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Graphs with weights and delays associated with their edges and/or vertices are often used to model com-
munication and signal flow networks. Network performance can be improved by upgrading the network
vertices. Such an upgrade reduces the edge/vertex delays and comes at a cost. We study different for-
mulations of this network performance improvement problem and show that these are NP-hard. We then
consider one of the formulations and develop polynomial time algorithms for some special cases and pseu-

dopolynomial time algorithms for others.
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1. INTRODUCTION

A communication network can be modeled as an undi-
rected connected graph in which the edge delays (=0)
represent the time taken to communicate between a pair
of vertices that are directly connected. Two vertices that
are not directly connected can communicate by using a
series of edges that form a path from one vertex to the
other. The total delay along the communication path is
the sum of the delays on each of the edges on the path.
A shortest path is one for which the sum of the delays is
the least. With respect to this undirected graph model, we
define the following problems:

1.1. LinkDelay(x, é)

In this problem, it is possible to upgrade each of the ver-
tices in the undirected graph. If vertex v is upgraded, then
the delay of each edge incident to v reduces by a factor
x, 0 < x < 1. So, if edge (v, w) has delay d before the
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upgrade, its delay is x X d following the upgrade. If both
v and w are upgraded, its delay becomes x? X d. The
problem is to upgrade the smallest number of vertices so
that following the upgrades no edge has delay > 6.

1.2. ShortestPath(x, §)

Upgrading a vertex has the same effect on edge delays as
in LinkDelay(x, ¢). This time, however, we seek to up-
grade the smallest number of vertices so that following
the upgrade there is no pair of vertices # and v for which
the shortest path between them has delay > o.

1.3. Satellite(s)

When a vertex is upgraded, a satellite up link and down
link are placed there. Two vertices with satellite links can
communicate in zero time. Let dist(x, y) be the length
of the shortest communication path between vertices x
and y. Let CommTime(G) be max, yeyc){ dist(x, y)},
where V'(G) is the set of vertices in G. The objective is
to upgrade the smallest number of vertices so that
CommTime(G) < §. Note that there is always a shortest
communication path between two vertices that uses either
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0 or 2 satellite vertices (to use a satellite link, there must
be a send and a receive vertex; further, there is no advan-
tage to using more than one satellite link in any com-
munication).

Signal flow in electronic circuits is often modeled by
directed acyclic graphs (dags) [1, 3, 7]. Vertices represent

circuit modules and directed edges represent signal flow.
In a simplistic model, each has a delay of one. A module
can be upgraded by replacing it with a functionally equiv-
alent one using a superior technology. This reduces the
delay of all edges incident to/from the module by a mul-
tiplicative factor x, 0 < x < 1. In a simplistic model, this
reduction factor is the same for all circuit modules. The
cost of the upgrade is reflected in the weight associated
with the vertex. Again, in a simplistic model, each vertex
has unit weight (i.e., all vertices cost the same to upgrade).
Since signals can travel along any of the paths of the dag,
the performance of the circuit is governed by the length
of the longest path in the dag. We wish to meet certain
performance requirements by upgrading the fewest pos-
sible number of vertices. This is stated formally below:

1.4. LongestPath(x, 6)

Given adag G = (V, E) with positive edge delays, upgrade
the smallest number of vertices so that the longest path
in the upgraded graph has delay < 6. When a vertex is
upgraded, all edges incident to/from it have their delay
changed by the multiplicative factor x.

In some networks, the primary delay may be the pro-
cessing done in a vertex rather than the transmission via
an edge. In such a case, we may associate a positive delay
value with each vertex (rather than with each edge) and
also a positive weight, which is the cost of upgrading the
vertex. The delay of a path is the sum of the delays of the
vertices on the path. When a vertex is upgraded, its delay
is changed by a multiplicative factor x, 0 < x < 1.

1.5. DVUP(x, )

In the dag vertex upgrade problem (DVUP), we are given
a dag G = (V, E) with positive vertex delays, d(v), and
positive weights, w(v). We are to upgrade a minimum
weight vertex set so that the longest path in the upgraded
graph has delay < 6. When a vertex v is upgraded, its
delay becomes x X d(v).

Each of the five problems stated above is a simplified
version of a more realistic problem. The more realistic
problem may have different costs associated with the up-
grade of different vertices and the upgrade factor may also
vary from vertex to vertex. The complexity results ob-
tained for the simpler models apply to the more realistic
problems also.

Network performance enhancement through vertex
upgrades has been considered before. Paik et al. [10]
modeled the optimal placement of scan registers in a
dag as a vertex splitting problem in a dag. The objective
was to split the fewest number of vertices so that the
resulting dag had no path of length > 6. They showed
that this problem was NP-hard for general dags but
polynomially solvable for tree and series-parallel dags.
Heuristics for this problem were proposed in [11]. In
[12], Paik et al. showed that the problem of upgrading
circuit modules so as to control signal loss can be mod-
eled as a dag vertex deletion problem in which one seeks
to delete the fewest number of vertices so that the re-
sulting dag has no path of length > 6. They showed that
while this could be done in polynomial time for tree
and series-parallel dags the problem was NP-hard for
general dags.

DVUP(O0, §) was studied in [9]. They showed that

1. DVUP(O0, 6) is NP-hard for directed chains.

2. DVUP(O0, §) can be solved in O(n> log n) time for
unit weight unit delay dags (7 is the number of vertices
in the dag).

3. DVUP(O0, §) is NP-hard for dags with unit weight but
nonunit delays when 6 = 2 and is solvable in O(n?)
time when 6 = 1.

In addition, they proposed a backtracking algorithm
and several heuristics for general dags.

Related vertex deletion problems were studied by
Krishnamoorthy and Deo [5]. They showed that several
interesting vertex deletion problems are NP-complete.

The first four problems defined above are considered
in Sections 2-5, respectively. In these sections, we essen-
tially obtain proofs of NP-hardness. These proofs make
use of the following known NP-hard problems [2]:

1. Vertex Cover

Input: An undirected graph G = (V, E) and a positive
integer k < |V].
Output: “Yes” iff there is a subset V' < Vwith | V'| <k
such that for each edge (u, v) € F at least one
of u and v belongs to V.

2. Dominating Set

Input: An undirected graph G = (V, E) and a positive
integer k < | V].
Output: “Yes” iff there is a subset V' < Vwith | V'| <k
such that foru € V— V' thereisa v € V' for
which (u, v) € E.



3. Maximum Clique

Input: A connected undirected graph G = (V, E) and
a positive integer k < | V|.
Output: “Yes” iff there is a subset V' < V'with |V'| = k
such that every two vertices in V' are joined by
an edge in E.

4. Exact Cover by 3-Sets (X3C)

Input: Set X with | X| = 3¢ and a collection C = {C,
Cs, ..., C,} of three element subsets of X such
that U7=11 C,‘ =X.

Output: “Yes” iff C contains an exact cover for X, i.e.,
a subcollection C’' < C such that every element
of X appears in exactly one member of C".

In Sections 4-8, we study the DVUP(0, ¢) problem
for trees, series-parallel dags (SPDAGs), and general se-
ries-parallel dags (GSPDAGS), respectively. The results
we obtain are

1. An O(n) time algorithm for unit weight unit delay
trees.

2. Pseudopolynomial time algorithms for trees, SPDAGs,
and GSPDAGs with general weights and delays. These
algorithms have complexity O(n®) when either &
= O(n), all weights are unit, or all delays are unit [ note
that if all delays are unit, then d(G) < nandso 6 <n
for the problem to be nontrivial].

2. LinkDelay(x, 6)

When 6 = 0 and x > 0, LinkDelay(x, ) can be solved
in linear time. In case G has an edge with delay > 0, then
the link costs cannot be made 0 by upgrading any subset
of the vertices. If G has no edge with delay > 0, then no
vertex needs to be upgraded. For all other combinations
of 6 and x, LinkDelay(x, 6) is NP-hard.

Theorem 1. LinkDelay(x, 6) is NP-hard whenever 6 # 0
orx = 0.

Proof. We shall use the vertex cover problem for this
proof. Let G = (V, E) be an instance of this problem. We
obtain from G an instance G’ of LinkDelay(x, é) by as-
sociating a delay with each edge of G. If 6 = 0, this delay
is one, and if 6 > 0, this delay is any number in the range
(6, 6/x] [in case x = 0, the range is (0, c0)]. Since 0 < x
< 1, upgrading vertex set A results in all links having a
delay < 6 iff 4 is a vertex cover of links in G’ and, hence,
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of the edges in G. So, G’ has an upgrading vertex set of
size < k iff G has a vertex cover of size < k. [ |

3. ShortestPath(x, §)

First, we show that ShortestPath(0, 0) is NP-hard. We
note that while at first glance Shortest-Path (0, 0) appears
to be identical to the vertex cover problem this is not so.
Consider the graph of Figure 1. All edge delays are one.
If the vertices {1, 3 } are upgraded, all shortest paths have
a delay/cost of zero. However, {1, 3} is not a vertex cover.
ShortestPath (0, 0) is also not the same as the dominating
set problem in which one is seeking a vertex set 4 with
the property that all vertices of the graph are either in 4
or adjacent to a vertex in 4. Consider the graph of Figure
1 with edge (2, 4) omitted. {1, 4} is a dominating set of
this graph. However, upgrading vertices 1 and 4 does not
result in all shortest paths having a zero cost [ the shortest
path between 2 and 3 has cost equal to that of the edge
(2, 3) which might well be >0].

Lemma 1. ShortestPath (0, 0) is NP-hard.

Proof. We shall use the exact cover by 3-sets problem
for this proof. Let X, q, C, and m be as in the definition
of X3C. Construct an instance G = (V, E) of Shortest-
Path (0, 0) as below:

(a) G is a three-level graph with a root vertex r. This is
the only vertex on level 1 of the graph.

(b) The root has m + g + 2 children labeled C,, C,, . . .,
Cun, Zy, Zs, ..., Zy4>. These are the level 2 nodes
of the graph. Child C; represents set C;, 1 < i < m,
while child Z; is just a dummy node in G.

(c) The graph G has 3¢ nodes on level 3. These are labeled
1,2,...,3q. Node i represents element i of X, 1 < i
< 3q.

(d) Each node C; on level 2 has edges to exactly three
nodes on level 3. These are to the nodes that represent
the members of C;, | < i< m.

An example of the construction is given in Figure 2.
We shall show that the input X3C instance has answer
“yes” iff the ShortestPath (0, 0) instance G has an upgrade
set of size < g + 1. First, suppose that the answer to the
X3C instance is ““yes.” Then, there is a C’ = C such that

@ 2/ @ 4
Fig. 1. An example.
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X=1{1,2,3,4,5,6},XI=3¢g=6
c,={1,2,3},C,=1(1,4,5},C3={2,3,6}

Fig. 2. Construction of G for Lemma 1.

(' is an exact cover of X. Since | X| = 3gand |C;| = 3,
l<i<m,|C'| =q.LetS={r}UC" One may verify
that S is an upgrade set for G and | S| = g + 1.

Next, suppose that G has an upgrade set S of size < ¢
+ 1. If r & S, then the shortest path from r to at least one
of the Z;’s has length > 0 as at least one of the ¢ + 2 Z;’s
is not in S and every r to Z; path must use the edge (r,
Z;).So, r €S. When the vertices in S are upgraded, every
vertex in G must have at least one zero length edge in-
cident to it, as, otherwise, the shortest paths to it have
length > 1. In particular, this must be the case for all 3¢
level 3 vertices. Upgrading the root r does not result in
any of these 3¢ vertices having a zero length edge incident
to it. So, this is accomplished by the remaining <g vertices
in S. The only way this can be accomplished by an up-
grade of <g vertices is if these remaining vertices are a
subset of {C,, (3, ..., C,,} and this subset is an exact
cover of X (this would, of course, require | S| = g+ 1).
So, § — {r} is an exact cover of the input X3C instance.
Hence, the X3C instance has output “yes” iff G has an
upgrade set of size < g + 1. |

Lemma 2. ShortestPath (0, 1) is NP-hard.

Proof. Once again, we use the X3C problem. The con-
struction is similar to that of Lemma 1 except that we
add the chain wvr to the root of G (see Fig. 3). If the
answer to the X3C instance is “yes,” then there is a subset
(" that is an exact cover of X. Clearly, since | X| = 3¢
and each C; is of size three, |C'| = g. One may verify
that if the vertices in .S = {r} U C" are upgraded then the
shortest path between every pair of vertices has length
=< 1. So, § is a vertex upgrade set for G. Hence, if the
X3C instance has answer “yes,” then G has an upgrade
set of size < g + 1.

Next, suppose that G has an upgrade set S of size < ¢
+ 1. Suppose that r & S. Since | S| < ¢ + 1 and there
are g + 2 Z;’s, at least one Z; is not in S. Let Z; be such
that Z; & S. If there is another Z;, k # j, Z, & S, then
the shortest path between Z; and Z; has length 2 following

the upgrade. This violates the requirement that S is an
upgrade set. So, there is no k, k # j, such that Z, & S.
Thisimplies that S = {Z,, Z,, ..., Z,1»} — { Z;}, which,
in turn, implies that the shortest path from Z; to each of
the vertices not in S has length > 2. This again contradicts
the assumption that S is an upgrade set for the constructed
ShortestPath(0, 1) instance. So, r € S.

Following the upgrade, each vertex in {1, 2, ..., 3¢}
(i.e., each level 3 vertex ) must have at least one zero length
edge incident to it. To see this, first suppose there are two
vertices, a, b, a # b,a, b€ {1, 2,..., 3¢} that have no
zero length edge incident to them. Since all paths between
a and b include an edge incident to @ and an edge incident
to b and since there is no single edge incident to both a
and b, the shortest path between @ and b has length > 2.
This contradicts the assumption that .S is an upgrade set
for G. Now suppose there is exactly one level 3 vertex a
that has no zero length edge incident to it following the
upgrade. Then, each of the remaining 3¢ — 1 level 3 ver-
tices has at least one zero length edge incident to it. Each
of the <gq vertices in S — {r} causes 0, 1, or 3 level 3
vertices of G to have a zero length edge incident to it. So,
to have 3¢ — 1 level 3 vertices with zero length edges
incident to them, we must have | S — {r}| = gand S
—{r} < {GC, G, ...,C,} (only the C;’s result in three
level 3 vertices having a zero length edge incident to them).
But, then, the shortest path from u to a has length > 2.
So, there is no level 3 vertex a that has no zero length
edge incident to it.

The above reasoning now implies that S — {r} = { C},
Cy ...y Cut, | S—{r}] = q, and each of the 3q level
3 vertices has at least one zero length edge incident to it.
Hence, S — {r} is an exact cover of X. So, if G has an
upgrade set of size < ¢ + 1, then the answer to the X3C
instance is “‘yes.” [ ]

To show that ShortestPath (0, ¢) is NP-hard for every
0,0 > 1, we need to introduce a special graph that we call

Fig. 3. Construction of G for Lemma 2.



a daisy graph. Let C,, g = 3, denote the cycle graph with
g vertices [Fig. 4(a)]. Assume that all edge delays are 1.
All shortest paths in this graph have length <|¢g/2]. Let
H(q, p) be the graph that results when p cycles C, are
joined at a common vertex v [Fig. 4(b)]. H(q, p) is a
daisy graph with p cycles of size ¢. Figure 4(c) shows the
schematic for H(q, p). All shortest paths in H(q, p) have
length < 2|¢g/2].

Let H'(q, p) be the graph that results when vertex v of
H(gq, p) is upgraded. All shortest paths in H'(q, p) that
end at vertex v have length <|g/2 | — 1. Consequently,
all shortest paths in H'(q, p) have length < 2|q/2|— 2.
To ensure that all shortest paths in H'(q, p) that end at
v have length <| g/2|— 1, g > 4, it is necessary to upgrade
at least p + 1 vertices (including v). To see this, note that
at least two vertices in each C, need to be upgraded for
this and only one of these (i.e., v) can be common among
the C’s.

Lemma 3. ShortestPath(0, ) is NP-hard for 6 > 1 and
even.

Proof. Let G = (V, E) be an instance of ShortestPath (0,
0) in which all edge delays are 1. Construct G’ by con-
necting a copy of H(6 + 2, n + 1), n = | V|, to each
vertex u of G. This is done by adding an edge from the v
vertex of H(6 + 2, n + 1) to vertex u (Fig. 5). This con-
struction takes polynomial time in the size of G (we as-
sume that 6 is a constant).

We shall show that G has an upgrade vertex set 4 of
size < k < n [with respect to Shortest-Path (0, 0)] iff G’
has one of size < k + n [with respect to ShortestPath (0,
6)]. Suppose that A4 is an upgrade vertex set for G and
| A] < k. Then, B= AU {x|xis the v vertex of an H(§
+ 2, n+ 1) graph of G'} is an upgrade set for G'. To see
this, observe that the length of the shortest path between
all pairs of vertices / and j such that 7 and j are also vertices
of G is 0 (as A is an upgrade set for G). If neither i nor j
is a vertex of G, then the shortest path between them has
length < 2(| (6 + 2)/2]— 1) = 6 (note that when i and
j are in different daisy graphs a path of length zero is used
to go from the v vertex of one daisy graph to that of the

oo

=3

@@ Cs ) H(,3) (c) Schematic

Fig. 4. Example cycle and daisy graphs.
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O/ > H(®+2,n+1)

o~ ]

v

Fig. 5. Construction of G’ from G in Lemma 3.

other; also note that 6 is even). Clearly, | B| = |A4| + n
<k+n.
Next, let B be an upgrade set for G’ such that | B| < k
+ n < 2n. Let G" be the graph that results when the vertices
in B are upgraded. Let 4 = BN V(G). |A| < |B| — n
< k as B must contain at least one vertex from each of
the n daisy graphs (otherwise, there is at least one daisy
graph which has a pair of vertices for which the shortest
path haslength 2| (6 +2)/2 =6+ 2). If 4 is not a vertex
upgrade set for G, then there is a pair of vertices 7, jin G
and, hence, G’ for which the shortest path has length
> 0 following the upgrade. Let /; (/;) be the length of the
longest shortest path from a vertex in the daisy graph
attached to 7 () to vertex i (j). Then, there is a shortest
path in G” with length > /; + /; + 1. Also, /; = | (6 + 2)/
2]—1=6/2and ;= /2 [asto have /; (/) < 6/2 at least
n + 2 vertices from the daisy graph attached to i () need
to be upgraded; this is not possible, as, after accounting
for the fact that B contains at least one vertex from each
daisy graph, at most k < n vertices remain while an ad-
ditional n + | are needed]. So, G” has a shortest path of
length = 6 + 1, which contradicts the assumption that B
is an upgrade set for G'. Hence, 4 is a vertex upgrade set
for G. [ |

Lemma 4. ShortestPath(0, ¢) is NP-hard for 6 > 0
and odd.

Proof. Same as that of Lemma 3 except that we begin
with an instance G of ShortestPath (0, 1). The proof shows
that G has a vertex upgrade set of size < k (with respect
to ShortestPath (0, 1)) iff G’ has one of size < k + n (with
respect to ShortestPath (0, 6)). 2]

Lemma 5. ShortestPath(x, 6) is NP-hard for every pair
(x,0),0<x<1,6>0.

Proof. Simply use the construction of Lemma 1. This
time each edge of G of the form (r, Z;) has delay 6/(2x)
and the remaining edges have delay 6/(4x). =

Theorem 2. ShortestPath(x, 6) is NP-hard whenever x
=0ord>0.
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0‘0

@ G ® G’

Fig. 6. Construction of Lemma 7.

Proofs. Follows from Lemmas 1-5. Note that even
though Lemmas 1-4 only show that ShortestPath (0, §)
is NP-hard for integer 6, when 4 is real, it may be replaced
by & = | 4] as the construction of Lemmas 1-4 use only
unit delay edges. ®

4. Satellite(d)

Satellite(0) is trivially solved. First, zero-length edges are
eliminated by combining their end-points # and v into a
single vertex uv. Remaining edges previously incident to
u or v are now incident to zv. Duplicate edges are replaced
by a single edge with the lower cost. If the resulting com-
munication graph has at most one vertex, no satellite links
are needed. When the number of vertices exceeds one,
each vertex must be a satellite vertex. We shall show that
Satellite(6) is NP-hard for every 6, 6 > 0.

Lemma 6. Let G be a communication graph. Let .S be
the subset of vertices of G that are satellite vertices and
let N be the remaining vertices (i.e., the nonsatellite ver-
tices). CommTime(G) < 1 iff the following are true:

(a) The vertices of N define a clique of G.

(b) Each vertex of N is adjacent to a vertex of S (i.e., S
is a dominating set of G) unless S = .

Proof. If N contains two vertices that are not adjacent
in G, then the shortest path between them is of length at
least two regardless of whether or not this shortest path
utilizes satellites. So, the subgraph of G induced by the
vertices of N is a clique. For (b), assume that S # . If
N contains a vertex v that is not adjacent to at least one
satellite vertex, then v is at least distance two from every
satellite vertex s € S. Hence, CommTime(G)>1. ®H

Lemma 7. Satellite(1) is NP-hard.

Proof: We shall use the max clique problem for this
proof. Let G be a connected undirected graph with n ver-
tices. Let G’ be the graph obtained by adding to G » edges
of the type (i, i") where i is a vertex of G and i’ is a new
vertex (Fig. 6). The number of vertices in G’ is 2n. All

edges of G’ have unit delay. We claim that G has a clique
of size > k, for any k > 3 iff G’ has a vertex subset S, | S|
< 2n — k < 2n — 3, such that by making the vertices of
S satellite vertices CommTime(G’) = 1. To see this, let
A, |A] = 3, be any subset of vertices in G. If 4 forms a
clique in G, then, by making all vertices of G’ except
those in A satellites, the communication time in G’ be-
comes at most one as the vertices of A satisfy the condi-
tions of Lemma 6 on nonsatellite vertices. So, if G has a
clique of size > k, then G’ has a satellite subset S of size
< 2n — k. Next, suppose that G’ has a satellite subset .S
of size < 2n — k < 2n — 3. Let N be the remaining vertices
of G'. If N contains a vertex i’ that is not in G, then from
Lemma 6 it follows that | N| < 2 as the largest clique in
G' that includes vertex i’ has only two vertices in it (the
other vertex being vertex 7). In this case, | S| = 2n — 2.
So, N contains no vertex that is not in G. Since N forms
aclique in G’ (Lemma 6), it forms a clique in G. Hence,
if | S| <2n—k <2n— 3, G contains a clique of size = k
> 3. While the NP-hard formulation of the max clique
problem does not restrict k to be >3, it is easy to see that
the problem remains NP-hard under this restriction. So,
Satellite( 1) is NP-hard. [ |

For Satellite(2), we first observe that selecting the sat-
ellite vertices S so that S'is a vertex cover or a dominating
set results in CommTime(G) < 2. However, the reverse
is not true. For example, if G is a star graph, then
CommTime(G) = 2 with S = & [Fig. 7(a)], while S
= (J is neither a vertex cover nor a dominating set for G.
If G is the complete graph, K,,, on # vertices, then G has
no vertex cover of size < n — 1. However, S = J results
in CommTime(G) = 1. Consider the graph G of Figure
7(b). S = {a, b} results in CommTime(G) = 2. But, G
has no dominating set of size < 3. So, there is no apparent
direct connection between vertex sets S that result in
CommTime(G) < 2 and either vertex covers or domi-
nating sets of G.

Lemma 8. Satellite(2) is NP-hard.

Proof. This proof utilizes the vertex cover problem.
Specifically, we use the fact that the vertex cover problem

O
O\

(a) Star graph (b) An example

Fig. 7. Example graphs.



Fig. 8. Figure for Lemma 8.

limited to connected graphs of degree 5 and number of
vertices = 30 is NP-hard [2]. Let G be an instance of this
problem. Assume that G has » vertices, n > 30, and that
no vertex has degree > 5. Construct an instance G’ of
Satellite(2) by replacing each edge of G by the triangle
graph of Figure 8.

We claim that G has a vertex cover of size < k for any
given k < n iff G’ has a vertex set S of size < k such that
making the vertices in S satellite vertices results in
CommTime(G') < 2. As noted earlier, selecting .S so that
S is a vertex cover results in CommTime(G) < 2. Each
vertex of G’ that is not in G is unit distance from at least
one vertex of S. Hence, making the vertices in S satellites
results in CommTime(G') < 2. So, if G has a vertex cover
of size < k, G’ has a satellite set of size < k.

Next, let S be a satellite set for G’ such that | S| < k.
If, for every (a, b) € G, at least one of ¢ or b isin S, then
S'is a vertex cover of G. If, for every (a, b) € G such that
a Sand b€ S, c[i.e., the new vertex introduced when
triangulating (a, b)] is in S, replace ¢ by ¢ in S. The
resulting S has the same size as the original S and is a
vertex cover of G. If there is an (a, b) € G such that none
of a, b, and cis in S, then | S| = n. To see this, let 4
=V—{ulu=aoru=boruisadjacent to a or b} where
V' is the set of vertices in G. Since no vertex of G has
degree > 5, | A| = n — 10. Let B be the set of vertices
not in G that are adjacent (in G') to the vertices of 4.
Since G' may be assumed to be connected, each vertex of
A has at least one edge incident to it. So, | B| > (n— 10)/
2.Let C=AUB. |[C| =15 X (n—10). Let wbe a
vertex in C. If w & S, then the shortest path from cto w
has length > 3. This is so, because if the path utilizes
satellites, then c is at least 2 units from its nearest satellite
and w is at least 1 units from its nearest satellite. If the
path does not utilize satellites, then its length is >3 as w
is not adjacent to either a or b. So, C< Sand | S| = | C|
> 1.5 X (n — 10) = n for n = 30. This contradicts the
assumption that | S| < k < n. So, the case when none of
a, b, and cis in S does not arise. [ ]

Theorem 3. Satellite(§) is NP-hard for § > 1.

Proof. For integer 6, the proof is by induction on .
For the induction base, Lemmas 7 and 8 show that Sat-
ellite( 1) and Satellite(2) are NP-hard. Assume that Sat-
ellite(é) is NP-hard for 6, | < 6 < m, where m is an
arbitrary natural number greater than or equal to two.
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For 6 = m + 1, let G be an instance of Satellite(m — 1).
Let n, n > 1, be the number of vertices in G. Obtain an
instance G’ of Satellite(m + 1) by attaching to each vertex
of G the complete graph K,,,; on n + 1 vertices, n > 1
(Fig. 9). Each K, has a vertex in common with G. All
edge delays are one. G has a satellite set of size < k < n
[we may assume that k < n as the case k = n is trivially
solvable in O(1) time] iff G' has one of size < k < n. To
see this, let S be a satellite set for GG. Since the distance
between any two vertices in K., is one, S is a satellite
set for G’ (the distance between vertices of G’ that are
also vertices of G is <m — 1; between a vertex of G and
one that is not in G, it is <m; and between two vertices
notin G,itis <m + 1).

Next, let S’ be a satellite set for G’ such that | S| < k
< n. If 8" contains only vertices that are in G, then S is
a satellite set for G. To see this, note that if the shortest
distance between two vertices x and y of G is >m — 1
after the vertices in S’ have been made satellites, then the
shortest distance in G’ between a nonsatellite vertex x’
# x in the K,,;, attached to x and a nonsatellite vertex y’
# y in the K,,,, attached to yis >m + 1. Also, note that
x"and y' must exist as |S’| < k <nand a K,,, has n
+ 1 vertices.

Suppose S’ contains a vertex x that is notin G. x is a
vertex of some K., say X. Let y be the vertex of this
K, thatisalsoin G. Let S” = 8" — {x} + {y}. Clearly,
| S”] = |S'|. Let G, (G%) denote G’ with the vertices in
S’ (S”) being satellite up link and down links. Let 7 and
j be any two vertices of G'. The shortest path, P, between
i and j in G’ has length < m + 1. If this path does not
utilize the satellite link at x, then its length in G is also
<m + 1. Suppose that the satellite link at x is used. If j
# x, then change this path to use the satellite in G at y;
i.e, if the old pathis P=1i,...,/, x,...,j, where / and
x are the satellite vertices, the new pathis i, ..., /, y,J
incasej€ Xand i,...,/, y, S(P)otherwise, where S(P)
is the suffix of P that goes from y to j. Such a suffix must
exist as we may assume (/, x) is the only satellite link
used on P and the only way to exit X without using a
satellite is via vertex y. The length of the new path is
< that of the old one. If j = x, then consider a vertex z,

Kpn /\Kvn/\

K;n—l Kn+1
) G°
Fig. 9. Construction for Theorem 3.

(@ G
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(a) G (b) G’

Fig. 10. Construction for Lemma 9.

z # y, of X that is not in S". Such a z must exist as | S’|
<k < nand X has n + 1 vertices. The shortest path, Q
=1i,...,w,zin G} fromjto z has length <m + 1. If Q
does not go through vertex x,then Q' =i, ..., w, xisa
path of length < m + 1 in G5. So, the shortest i to x path
in G5 has length < m + 1. If O goes through x, then the
prefix of Q from 7 to x has length < m + 1 in G. If this
prefix does not use the satellite link at x, its length in
G5 is also <m + 1. If it does, then by redirecting the
satellite transmission to y and using the edge (nonsatellite
link) from y to x, we get an / to x path in G% that has
length < m + 1. So, in all cases, moving the satellite links
from x to y preserves the property that all shortest paths
have length < m + 1.

By repeating this transformation on S’ several times,
we obtain a vertex set 7 such that |7T| < |S'| < k < n,
all vertices of 7 are in G, and T is a satellite set for G'.
So, T is a satellite set for G.

When § is a noninteger, replace 6 by § = | §]. Since our
construction uses only unit delay edges, every solution
for Satellite(6) is also one for Satellite(6’') and vice
versa. B

5. LongestPath(x, §)

Lemma 9. LongestPath(0, 0) is NP-hard.

Proof. Let G be a connected undirected graph. We shall
construct an instance G’ of Longest-Path (0, 0) such that
G has a vertex cover of size < k < n iff G’ has a vertex
upgrade set A’ of size < k < n. To get G', orient the edges
of G to begin at a lower index vertex; i.e., if (i, j), i <],
is an edge of G, then (i, j) is a directed edge of G’ (Fig.
10). All edges of G’ have unit delay. It is easy to see that
G' is a dag and that A is a vertex cover of G iff A’ = 4
is a vertex upgrade set of the LongestPath(0, 0) in-
stance G'. [ |

To show that LongestPath(x, ¢) is NP-hard for x = 0
and 6 > 0, we use the subgraph J, , (Fig. 11) which is
composed of n directed chains of size g that share a com-

q-1 vertices

=
O—0O—0O—

_>O
| BN

Oo—0O0—0—

Fig. 11. J,.

mon vertex 7. This set of # chains is connected to a two-
vertex-directed chain (r, s). Each edge of J, , has unit
delay. We see that the longest path in J, , has length ¢,
and that by upgrading the single vertex r, we can make
the delay of this subgraph ¢ — 2. However, to reduce the
delay to g — 3, we need to upgrade at least n + 1 vertices.

Lemma 10. LongestPath(x, ¢) is NP-hard for 6 > 0.

Proof. Let G be any instance of LongestPath(0, 0) in
which all edge delays are one. A corresponding instance
G' of LongestPath(x, 6) is obtained by attaching a copy
of J, 5+21n case x = 0 and Q, (Fig. 12) in case x > 0 to
each vertex v of G that has in-degree zero. This is done
by identifying the s vertex of J, 5+, with vertex v (i.e.,
these two vertices are the same). Note that # is the number
of vertices in G. Let m be the number of vertices in G
that have zero in-degree. One may verify that for any k,
k < n, G has an upgrade set of size < k iff G’ has one of
size < m + k. Hence, LongestPath(x, 6) is NP-hard for
0> 0. &

Theorem 4.
(a) Longest Path (x, 6) is NP-hard when x = 0 and ¢

= ( and also when x > 0 and 6 > 0.

(b) Longest Path (x, ¢) is polynomially solvable when x
>0and 6 = 0.

1/x

&-1)/x
n chains

Fig. 12. Q,.



Proof. (a) has been proved in Lemmas 9 and 10. For
(b), if the dag has an edge with delay > 0, then it has no
vertex upgrade set. If there is no such edge, then no vertex
needs to be upgraded to ensure that the longest path has
zero length. B

6. DVUP(O, 5) FOR TREES

6.1. Rooted Trees with Unit Weight and Unit
Delay

Let d(G) be the length of the longest path in G. Let G| X
be the graph that results when the vertices in G are up-
graded. Let d(G|X) be the length of the longest path
in G| X.

When the dag is a rooted tree 7 such that w(v) = d(v)
= 1 for every vertex, the minimum weight vertex subset
X such that d(7|X) < 6 can be found in O(n) time by
computing the height, /, of each vertex as defined by

1
h(v) =
1 + max {h(u)|uis achild of v},

vis a leaf

otherwise
X is selected to be the set
X = {v|h(v) > 6}.

The vertex heights can be computed in O(#) time by a
simple postorder traversal of the tree 7' [4]. The correct-
ness of the procedure outlined above is easily established.

6.2. General Rooted Trees

Since a chain is a special case of a tree and since DVUP
for chains with arbitrary weights and delays is known to
be NP-hard [12], we do not expect to find a polynomial
time algorithm for general trees. In this section, we develop
a pseudopolynomial time algorithm (i.e., one whose
complexity is polynomial in the number of vertices and
the actual values of the vertex delays and weights). This
algorithm has quadratic complexity when either all delays
are unit or all weights are unit.

By establishing standard dynamic programming re-
currences and solving these directly, one can obtain an
algorithm with complexity ©(min {6, w} X n), where w
= 2y w(u); i.e., the algorithm will take ¢ X min {4, w}
X n time on all trees with n vertices regardless of the
values of the weights and delays. For this, we let W (v, e)
denote the minimum weight of an upgrading set for the
subtree rooted at v and such that the upgraded subtree
has delay less than or equal to e. It is easy to see that
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wv)+ > Wi(x,e), e<d)
xeC(v)
W(v,e)={min{ > W(x,e—d(v)), w()
xEC(v)
+ > W(x,e)}, dv)<e=<s,
xeC(v)

where C(v) represents the children of v. If r is the tree
root, then W (r, 6) is the minimum weight of an upgrading
set. W (v, e) can be computed in ©(6n) time as each vertex
(other than the root) is the child of exactly one v. The
upgrading set can also be found in this much time. In
case 0 > w, we can use an alternate formulation. In this,
we let D(v, f) denote the minimum delay achievable for
the subtree rooted at v by an upgrading set with weight
at most /. The time to compute all the D’s is O(wn).

We can arrive at an algorithm whose complexity is
O(min {6, w} X n) by using a tuple formulation rather
than an array formulation. This algorithm has a run time
that is bounded by ¢- min{§, w} X n for some constant
c. However, depending on the actual weights and delays,
this algorithm may take much less time.

For each vertex v, let L(v) be a set of pairs (/, ¢) (/
represents a delay and ¢ a weight or cost), / < 6, such that
there is a weight ¢ upgrading set for the subtree rooted at
v that results in a delay of / (for the subtree). Let (/;, ¢;)
and (/, ¢,) be two different pairs such that /, </, and ¢,
< ¢,. In this case, pair (/,, ¢;) dominates (1, ¢,), i.e., pair
(1,, ¢;) represents a preferred upgrading set. Let S(v) be
the subset of L(v) that results from the deletion of all
dominated pairs. If r is the root, then the least-cost pair
in S(r) represents the minimum weight upgrading set that
results in a delay no more than 6.

We shall describe how to compute S(r). Using the
backtrace strategy of [4, cf. chapter on dynamic program-
ming], we can compute the minimum weight upgrading
set in O(n) additional time. For a leaf vertex v, S(v) is
given by

{{(0’ w(v))},
S(v) =
{(0, w(v)), (d(v), 0)},

d(v)>6
d(v) <.

For a nonleaf vertex v, S(v) may be computed from
the S(u)’s of its children u, . . ., u,. First, we compute
U(v) as the set of nondominated pairs of the form (/, ¢)
where / = max{/;, b, ..., ,} and c = >k, ¢; for some
set of pairs (/;, ¢;) € S(u;), 1 =i =< k. Let V(v) and
Y (v) be as below:

Vi(v) = {(l,c+w))|(l,c) E U(v)}
Y(v)
={(/+d),c)|l+d(v)<éand (/,c) E Uv)}.
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Now, S(v) is the set of nondominated pairs in V' (v)
U Y (v). Since S(v) contains only nondominated pairs,
all pairs in S(v) have different / and ¢ values. So, | S(v)|
< min{§, w}, where w = 27_, w(u). Using the technique
of [4], S(v) can be computed from the S(u)’s of its chil-
dren in time O(min {4, w} X k,). To compute S(r), we
need to compute S(v) for all vertices v. The time needed
for this is O(min{§, w} X 2 k,) = O(min {4, w} X n).

Note that for unit delay trees 6 < n, and for unit weight
trees, w = n. So, in both of these cases, the procedure
described above has complexity O(n?).

7. DVUP(O, §) FOR SERIES-PARALLEL
DAGS

A series-parallel digraph, SPDAG, may be defined recur-
sively as

1. A directed chain is an SPDAG.

2. Let s; and ¢,, respectively, be the source and sink ver-
tices of one SPDAG G and let 5, and 7, be these vertices
for the SPDAG G,. The parallel combination of G,
and G,, G,//G,, is obtained by identifying vertex s,
with s, and vertex ¢, with ¢, [Fig. 13(c)]. G,//G, is
an SPDAG. We restrict G; and G, so that at most one
of the edges (sy, t,), (s, t,) is present. Otherwise,
G,// G, contains two copies of the same edge.

3. The series combination of G, and G,, G, G>, is ob-
tained by identifying vertex ¢, with s, [Fig. 13(d)].
GG, 1s an SPDAG.

The strategy that we employ for SPDAGS is a gener-
alization of that used in Section 6.2 for trees with general
delays and weights. Let s and ¢, respectively, be the source
and sink vertices of the SPDAG G. Let D(/, Y, G) (/
<), be a minimum weight vertex set that results in a
delay of at most /. Y tells us whether or not the source
and sink vertices are upgraded. Thus, there are four types
of upgrading sets D:

(a) Sets which include neither the source nor sink. For
these, Y = .

(b) Sets which include the source but not the sink. These
have Y = {s}.

(c) Sets which include the sink but not the source. For
these, ¥ = {¢}.

(d) Sets which include both the sink and the source. For
these, Y = {s, t}.

With each upgrading set D(/, Y, G), we associate a
triple (/, ¢, Y') such that c¢ is the weight of the upgrading
set D. Let f(G) denote the set of all of these triples for G'.

K If ) ty s G, t
< & o o % [>»o
G,
(@) G, ) G, ©) G1/IG,,
51 2
O<E>O< G, [30
@ GG,

Fig. 13. Series-parallel digraph.

Let (/,, ¢;, Yy) and (L5, ¢, Y,) be two different triples in
f(G). We shall say that triple (/,, ¢;, Y, ) dominates triple
(12, Coiy Y2) Iﬁll = lz, CI =0 and Yl = Yz. Let F(G) be
the set of triples obtained by deleting all dominated triples
of f(G). It is easy to see that the least-weight triple (i.e.,
the one with least ¢) in F(G) corresponds to the minimum
weight upgrading set for G.

As in the case for general trees, we shall show only
how to compute F(G). The minimum weight upgrading
set may be obtained using a backtrace step as described
in[4].

7.1. G is a Chain
Consider the case when G has only two vertices s and ¢.
F(G) is constructed using the code
F(G) := {(0, w(s) + w(2), {s,t})}
if d(s) < 6, then F(G) := F(G) U {(d(s), w(2), {t})}
if d(t) < 6, then F(G) := F(G) U {(d(t), w(s), {s})}
if d(s) + d(t) < 6, then F(G)

= F(G) U {(d(s) + d(1), 0, &)}
When G is a chain with more than two vertices, it may
be regarded as the series composition of two smaller chains
G, and G,. In this case, F(G) may be constructed from

F(G,) and F(G,) using the algorithm to construct
F(G,G,) described in the next section.

7.2. G Is of the Form G,G,

The following lemma enables us to construct F(G,G,)
from F(G,) and F(G),).

Lemma 11. If (/, ¢, Y) € F(G,G,), then there is an (/,,
¢, Y)) € F(G)) and an (L, ¢, Y,) € F(G,) such that



(a) D(l, Y1, Gi) =D(, Y, GiGy) N V(Gy)
(b) D(h, Y2, Gy) = D(1, Y, G,Gy) N V(Gy)
(C) D(l9 Y9 GlGZ) = D(119 Y17 Gl) U D(l25 Y2> GZ)

(d) c¢= ZueD(l,Y,Gle) w(u), ¢ = ZuED(ll,Yl,Gl) w(u), ¢
= zueD(lz,Yz,Gz) w(u).

Proof. LetA=D(l,Y,G,G,)NV(G,)and B= D(!,
Y, G,G,) N V(G,). Since V(G,Gy) = V(G,) U V(G,),
D(l,Y,G,G,) =AU B. Let s; and t;, respectively, denote
the source and sink vertices for G;, i € {1, 2}. s and ¢
are the corresponding vertices for G,G,. We see that s
=81, = 1, and = 5.

Cast 1. [t & D(1, Y, G,Gy)].

Let/, = d(G,|4), Y, = AN {s,},and ¢; = 2,4 w(u).
We shall show that (/;, ¢;, Y,) € F(G,). Suppose it is
not. Then, it must be dominated by a triple (/', ¢}, Y,)
that is in F(G,). Let C = D([}, Y, G,). It follows that
¢y = 2uec w(u) and that (/) + d(G,|B) — d(s,), ¢
+ 2.ep w(u), Y) dominates ([, + d(G,|B) — d(s,), ¢
+ 2uesw(u),Y)=(l,c,Y). So,(l,c, Y)& F(G,Gy).
This contradicts the assumption on (/, ¢, Y). Hence, (/;,
¢, Y))EF(G)). Similarly, (/,, ¢,, Y>) € F(G,). (a)-(d)
are an immediate consequence as D(/;, Y|, G;) = A and
D(lz, Yz, Gz) = B.

CASE2. [t,€D(L, Y, G,G,)]
This is similar to case 1. [ |

Lemma 11 suggests the following approach to obtain
F(G,G,) from F(G,) and F(G,):

STEP 1. Construct a set Z of triples such that F(G,G,)
c Z. This is obtained by combining together pairs of
triples (/;, ¢;, Y;) € F(G,) and (L5, 3, Y,) € F(G,).

STEP 2. Eliminate from Z all triples that are dominated
by at least one other triple of Z.

To avoid excessive complexity in the implementation
of steps 1 and 2, we maintain F(G) as four separate sets
of triples. These are denoted by F(G, Y), i.e., F(G, Y)
contains only those triples of F(G) that correspond to
upgrading sets that include the vertices in Y, where Y
c {s, t}. We note that only the following triple combi-
nations from F(G,) and F(G,) are permissible. s; and ¢;,
respectively, denote the source and sink vertices of G; 1
< [ < 2. Note that s, is also the source of G;G, and ¢, is
its sink.

1. Triple (/;, ¢;, &) of F(G,, &) combines with a triple
(L, ¢, &) of F(G,, &) to produce a triple ([, + L,
—d(t)), e+ ¢, &) of F(G,G,, &).
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2. Triple ([, ¢;, &) of F(G,, &) combines with a triple
(L, ¢, {ta}) of F(G,, {1, }) to produce a triple (/, + 1,
—d(t), e+ ¢, {t}) of F(G,Gy, {12 }).

3. Triple (4, ¢y, {s,}) of F(Gy, {s,}) combines with a
triple (/,, ¢;, &) of F(G,, &) to produce a triple (/,
+bhL—d(t), c; + ¢, {51}) of F(G\Gs, {51}).

4. Triple ([, ¢i, {$;}) of F(Gy, {s,}) combines with a
triple (4, ¢2, {#:}) of F(G,, {t,}) to produce a triple
(L + 6L —dt), e + ¢, {81, 1}) of F(G,Gy, {51,
L1).

5. Triple (/,, ¢1, {#,}) of F(G,, {t,}) combines with a
triple (L, ¢, {52}) of F(G,, {s,}) to produce a triple
(L + b, ei+ = w(ty), &) of F(G\G,, ).

6. Triple (/,, ¢1, {t,}) of F(G,, {¢,}) combines with a
triple (L, ¢, {52, t2}) of F(G,, {82, 12 }) to produce a
triple (/; + b, ¢; + o — w(ty), {2 }) of F(G Gy, {1 }).

7. Triple (I, ¢, {51, t}) of F(Gy, {51, t; }) combines
with a triple (4, ¢z, {52 }) of F(G, {s,}) to produce
a triple (/; + L, ¢; + o — w(ty), {s1}) of F(G,Gy,
{s1}).

8. Triple (/,, ¢1, {s1, t,}) of F(G,, {51, t; }) combines
with a triple (L, ¢, {2, t2}) of F(G,, {2, 1,}) to
produce a triple (/; + L, ¢, + ¢; — w(ty), {51, t2}) of
F(G\G, {51, }).

If the triples in each set F(G;, Y) are stored in increas-
ing order of delay (i.e., first coordinate), then since only
nondominated triples are stored, they are also in decreas-
ing order of weight (i.e., second coordinate ). There is no
need to store the third coordinate with each triple as triples
with different third coordinates are stored separately. The
triples for each of the above eight cases can be generated
in time proportional to the product of the number of tri-
ples in each of the two sets being combined. When the
triples from cases 1 and 5 have been generated, they may
be merged together to obtain the triples of F(G,G,, &),
in ascending order. During this merge, dominated triples
are eliminated. The time required for this merge is linear
in the number of triples being merged. Triples from cases
2 and 6, cases 3 and 7, and cases 4 and 8 are also to be
merged.

73. G = G1//Gz
When G = G,// G5, we use Lemma 12 which is the analog
of Lemma 11.

Lemma 12. If (/, ¢, Y) € F(G,//G,), then there is an
(L, ¢1, Y)) € F(G)) and an (h, ¢, Y,) € F(G,) such
that

(a) D(L, Y1, Gy) = D(I, Y, GiGy) N V(Gy)
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(b) D(h, Y, Gy) = D(1, Y, G\Gy) N V(Gs)

(¢) D(1,Y,GiGy) = D(1y, Yy, G\) U D(h, Yz, Gy)

(d) c= ZuED(I,Y,G,Gz) w(u), ¢; = Zueo(l,,Y,,G.) w(u), ¢
= ZueD(lz,Yz,Gz) w(u).

Proof. Similar to that of Lemma 11. |

To obtain F(G,//G,) from F(G,) and F(G,), we use
the two-step approach used to compute F(G,G,). Two
triples (/,, ¢;, Y,)and ,, ¢,, Y,) can combine iff Y|, = Y,
= Y. The resulting triple is (max {/,, L}, ¢; + ¢ — Zrey
w(x), Y).

7.4. Complexity

The series-parallel decomposition of an SPDAG can be
determined in O(n) time [14]. By keeping each F(G;)
as four separate lists of triples, one for each of the four
possible values for the third coordinate of the triples,
F(G,G,) and F(G,//G,) can be obtained in O(| F(G,)|
X | F(G,)|) time from F(G,) and F(G,). Since
F(G,)(F(G,)) contains only nondominated triples, it
can contain at most four triples for each distinct value
of the first coordinate and at most four for each distinct
value of the second coordinate (these four must differ in
their third coordinate). Hence, | F(G,)| < 4 X min{$
+ 1, ZI(EV(Gl) W(H)} and IF(G2)| <4 X m1n{5 + 1,
Zuevicy w(u)}. So, we can obtain F(G) for any SPDAG
in time O(n X min{6%, (sum,cy, w(u))*}). For
SPDAGsS with unit delay or unit weight, this is O(n?).

8. DVUP(0, 5) FOR GENERAL SERIES
PARALLEL DAGS

General series parallel dags (GSPDAGs) were introduced
in [6, 8, 13]. A linear time algorithm to determine whether
or not a given dag is a GSPDAG was developed in [14].
This paper also contains a linear time algorithm to obtain
a series-parallel decomposition of a GSPDAG. The defi-
nitions and terminology used in this section are derived

from [14].
= —
Q}/@ Q}/@ ovo
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G, G,
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Fig. 14. Parallel and series combination of G, and G..

Fig. 15. An example GSPDAG.

A transitive dag is a dag G = (V, E) such that (i, j)
€ E whenever there is a path from i to j. The transitive
closure, G* = (V, E*)of the dag G = (V, E) is the transitive
dag with E < E* and | E*| is minimum. An edge (i, j)
of the dag G is redundant iff there is an i to j path in G
that does not include (i, j>. A dag is minimal iff it contains
no redundant edges. The transitive reduction, G~ = (V,
E7) of the dag G = (V, E), is the minimal dag that has
the same transitive closure as G and such that £~ < F.

The class of minimal series-parallel dags (MSPDAGS)
is defined recursively as below:

1. If | V]| = 1 and | E| = 0, then G is an MSPDAG.

2. If G, = (V,, E}) and G, = (V,, E,) are MSPDAG:s,
then their parallel composition G,//G, = (V, U V5,
E, U E,)[Fig. 14(a)] i1s an MSPDAG.

3. If G, and G, are as above, then their series composition
G\G, = (V, U V3, E; U E; U E3), where E; = { (i,
DNITE Vy, d*(i) = 0,j € Vi, d"(j) =0}, d™(i),
and d"(j) are, respectively, the out- and in-degrees of
vertex 7 [Fig. 14(b)], is an MSPDAG.

Finally, a GSPDAG is a dag whose transitive reduction
is an MSPDAG. The dag of Figure 15 is a GSPDAG as
its transitive reduction is the MSPDAG of Figure 14(b).
It is interesting to note that every dag which is a tree is
an MSPDAG. However, the only dag trees that are
SPDAGsS are chains.

The following lemma shows that the DVUP solutions
for a GSPDAG G and for its transitive reduction
MSPDAG G~ are the same.

Lemma 13. Let G = (V, E) be a GSPDAG and let G~
= (V, E7) be its transitive reduction (hence, G~ is an
MSPDAG). Let X be a subset of V. Then, d(G|X) < 6
iffd(G7|X) <.

Proof. Ifd(G|X)=<06,thend(G | X)<dasE < E.
If d(G|X) > 6, then there is a path P = v,v,+ - -0,in G
such that its delay in G| Xis A = X, pe¢x d(v;) and A
> 6. From the v, to v, path P of G, we can construct a v,
to v, path Q in G~ by replacing each edge (v;, v;4)
& E~ by a path from v; to v;,, in G~. Since G~ is the



transitive reduction of G, such a path exists. When all
edges (v;, v;41 ) & E~ have been so replaced, we obtain
the desired path Q. Clearly, the delay of Q is >A. Hence,
if d(G|X) > 6, then d(G~|X) > 6. This completes the
proof. [ ]

As a consequence of Lemma 13, the DVUP for
GSPDAGSs can be solved using the following steps:

STEP 1: Compute G, the transitive reduction of the
GSPDAG G.

STEP 2: Let X be the minimum weight vertex subset such
that d(G™|X) < 6.

STEP 3: Output X.

Since the transitive reduction of a GSPDAG G can be
obtained in time linear in the number of vertices and
edges in G [14], we need be concerned only with step 2.
Our strategy for this is similar to that used in Section 3
for SPDAGs. However, since the source and sink vertices
of G, and G, remain distinct following a series or parallel
combination, we can deal with tuples (/, ¢) rather than
with triples (/, ¢, Y'). Corresponding to D(/, Y, G) of
SPDAGs, we define D(/, G) for an MSPDAG G to be a
minimum weight vertex set for which d(G|X) < /. We
use the series-parallel decomposition of G and begin with
the nondominated tuple sets F(G) for each of the vertices
in G. Then, using the series and parallel combinations
that result in G, we obtain F(G).

8.1. G Is a Single Vertex

If G is the single vertex v, then F(G) = {(0, w(v)) } when
d(v) > 6 and {(0, w(v)), (d(v), 0)} when d(v) < é.

8.2. G Is of the Form G,G.

The following lemma is the analog of Lemma 11.

Lemma 14. If (/, ¢) € F(G,G,), then there is an (/;, ¢;)
€ F(G,) and an (b, ¢;) € F(G») such that

(a) D(ly, Gy) = D(L, G,G,) N V(G)y)

(b) D(L, Gy) = D(l, G\Gy) N V(G)

(c) D(l, G\Gy) = D(I,, G) U D(L, Gy)

(d) ¢ = Zuepuy.ciy W), &0 = 2uepa,vi6n W(H), ¢
= zueD(Iz,Yz,Gz) w(u).

Proof. Similar to that of Lemma 11. 5

For the case of MSPDAG:s, all pairs (/, ¢,) € F(G,)
and (5, ¢;) € F(G,) are compatible pairs for combination.

NETWORK UPGRADING PROBLEMS 57

The pair (/, ¢) that results from combining these two pairs
1s ([1 + lz, ¢ + Cz).

83. G=G,//G,

The analog of Lemma 12 that applies to MSPDAG:s is
given below:

Lemma 15. If (/, ¢) € F(G,//G>,), then there is an (/;,
¢) € F(G,) and an (/,, ¢;) € F(G,) such that

(a) D(/, Gy)=D(l, GiG,) N V(Gy)
(b) D(h, Gy) = D(l, G,Gy) N V(Gy)
(c) D(l, G\Gy) = D(I,, G,) U D(, G)

(d) ¢ = Zuepwy.cay W), ¢ = Zuepuy,yviay W), ¢
. ZzleD(lz,Yz,Gz) w(u).
Proof. Similar to that of Lemma 11. [ ]

Once again, all pairs (/,, ¢,) € F(G,) and (L, ¢)
€ F(G,) are compatible pairs for combination. The result
of combining these two pairs is the pair (/, ¢) = (max {/|,
L}, e+ ).

8.4. Complexity

While the algorithm for MSPDAGS is simpler than that
for SPDAG:s, its asymptotic complexity is the same.

9. CONCLUSIONS

In this paper, we have shown that the following problems
are NP-hard:

LinkDelay(x, 6) for 6 # 0 or x = 0.
ShortestPath(x, 6) for x = 0 or 6 > 0.
Satellite(6) for 6 = 1.

Longest Path (x, 6) for x = 0 and 6 = 0 and for x = 0
and ¢ > 0.

N -

In addition, we have obtained pseudopolynomial time
algorithms for DVUP for trees, series-parallel dags, and
general series-parallel dags. For trees with unit weights or
unit delays, the complexity is O(n?) while it is O(n?>) for
series-parallel dags and general series-parallel dags with
unit weights or unit delays. For the case of trees with unit
weights and unit delays, we have developed a linear time
algorithm.
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