disjoint.) The fan-out
and fan-in of a GCN are, respectively, the outdegree and indegree of the correspond-
ing graph. The number of contact pairs in a GCN is the number of edges in its graph.
The delay of a GCN is defined as the maximum number of edges on any input—
output path. The setup time is defined as the time needed to obtain the on/off state
of the switches (edges) to establish the desired connection.

Once a GCN is set up, data may be transmitted from inputs to outputs, the
transmission time being proportional to the “delay.” Transmission from each input
port may proceed independently (i.e., asynchronously). In fact, the inputs may be
analog signals (assuming the appropriate conducting media, of course). A GCN may
have applications in telephone switching or telecommunication. It may also be used
as the interconnection network in a parallel processor or a distributed system.

An N X N crossbar switch is an example of a GCN with O(N?) contact pairs and
unit-delay. (The delay is O(log N) when fan-out and fan-in are restricted to a
constant.) A crossbar switch is easily set up. Thompson’s GCN [22] has O(Nlog N)
contact pairs and O(logN) delay but is difficult to set up. The fastest known
algorithm to set up his GCN runs in O(klog?N) time on an N***.PE CCC or PSC.
(See [16].)

On the basis of our MSD permutation algorithm we propose a GCN that is
relatively easy to set up. Let N = 2", m € [1, n], and k = n/m. We construct an
(N, N)-GCN with O(kN'*/*log N) contact pairs and O(klog N) delay. Our GCN
can be set up in O(klog N) time using an N'*/2.PE CCC or PSC. So, for situations
in which the switch settings have to be computed on-line, our GCN will have a lesser
total delay (i.e., time to compute switch settings + GCN delay time) than that of
Thompson.

Our GCN can be used in an SIMD computer for PE-to-PE or PE-to-memory
interconnection. Suppose, for example, that an N'*'/*-PE PSC is also interconnected
by the GCN. PE(i) is connected to input i and output i of the GCN,0<i=< N — 1.
From the previous sections we know that the PSC itself can perform arbitrary one-
to-many transfers between N PEs in O(klog N) routing steps. We will see later that
it takes about the same amount of time for the PSC to set up the GCN. The
transmission time on the GCN is O(klog N) gate delays, a “gate delay” being much
shorter in time than a “routing step.” So, if the records to be transmitted are only one
or two words each, the PSC itself is used to do the transfer. With longer records,
however, the GCN may provide a faster transmission. (If the records are not in PEs
0,1,..., N — 1, they are first “concentrated”; then they are transmitted through the
GCN; afterward, they are “spread out” to the originating PEs.) For long records, the
GCN transmission time can be further reduced by pipelining. In this mode, the
second and subsequent words will suffer only O(1) delay. The bandwidth of the
GCN’s lines need not be full-word; even bit-serial transmission on the GCN can be
faster than the PSC itself. Our GCN may also be useful for other “circuit-switching”
applications if the setup time is crucial.

The construction of our GCN is given in Section 4.1. The setup algorithms are
presented in Sections 4.2 and 4.3. Section 4.4 provides some comments on the
structure of the GCN’s control memory. (The on/off state of the switches are stored
in this memory. Each bit of this memory controls one switch.)

4.1 Tue GCN ConsTRUCTION. Our GCN construction is shown diagramatically
in Figure 13. N = 2" is the number of inputs and outputs, m is an integer in the range
[1, n], and M = 2™. A higher value of m results in a GCN with more edges and less
delay. We shall restrict the fan-out and fan-in of our GCN to 2.
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Fic. 13. (N,N, M)-GCN; N=2" M=2"1=m=n.

A (1, M)-generalizer is a full binary tree with M leaf vertices. (Note that the tree
has log:M + 1 levels of vertices. If we allow a fan-out of more than 2, the generalizer
can be simply a two-level tree of degree M.) For the generalizer, the switches are
always on, as its function is to make M “copies” of its input. (That is, the input of the
generalizer is always connected to all of its M outputs.)

An (N, N/M)-concentrator has N inputs and N/M outputs. Its function is to
connect any p of its inputs to its top p outputs, 0 < p = N/M. The connection of
inputs to outputs is one-to-one and preserves the relative order. This concentrator is
obtained from the (N, N)-concentrator of [22]. For completeness, the latter is
described below.

The (N, N)-concentrator of [22] (Figure 14) has N inputs and N outputs. It can
connect any subset of its inputs to a consecutive subset of its outputs (i.e., not
necessarily starting with the top output). The connection is one-to-one and preserves
the relative order of the inputs. From Figure 14 we see that an (N, N)-concentrator
consists of log N + 1 columns of N vertices. Let us label the vertices as Vo),
0=<i=<N—1,0=< b <logN. There are two edges incident from each vertex V°(i),
0 < b < log N: one edge goes to V"**(i) and the other to ¥**'(i”). (Recall that i**’
differs from i only in bit b.) Figure 15 shows an example connection on an (8, 8)-
concentrator. Only the on switches (edges) are shown. R; is the rank of input i. We
wish to connect input i to output R;. The path (i, R;) is determined left to right. Bit
b of R; determines the edge from column b to column b + 1. (See Figure 15.)

An (N, N/M)-concentrator is obtained from an (N, N)-concentrator in the
following way. Only the top N/M outputs of the (N, N)-concentrator are needed; so
we remove the edges (switches) that cannot lead to any of these outputs. Figure 16
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shows an (8, 2)-concentrator constructed from an (8, 8)-concentrator. Observe that
an (8, 2)-concentrator is really four (2, 2)-concentrators connected by two full binary
trees of height 3 (i.e., these binary trees are the reverse of (1, M)-generalizers). One
can easily show that an (N, N/M)-concentrator obtained as described above is
M (N/M, N/M)-concentrators connected together by N/M binary trees of height
log M + 1 (see Figure 17). These full binary trees will be called (M, 1)-concentrators.
All switches in an (M, 1)-concentrator need only one state, that is, on. (At most one
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of the inputs to an (M, 1)-concentrator will be active; the other inputs will not get
connected through the preceding stage of (N/M, N/M)-concentrators. So, an (M, 1)-
concentrator can safely connect all of its inputs to its output.)

To summarize, an (N, N/M)-concentrator has log N levels of edges. Assuming
N > M, only the first log(N/M) levels need to get set up; the remaining log M levels
are always on. The setup rule for the case N = M is slightly different. From Figure
13 we observe that an (N, N, N)-GCN (which is called an N X N crossbar) consists
of a stage of (1, N)-generalizers followed by a stage of (N, 1)-concentrators. (The
third stage of Figure 13 becomes null as N = M.) All switches in the (1, N) generalizer
stage are on as always. Therefore, the (N, 1)-concentrator stage can not have all of its
switches on. In fact, each (&, 1)-concentrator needs to connect at most one of its
inputs to its output, as all of its inputs are now active. This is done by setting up the
first level of switches in an (N, 1)-concentrator; the remaining log N — 1 levels of
switches will still be on.

We have shown the recursive construction of the (N, N, M)-GCN for N = M
(Figure 13). To complete the construction, we need to specify the GCN for 1 =
N < M. When 1 < N < M, the (N, N, M)-GCN is replaced by an (N, N, N)-GCN.
And a (1, 1, M)-GCN is a null switch as stated earlier. In summary, the (N, N, M)-
GCN consists of [n/m] stages of generalizers followed by concentrators.

The correspondence between the GCN just described and PERMUTE (Algorithm
2.3) is readily established. Suppose that the GCN is to be used to perform a
permutation on its inputs. The generalizer-concentrator stage of Figure 13 corre-
sponds to the first phase of PERMUTE. The (1, M)-generalizers simply perform the
routings of lines 4-6 of PERMUTE. (The M outputs of a generalizer may be regarded
as the PEs in a column of a CCC.) The (N, N/M)-concentrators perform the
concentration of records from each row (N = 2" PEs) to groups of N/M = 2" PEs
(i.e., line 11 of PERMUTE). From this point on, the GCN (and PERMUTE) route
the N/M outputs of each (N, N/M)-concentrator independently.
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TABLE 1. CHARACTERISTICS OF AN (N,N,M)-GCN

Number of
Delay contact pairs Compares with
m=1 O(log’N) O(N log’N) Batcher’s sorting network [2]
m=n O(log N) O(N?) Full crossbar (restricted fan-out)

n/m=k O(klog N)  O(kN'"'*log N) —

We will now find the délay, D(n, m), and total number of edges, E(n, m), for our
(N, N, M)-GCN, N = 2", M = 2. The delays in a (1, M)-generalizer and an
(N, N/M)-concentrator are, respectively; logM = m and logN = n, as discussed
earlier. The recursive structure of Figure 13, therefore, yields the following recurrence
for the delay of the (N, N, M)-GCN:

m+n+ Dn—m, m), n>m,
D, m)={2n ( ; n<m.

(Note that D(n — m, m) is the delay in an (N/M, N/M, M)-GCN.) It is easy to show

that
D(n, m) s% (L—:;——l + 3>n.

The equality holds when 7 is a factor of m.

As for the number of edges, we observe that each (1, M)-generalizer and each
(M, 1)-concentrator is a binary tree with 2(M — 1) edges. An (N/M, N/M)-
concentrator has 2(N/M)log(N/M) edges. (See Figure 14.) So, from Figure 17 we
see that the number of edges in an (N, N/M)-concentrator is 2N log(N/M) +
2(M — 1)N/M. Using these, and referring to Figure 13, we obtain the following
recurrence for the number of edges in the (N, N, M)-GCN:

N
2 — + 4(M - + M. -
i, 7 = { MNlog— +4M — )N + M-E(n — m, m), n>m,
4(N — 1N, n=m.

The exact solution may easily be found. However, the following bound will serve our
purposes:

E(n,m) < [%—‘ (log % + 4)MN.

Table I gives the characteristics of our GCN for different values of the ratio m/n.

The switch settings for an (N, N, M)-GCN can be obtained using PERMUTE
when only a permutation of the inputs is desired, and using SORT when the input-
output mapping is not a permutation. In either case, the time needed to obtain the
switch settings is O((n/m)logN) if a 2"*™-PE CCC or PSC is used. The setup
algorithm for one-to-one connections will be faster than the algorithm for one-to-
many connections by a constant factor.

42 SETUP ALGORITHM FOR ONE-TO-ONE CONNECTIONS. Here, procedure
PERMUTE (Algorithm 2.3) may be used to set up the GCN. We assume that the
desired connection is given by A(0:N — 1). Input i is to get connected to output
A(i), 0 < i < N — 1; if A(i) = null, input i does not get connected to any output.

When CONCENTRATE(k) is invoked by PERMUTE (where k = n — (s — )m
for phase s), it corresponds to the (2%, 27)-concentrator stage of the GCN, where r =
max(k — m, 0). This stage of concentrators consists of (2", 2")-concentrators followed
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Fic. 18. PE-to-vertex correspondence for k = 2.

by (2*7, 1)-concentrators (se€ Figure 17). As stated earlier, we only need to determine
the switch settings for the (2, 27)-concentrator stage. This is done by the first r
iterations of CONCENTRATE(k). The concentrator stage consists of 2"~ (27, 27)-
concentrators. Each concentrator has r + 1 columns of vertices. Therefore, the stage
forms an array of 2"*™ X (r + 1) vertices. Label these vertices V°(i), 0 < b < r,
0 <i<2"™. Thus, ¥°and V”, respectively, represent the input and output vertices
of the (2, 2")-concentrators. First, consider running PERMUTE on a CCC (with
2™ PEs). During iteration b, 0 < b < r, of CONCENTRATE(k), the set of PEs
correspond to the column ¥* of vertices. The PE-to-vertex correspondence is shown
in Figure 18 for n = 3, m = 1, and k = 2. Note that k = 2 specifies 22—blocking. PEs
0-3 correspond to the top (4, 2)-concentrator, PEs 8-11 correspond to the second
(4, 2)-concentrator, and so on.

Thus, during iteration b of CONCENTRATE(k), PE(i) corresponds to V(j),
where

J= 00 k) = dam e Bt + e+ iy -+ o,
0=i=2"" -1, m'=mink, m).

Note that for the first stage, j = u(i, n) = i, and so PE(i) corresponds simply to V°(i).
(Procedure PERMUTE may easily be modified so that the PE(7)-to- "*(i) correspond-
ence would hold for all stages. We will not consider the modifications here.)

Iteration b of the for loop in CONCENTRATE determines the settings for switches
from V? to V**'. During this iteration, if A(i) # null and R(i), # i, for some i, then
the switch (V°(j), V**'(j?)), j = p(G, k), is set on. If A(i) # null and R(i)» = i, then
(V°(j), V**'(j)) is set on. If A(i) = null, then both of these switches are set off. (Note
that PE(i) determines the state of these switches.)

The last call to CONCENTRATE is made with kK = n — ([n/m] — 1)m. (Hence
r = 0 at this point.) This corresponds to the (2*, 1)-concentrators (binary trees) of the
last stage. Let V°(j), 0 < j < 2*** — 1, be the leftmost column of vertices (i.e., the
leaves) in this stage. We only need to set up the switches incident from these vertices.
(Recall from Section 4.1 that the edges here are not all on as they are in the binary
trees of other stages.) Let j = u(i, k) as defined above. The single edge (switch)
incident from vertex V°(j) is set on if and only if 4 (i) 5 null at the start of iteration
b = 0 of CONCENTRATE. Our setup algorithm terminates at this point, as the
remaining k — 1 levels of edges are all on.

If a PSC is used to run PERMUTE, the PE-to-vertex correspondence will be
different: During iteration b of CONCENTRATE, PE(i) will correspond to V°(j),
where j = u(i’, k), i’ = ig-1-5 + + - loig—1 * + + ig-», ¢ = n + m, and p is as defined above.

4.3 SETUP ALGORITHM FOR ONE-TO-MANY CONNECTIONs. For one-to-many
mappings the switch settings are determined right-to-left (starting with the output
terminals and working toward the inputs). This is done using a modified version of
procedure SORT (Algorithm 3.1). Before discussing the needed modifications, we
informally discuss how the switch settings may be determined. We assume that the
desired input-output mapping is given by 4(0: N — 1), where A(/) = null iff output
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Fic. 19. An (8, 8, 2)-GCN. (Setting up by sorting output-request vector.)

i is not connected to any input. If A(i) # null, then output i is to be connected to
input A(i). A may be thought of as an output request vector for the GCN.

Consider the (8, 8, 2)-GCN of Figure 19. The output request vector 4(0:7) is
(7,4, 4, 2, null, 6, 4, null). The (8, 8, 2)-GCN consists of a stage of (1, 2)-generalizers
followed by a stage of (8, 4)-concentrators, followed by (1, 2)-generalizers, (4, 2)-
concentrators, (1, 2)-generalizers and (2, 1)-concentrators. The output request vector
for each (2, 1)-concentrator is obtained directly from A(0:7). The output request
vector for a (4, 2)-concentrator may be obtained by merging together the output
request vectors for the two (2, 1)-concentrators it is connected to via (1, 2)-general-
izers. So, the output request vectors for the top two (4, 2)-concentrators of Figure 19
are (4, 7) and (2, 4), respectively. In general, the output request vector for any
(p, p/ M)-concentrator is obtained by merging together the output request vectors of
the M (p/M, p/M %)-concentrators it is connected to via (1, M)-generalizers. During
this merge, equal request values must be replaced by a single value. Thus the output
request vector for the top (8, 4)-concentrator of Figure 19 is (2, 4, 7, null).

The switch settings for any (p/M, p/M ?)-concentrator may be determined by
making use of its output request vector and the output request vector of the
(p, p/ M)-concentrator that connects to it (via (1, M)-generalizers). The setup process
for the top two (4, 2)-concentrators of Figure 19 is illustrated in Figure 20. In this
figure, R is the output-rank vector of each concentrator: Output i of a concentrator
must get connected to input R(¥) of that concentrator. (If R(i) = null, the output does
not get connected to any input.) The output request vectors for the two (4, 2)-
concentrators are (4, 7) and (2, 4). These request vectors must “merge” (thinking of
the requests as moving right to left) to give the request vector (2, 4, 7, null) at the
output of the (8, 4)-concentrator. Therefore, the output-rank vectors for the two
(4, 2)-concentrators are, respectively, (1, 2) and (0, 1). Once the output rank vector
of a concentrator is obtained, the switch settings for that concentrator are determined
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F1G. 20. Setup for the top two (4, 2)-concentrators of Figure 19.

right to left. (Each request is routed right to left using the bits of its rank, the most
significant bit first. See Figure 20.)

For the leftmost concentrator stage (i.e., for the (X, N, /M )-concentrators), no rank
computation is needed. The output-request vector of a concentrator here serves as its
output-rank vector. For example, in Figure 19 the request value for the top output
of the top (8, 4)-concentrator is 2; so this output simply gets connected to input 2 of
the concentrator.

Our switch setting algorithm is obtained by making some simple changes to
procedures SORT and COUNT. Let the stages of concentrators in GCN be numbered
1 to [n/m] left to right. Phase s of SORT, s = 1, 2, ..., [n/m], will start with the
output request vectors for the concentrators in stage s’ = [n/m] — s + 1; it will find
the switch settings for this stage (right to left); and it will end up with the output
request vectors for stage s’ — 1.

First, we make the following changes to COUNT:

(1) Insert the following code before line 1:

S (@) := oo, (S(@) = null))
T (i) := oo, (T(i) = null))

(2) Replace lines 5 and 6 by
T'@):=2

The effect of the above changes is that for each element of S, COUNT will now
find the number of elements in T that are strictly less than it. Consequently, R(i)
following lines 14-16 of SORT will be the number of elements in the 2*-block strictly
less than A (i). (2" is the size of sorted sequences to be obtained in the current phase
of SORT.) Note that after lines 14-16 of SORT, equal 4 values will have equal rank.
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16.1 W(@i) =i //return-address of this PE//

162  R() = W() = null, (A@F) = null) //take diagonal 2"-blocks//

16.3 for b := k — 1 downto 0 do //Route to appropriate columns//

16.4 (R@E®), W(i®)) « (R@@), W(i)), (R()  null and R(i)p # is)
16.5 end

16.6  S() =0, (R@) = null)

16.7  S(@i) =1, (R(@) # null)

168 forb:=nton+m—1do //Mark nonnull columns//

16.9 S(@i) « (S@) or S@E®)) //Boolean or//

16.10 end )
16.11 call RANK'(k) //set R(i) = number of nonnull columns to the left//
16.12 for b:=0to k — 1 do //return the computed rank//

16.13 (R(ED), W(3E™)) « (R(i), W(i)), (W() # null and W (i) 5 iv)
16.14 end

F1G. 21. Subalgorithm 4.1: Rank adjustment after ﬁne 16 of SORT.

We now need to adjust the rank, R(i), to be the number of distinct A values in the 2k,
block strictly less than A (¢). This rank adjustment is accomplished by lines 16.1-
16.14 (Subalgorithm 4.1; see Figure 21). The code segment is inserted after line 16 of
SORT.

The loop of lines 16.3-16.5 routes each nonnull rank element R(7), tagged with its
originating address W (i) = i, to the R(i)th column within the 2*_block. (Note that
the routing of lines 16.3-16.5 is the same as that performed by lines 17-19 of SORT.
Each diagonal 2"-block, where r is defined in SORT, is “spread out” within its 2*-
block.) After this routing, equal rank elements will be in the same column. The
number, j, of nonnull columns to the left of an element R(7) will now be the number
of distinct R values smaller than R(7). Lines 16.6-16.11 find this j for each element
R(i). First, lines 16.6-16.10 set S = 1 for all PEs in a column if that column contains
any (nonnull) R values; otherwise S = 0 for all PEs in that column. Line 16.11 ranks
the S = 1 values in each 2*-block. The result is R(i) = j where j is as defined above.
RANK of line 16.11 is procedure RANK of Section 2 with the two lines initializing
S omitted. Finally, lines 16.12-16.14 route back the updated value of each R(P) to its
originating PE, W(i). (The path followed in lines 16.3-16.5 is traversed backward by
the routing of lines 16.12-16.14.)

As stated earlier, the leftmost stage of concentrators in the GCN (corresponding to
the last phase of SORT) does not require any rank computation; the output request
vector A in this stage serves as the output rank vector. This situation is handled by
inserting the following code after line 2 of SORT:

2.1if s = [n/m] then //this is the last phase//
22 {R(@) := A@)
2.3 go to line 17}

When line 17 of SORT is reached (either from line 2.3 or after completion of the
loop of lines 16.12-16.14), each diagonal 2"-block will have a sorted sequence 4 (with
distinct values) and its rank sequence R. These will be, respectively, the output
request vector and output rank vector of a (2%, 2")-concentrator. The loop of lines
17-19 of SORT spreads each 2’-sequence 4 within its containing 2*-block. This
corresponds to moving backward (right to left) in the (2%, 27)-concentrator stage. Let
' = max(r, 1). Recall that only the left 7" columns of switches in this stage need to be
set up. (The right k — ’ columns of edges are always on.) Iteration b of the loop of
lines 17-19 of SORT, b=+ — 1, ..., 0, is used to set up the switches incident from
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the vertex column V°. (The input vertices are ¥°.) This is done in a manner similar
to that described in Section 4.2. The PE-to-vertex correspondence is also as defined
there.

4.4 STRUCTURE OF GCN’s CoNTROL MEMORY. GCN'’s control memory consists
of one bit for each controlled edge of the GCN. (The always-on edges are not
controlled.) We will now show how a CCC or PSC may transfer the computed
settings to this memory without requiring random-access capability.

Let a controlled vertex be one with some controlled edges incident from it. The
controlled vertices form a 2"*™ X ¢ array for some c. Label these vertices as V(i),
0=i<2™" 0=b < c Each vertex in the last column has one outgoing edge.
The remaining vertices each have two outgoing edges. The control memory will
be organized as a 2" X ¢ array of 2-bit cells M®(i), 0 =i < 2™™ 0 =< b < c. Fach
cell is associated with one vertex; each of the two bits will control one outgoing
edge. (The vertices in the last column each use only one bit.) For each column V?,
we have established a correspondence between PE(i) and V°(j), where i and j €
[0, 2**™ — 1]. Accordingly, the cell M°(i) is associated with the vertex V(j). (The
choice of a CCC or PSC fixes this association.)

The CCC (or PSC) computes the settings for one column at a time. The columns
are computed left to right for one-to-one connections and right to left for one-to-
many connections. In either case, PE(i) computes the value for M°(i), 0 = b < c.
First, consider the setup algorithm for one-to-many connections. Each PE(i) is
connected to M°(i). And each cell M®(i) is connected to M**(i), 0 < b < ¢ — 2,
0 =i<2"™ As each column is computed, it is delivered to the leftmost column of
the control memory, while the content of each cell is transferred to its right cell. This
algorithm, of course, can also handle one-to-one mappings, hence requiring no
additional hardware. The earlier algorithm, however, can obtain a faster setup. Since
that algorithm computes the columns left to right, each computed column now should
be delivered to the rightmost column of the control memory while shifting the
memory contents to the left.

Finally, the setup algorithms may be easily modified to enable us to associate each
cell M®(i) simply to V°(i), if so desired.

5. Conclusions

We have developed a permutation algorithm for CCCs and PSCs. This algorithm
permutes N = 2" records in O(klog N) time when 2"*™ PEs are available, k = n/m.
PERMUTE is based on MSD radix-sorting. We showed that an LSD version of this
algorithm can sort N integers in the range [0, 27 — 1] in O((¢/m)log N) time.

We presented a general sorting algorithm in Section 3. This algorithm has the
same asymptotic complexity as PERMUTE. However, it is slower than PERMUTE
by a constant factor. The sorting algorithm also has the same asymptotic complexity
as that developed by Preparata [18] for the shared memory model.

Using the sorting algorithm developed here, the data broadcasting algorithm of
[17] can also be run in O(klogN) time. This algorithm performs arbitrary one-to-
many transfers among N PEs.

Finally, while the GCN construction obtained here is inferior to that of [22] in
terms of delay and number of contact pairs, it can be set up far more efficiently than
that of [22]. When switch settings have to be determined in real time, our GCN will
outperform that of [22].
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