SIAM J. COMPUT. ©1979 Society for Industrial and Applied Mathematics
Vol. 8, No. 2, May 1979 0097-5397/79/0802-0012 $01.00/0

NEARLY ON LINE SCHEDULING OF A
UNIFORM PROCESSOR SYSTEM WITH RELEASE TIMES*

SARTAJ SAHNI* aAND YOOKUN CHO*

Abstract. An O(m?>n + mn log n) nearly online algorithm to preemptively schedule n independent tasks
on m uniform processors is presented. It is assumed that there is a release time associated with each task. No
task may be started before its release time. All tasks must be completed by a common due time (if possible).
Our algorithm generates schedules having O(nm) preemptions in the worst case. The algorithm can also be
used to minimize maximum lateness even for the case when all jobs have the same release time but different
due times.

Key words. independent tasks, uniform processors, preemptive schedule, release time, common due
time, complexity

1. Introduction. A uniform processor system P={P,, P,, -+, P,} is a set of m
processors (machines). Associated with each processor, P, isaspeed s;, s;,>0,1=i=m.
Processor P; can perform s; units of processing in one unit of time. When s; = s;+1,
1=i<m, Pissaid to be a system of identical processors. Let T be a set of n independent
tasks. Let ¢, r; and d; respectively be the processing requirement, release time and due

time of task i, 1=i=n.

A DD-schedule for T is an assignment of tasks to processors such that (i) no
processor is required to process more than one task at any time, (ii) no task is
simultaneously processed on more than one processor, (iii) the processing of no task
begins before its release time and (iv) all tasks are completed by their due times. Note
that not all task sets have DD-schedules on a given processor system.

A nearly on line algorithm to find a DD-schedule (if one exists) is an algorithm
which, for every distinct release time r;, determines the schedule from 0 to 7, without
knowledge of the jobs released on or after r;.

Many researchers have studied the problem of obtaining DD-schedules (when
they exist). Rinnooy Kan [6] shows that the problem of determining the existence of
nonpreemptive DD-schedules is NP-Complete. McNaughton’s algorithm [8] can be
used to obtain preemptive DD-schedules for systems of identical processors when the
task set T has only one distinct release time and one distinct due time. Gonzalez and
Sahni [3] present an O(n+m log m) algorithm that works for uniform processor
systems when T has only one distinct release time and one distinct due time. For the
case when all tasks have the same release time (but may have different due times), Horn
[4] presents an O(n?) algorithm to obtain preemptive DD-schedules for identical
processors. A faster algorithm (O(n log mn)) for this case may be found in [9]. Under
the same assumptions on 7, Sahni and Cho [10] obtain an O(n log n + mn) algorithm
for uniform processors. Since, in all the cases cited so far all tasks are released at the
same time, all the algorithms obtained are, of necessity, on line.

For the case when no restriction is placed on the task set T, Horn [4] presents an
O(n?) algorithm for preemptive schedules on identical processors. Bruno and Gonzalez
[1] present a similar algorithm for a system of two uniform processors. Neither of these
two algorithms is on line. In fact, it is known [9] that no nearly on line algorithm exists
when tasks are allowed to have arbitrary release and due times.

* Received by the editors October 10, 1977. This work was supported in part by the National Science
Foundation under Grant MCS 76-21024.
t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 5545S.

275

276 SARTAJ SAHNI AND YOOKUN CHO

Another special case that has been studied is when all tasks have the same due time.
While, this case is symmetric to the case when all tasks have the same release time, the
algorithms for the latter case do not result in on line algorithms for the former. Gonzalez
and Johnson [2] have obtained an O(nm) nearly on line algorithm for identical
processors when all tasks have the same due time. Their algorithm generates DD -
schedules (when they exist) having at most O (nm) preemptions. In this paper we extend
their result to the case of uniform processors. Our algorithm has time complexity
O(m*n + mn log n) and generates schedules with at most O(nm) preemptions. In [10]
we demonstrated the existence of task sets for which every DD -schedule (even those
generated by off line algorithms) had at least O(nm) preemptions. This algorithm can
also be used to obtain schedules minimizing lateness when all jobs have the same release
time but differing due times. To do this we just change the roles of due times and release
times.

2. The algorithm. We first present a nearly on line algorithm that generates
schedules with O(mn +n?) preemptions. Later, we shall show how to modify this
algorithm so that the number of preemptions is O (nm).

Assume that the n tasks to be scheduled have v distinct release times r;, 1 =i =o.
Assume r; <r;41, 1 =i <v and r; = 0. Our algorithm works in v phases. In the ith phase
tasks are scheduled from time r; to time r;-;, 1=i<wv. In the vth (and last) phase
scheduling is done for the interval [r,, d] where d is the common due time of all tasks.
The tasks available for scheduling in the ith phase are those released at or before time #;
and which haven’t yet been completed, i.e., all released tasks with a nonzero remaining
processing time (RPT). For each phase, i, algorithm EQUAL determines the amount
each available task is to be processed. It does this by using an equalizing rule that
attempts to equalize the RPTs of all tasks at the end of the phase. EQUAL utilizes the
following fact which is due to Liu and Liu [7] and Horvath, Lam and Sethi [5]:

Fact1l. Leta;=a,=- - - =aq, be a set of task times. Let w be the minimum finish

time of any preemptive schedule for these [tasks on a system P ={P;, P,,- - -, P,,}. Let
S1=Z8,=: =5, Then,

i m i j
(1) w=max{2a,»/2si, max {Za,-/Zs.-}}.

1 1 lsi<m Uy 1

Using (1), EQUAL ensures that the amount of processing it is assigning for each
task in phase 7 is such that all the phase i processing can be completed in A=r;.;—r;
time (we may assume.r,+; =d). The basic strategy in EQUAL is to preferentially
process the longest tasks so that the tasks remaining at the next release time are as small
as possible. This is comparable to the level strategy used in [S]. The actual schedule for
each phase can be constructed using the algorithm of Gonzalez and Sahni [3].

EQUAL has six parameters. A is the length of the interval for which scheduling is to
be carried out in this phase (it is the time between two successive release times). S is an
array such that S(i)= Z;-=1 s, 1=i=m and S(0)=0. It is assumed that s; =s;.4,
1=i<m. Atthe start of EQUAL, #(i)is the RPT for task i, 1 =i = p. p is the number of
available jobs with nonzero RPT. For convenience, a fictitious jobp + 1 with t(p + 1) =0
is assumed. ¢’ is an output array. At termination of EQUAL, ¢'(i) is the amount job i is
to be processed in the interval A. Also, #(i) is modified to reflect the RPTs at the end
of the interval. EQUAL determines (i) such that ¢'(/)=¢(i+1), 1=i<p and
max {Y;_, £'(i)/S(m), max,sj<m (L1, £'(())/S()}} =A. Hence, the assignments deter-
mined by EQUAL for the A interval can be scheduled. Furthermore, at termination we
shall have t(i)=¢t(i+1), 1=i<p.

)

NEARLY ON LINE SCHEDULING 277

EQUAL begins by initializing ¢ and ¢(0) to zero. When p<m, only the
fastest p processors need be used. Hence, in line 3, mused is initialized to be the actual
number of processors to be used. mlo is the least index such that P, is still
available for processing. Processors 1 through mlo —1 become unavailable when
Zmlo t'(i)/S(mlo —1)=A. nhi is the index of the next job to be considered. Initially,
mlo = nhi =1. mhi =min {nhi — 1, mused}. AMT is the amount of processing that has
so far been assigned to processors P, t0 P At the start of the loop of lines 6-34, it
will be the case that the RPTs of the jobs indexed mlo, - - -, nhi is the same. This RPT is
tnow. Initially, tnow = (1) (line 5). EQUAL sequences through tasks with higher index
than nhi determining the next smaller task i (line 8). Note that since #(p +1)=0 and
t(p)>0, the loop of lines 7-9 will always terminate from line 8. nhi is updated inline 10
and mhi (line 11) is set so that processors mlo to mhi may be used for the processing of
jobs mlo to nhi —1. We now attempt to equalize the RPTs of jobs mlo to nhi —1 with
t(nhi). Recall that the present RPTs of all these jobs is tnow. Hence, equalization calls
for an additional total processing of (tnow — t(nhi))*(nhi — mlo) units. However, only
(S(mhi)—S(mlo —1)y*A— AMT units are still unassigned on P, to P, INCR is the
maximum amount by which each #'(i), mlo =i <nhi is to be increased. This will result
either in equalization with #(nhi) or complete utilization of the processors.

ALGORITHM 2.1. The Equalizing Rule.

line procedure EQUAL(A, S, ¢, m, p, t')
//8(j)=Y" s and §(0) = 0 is assumed. Also #; and s, are in nonincreasing//
//orderand t(p+1)=0//

1 real t(0:p+1), £'(0:p), S(0:m)
2 '« 0;t(0)«< 0 //t'(0) and £(0) needed in ADJUST t'< 0 initializes//
//allof t'//
3 mused < min{m, p}
4 mlo < nhi < 1; AMT «0
5 tnow < t(1)
6 while mlo = mused and thow # 0 do
7 fori<nhi+ltop+1do //t(p+1)=0//
8 if #(i)<tnow then exit; endif
9 repeat
10 nhi<i
11 mhi «min(nhi — 1, mused)
12 NEXTAMT « min{(thow — t(nhi)) * (nhi — mlo)
+AMT, (S(mhi)—S(mio — 1)) * A}
13 INCR « (NEXTAMT — AMT)/(nhi — mlo)
14 TSUM <« 0
15 for i « mlo to nhi—1 do //test if INCR feasible//
16 t'(i)«< ¢'(i)+INCR
17 TSUM « TSUM+£'(i); i' < min {mhi, i}
18 it TSUM > (S(i")— S(mlo — 1)) * A then//use up P, - - -, P//
19 DECR < TSUM~A * (§(i)— S(mlo 1))/ Y
i—mlo+1
20 for j « mlo to i do
21 t'(j)«<t'(j)-DECR
22 repeat

23 call ADJUST

278 SARTAJ SAHNI AND YOOKUN CHO

24 AMT « AMT —A * (S(i)— S(mlo — 1))+ (INCR - DECR)

* (i —mlo+1)
25 mlo «<i+1; TSUM<«0
26 NEXTAMT <« min {(tnow — t(nhi)) * (nhi —mlo)

+ AMT, (S(mhi)—S(mlo — 1)) * A}

27 INCR « (NEXTAMT — AMT)/(nhi —mlo)
28 endif
29 repeat
30 tnow < t(nhi) .
31 if 1(nhi —1)—t'(nhi — 1) # tnow then AMT < 0; mlo <« mhi +1
32 else AMT « NEXTAMT
33 endif
34 repeat
35 for i < 1 to nhi — 1 do //update RPTs//
36 t(iy<t(@)—1'@)
37 repeat

38 end EQUAL

ALGORITHM 2.2. Subalgorithm for EQUAL.

line procedure ADJUST
//All variables used in EQUAL are available inside ADJUST//

1 if 1(i)—t'(i)=t(mlo —1)—t'(mlo — 1) then return endif
2 low < mlo; RPT < t(i)—t'(i)
3 jobs < i—low+1 //Number of jobs with equal RPT//
4 while low > 1 and RPT > t(low —1)—¢t'(low — 1) do
5 PRPT « t(low —1)—¢t'(low — 1)
6 pjobs < 1
7 while ¢(low — pjobs —1)—t'(low — pjobs —1)=PRPT do
8 pjobs < pjobs +1
9 repeat
10 RPT< RPT * j(?bs + PI?PT * pjobs
jobs + pjobs
11 jobs < jobs + pjobs
12 low < low — pjobs
13 repeat
14 for g < low to.i do
‘15 t'(q)< t(q)—RPT
16 repeat

17 end ADJUST

In the loop of lines 15-29 we check to see that increasing the ¢'(i)’s. mlo=i<
nhi by INCR still leaves us with ¢'(/)’s that can be scheduled in A. This condition is easily
tested for by the use of equation (1) and our assertion that #'(I)=¢'(+1) for all i,
mlo < i < mhi. If the conditional of line 18 is true then, the ¢'(i)’s cannot be increased by
INCR. We compute DECR such that all £'(j), mlo =j =i can be increased by INCR —
DECR and this is the maximum possible increase. This completely utilizes processors
P..., to P;. Inline 23 the procedure ADJUST isinvoked. This procedure ensures that the
RPTs of the jobs already assigned to processors of index smaller than mlo are not less
than those of the newly completed processors mlo to i. In case this is not true. ADJUST
reduces the assigned processing of lower indexed jobs (thus increasing their RPTs) and

|

NEARLY ON LINE SCHEDULING 279

increases the #'(j)'s of the higher indexed jobs. Now that processors 1 through / have
been completely assigned, AMT is updated to reflect the processing assigned only to
processors P;, through P, mlo is updated to i+ 1 (the next available processor is
P;.1). INCR is recomputed in line 27 and an attempt is made to increase the t'(j)of the
jobs mlo =j<nhi.

When the loop of lines 15--29 is exited, we will be in one of two conditions. Either,
the RPTs of jobs mlo to nhi.—1 have been equalized to (nhi) or they haven’t. In the
latter case, from the working of lines 12-29, it must be that all the processors with index
less than mhi + 1 have been fully assigned. Lines 31-33 do the necessary bookkeeping.

The subalgorithm ADJUST used by EQUAL is fairly straightforward. It begins
with the knowledge that #(j)~1'(j)zt(j+1)—¢'(j+1), 1=j<mlo and ¢(j)—1'(j)=
t(j+1)—t'(j+1), mlo =j <i.If the condition of line 1 is true then, no adjustments need
be made. Otherwise, in lines 4-13, the algorithm goes through blocks of jobs with an
equal RPT. Each such block is identified by the loop of lines 7-9. The processing
assignments in this block will be changed so that the RPT of this block together with all
jobs seen up to index i will be the same. The new RPT is computed in line 10. One may
easily verify that when the ¢'(q)’s are set as in line 15 they can still be processed in A units
on Py, through P,

From the description of ADJUST, it should be clear that when EQUAL
terminates, r(i)= (i +1), 1=i<p.

Now we give an example to show how EQUAL works.

Example 2.1. Assume we have 5 jobs with RPTs 20, 19, 18,17 and 16 respectively
and 5 machines with speeds 20.1, 19.1, 17.7, 16.8 and 16.3 respectively. Further,
assume A= 1. Then $(i)= (0, 20.1, 39.2, 56.9, 73.7, 90.0).

The job with RPT 20 has highest priority and will be assigned for processing.
tnow =20 at line 5. The for loop of lines 7-9 will be exited with i =2. NEXTAMT =1,
INCR = 1linlines 12 and 13. The condition of line 18 doesn’t hold. thow is set to 19 and
we start a new iteration of the while loop of lines 6-34. We have two jobs with RPT 19
now and these two jobs will be processed until their RPTs become 18. We shall follow
the same procedure until we reduce the RPTs of all 5 jobs to 16. Then, we will have
mlo =1, tnow = 16 and AMT = 10. We start the 5th iteration of the while loop (lines
6-34). nhi becomes 6 at line 10 and t(nhi)=0. NEXTAMT =90 (line 12) and -
INCR = 16 (line 13). The for loop of lines 15-29 is entered and /(1) = 20, ¢'(2)= 19 and
t'(3)=18. Now the condition of line 18 holds and DECR =0.1/3. The amount of
processing is reduced to ¢'(1)=20-0.1/3, '(2)=19-0.1/3 and #'(3)=18-0.1/3
(lines 20-22). We execute algorithm ADJUST (line 23) for the first time. The condition
of line 1 holds and we return to EQUAL immediately. After executing lines 24-27, we
have AMT =1, mlo =4, NEXTAMT =33 and INCR = 16. Then the for loop (lines
15-29) is reiterated with i = 4. t'(4) becomes 17 at line 16. Again the condition of line
18 holds. DECR becomes 0.2 and ¢'(4) reduces to 16.8. ADJUST is called again and the
while loop (lines 4-13 in ADJUST) is executed. RPT (line 10 in ADJUST) becomes
0.075 and the amount of processing for each job is adjusted to #'(1)=19.925, '(2) =
18.925, ¢(3)=17.925 and 1'(4)=16.925. Now we shall have AMT =0 (line 24),
mlo =5, NEXTAMT =16 and INCR = 16 (line 27). We get /(5)=16 at line 16. The
condition of line 18 doesn’t hold and we complete the while loop (lines 6-34). The final
values are ()= (0.075, 0.075, 0.075, 0.075, 0) and #'(i)=(19.925, 18.925, 17.925,
16.925, 16). O

Next we prove some facts about EQUAL. These facts are needed to establish the
validity of the finai algorithm.

Lemma 2.1. Assume we have n jobs with processing time t;, 1=i=n, and m
machines of speed s, | S i1 =m. Assume t; Zt;.,, 1 =i<n,and s, =Zs;.1, 1 =i<m. Leta;

280 SARTAJ SAHNI AND YOOKUN CHO

be the remaining processing time (RPT) of job i, 1 =i <n, after using EQUAL during a
certain interval A. Note that a; = a;,1, 1=i<n. Let b, 1 =i =n be the RPTs after using
any other valid assignment rule during the interval A. Let o (-) be such that by (;yZ bo(j+1y
1=j<n. Then ¥\ a;i=Y) boiy, 1=j=n.

Proof. We first show Y] a; =Y bow. This is trivially true if Y (ti—a)=
A*YT, 5. So0,assume Y;_; (t;—a;)<A* Y, si. Let mlo be as defined at termination of
EQUAL. From lines 12, 13, 19, 26 and 27, it follows that Z?Zofl (t—a;)=Ax Z:":k;_l S;.
Also, since Y1, (t—a;)<A =Y~ s, it follows that the RPT of jobs mlo to p is zero.
Le., a;=0, mlo =i = n. Since, by Fact 1 no more than A * Z:':ol_l s; of any set of mlo — 1
jobs can be processed in A, it follows that for every valid assignment Y (= b)) =
Axyre s =Y (h—a)). Hence, L7 bZL a=Yiar So LiLibew=
i biZLia . ,

Now, we shall show that ¥_, a; =¥|_, by for 1 =/ <n. Assume thisis not true for
some j. Let j be the least index such that Z’,;l a;>Y -1 by Since Z’,:: a = Z':l boiys
it follows that a; > b,). Let | be the least integer such that j < [=nanda, # a; If nosuch

| exists then, since @;=a;+1="""=a, and @;>bo;) Zbo+n =" S By, Yoo 0
n . .
T"_, bogy. But we have just shown ¥, a; =¥, bow- Hence, such an ! must exist. We
i -1 -1 -1
observe that @;=ajs1=-- =ai-1>a; and ¥, ai>Y;-1 boo Thus Y,_; (ti—a)<

Y.\ (t:—bsg). One easily observes that T b =Y} by SO, Y (= bo@) =
1 (4= by). If [—1<m then, since EQUAL has failed to equalize jobs / —1 and [, it
follows that ¥j_; (6 —a;)=A * Y.~} s Furthermore, from Fact 1 it follows that in all
valid assignments for A, the sum of the [—1 largest assignments is no greater than
A *;:11 s. Hence, Ti_} (—b)=A* ¥i_} s This contradicts our earlier claim that
Zi;l (—a,-)<2:;11 (t;— b;). Hence, | must be greater than m. But in this case job /-1
can always be equalized to job [unless this equalizatidn requires more processing than
available. Since 4, > a, it must be that ¥ . (6 —a;) = A% Y%, 5. Since X1 (6~ b)) =
A*Y", s; we again obtain a contradiction. Thus, there can be no [for which), a; >
Z£=1 bo-(i)- 0

LeMmMa 2.2. Let C be a set of n jobs with processing times ¢, 1=i=n. Let D be
another set of of n jobs with processing times d;, 1 =i=n. Assume c¢; and d; are in
nonincreasing orderand ¥, ¢; =Y di, 1=j=n. Letc; be the RPTof jobi,1=i=n, when
set Cis scheduled for a period A using EQUAL. Letd! be the RPT of jobi,1=i=n, when
set D is scheduled for a period A using EQUAL. (Note that c; Zci+i and d; Zd .1,
1=i<n.) Then,

di forl=j=n.

~ M=
28
IIA

.

_ Proof. Assume the lemma is not true. Let j be the least index for which S e
vi d!. Then, ¢, >d}. Let k be the least index such that j < k =n and ci #c;. There are
two cases.

Case 1. Thereisnosuch k. Inthiscasecj=ciforj<I/=n andY;c)>Y; dhcn>0
since ¢, =c|>d}=0. Also, ¥ (¢ —¢!)<Y} (di—d}). This means that EQUAL has
assigned more total processing of the jobs in D than it has for the jobs in C. Let
x = min {n, m}. Since ¢}, >0, EQUAL must assign A *¥_, s; amount of processing for
job set C. Also, no more than this amount can be assigned for D. Hence Yo e —c=

Z?=1(di"d;)-
Case 2. k as above exists. In this case ¢ = ¢}y =+ * = Ci—1 > i and c;>d;. Thus
Z§=1 c,-’>zl1 d/ and ¥i_, (ci—c))<Yi_ (di—di), jSI<k. ¢k > ¢} can happen only

k-1

if Y171 (ci—cl)=A* Y2, s But, in this case, T (e —eNzZYi (di—d)). O

NEARLY ON LINE SCHEDULING 281

LEMMA 2.3. Let A and B be two sets of jobs. Let r, 1 =i = v, be the distinct release
times of the jobs in A and B. Assume that r; <r;,, and that n; jobs have release time r; in
both A and B, 1 =i =v. Further, assume that the set of jobs with release time r; in A is
identical to that with release time r;in B,2 =i = v. Let C U D and C U E be the job sets with
release time ry in A and B respectively. Let |D|=|E|=1and let d;, e, 1 =i =1, be the
processing times for the jobs in D and E respectively. Assume d; Zd;,, and e; Z ¢4,
1si<l Alsoassumethaty), d; =Y e, 1 =j =1 If A has a DD-schedule then B also has
one.

Proof. Assume A has a DD-schedule S. The proof is by induction on the number of
release times v. Let a; and B;, 1 =i = n, be the processing times of the jobs in C U D and
C UE respectively. Assume that o; Za; and B, Z B, 1=i<ng.

Induction base. v =1. Since 21 d;zY! e, 1=j<I, it follows that 21 o “Z Bi,
1=j=n;. Hence, from Fact 1 we conclude that the job set C UE can be completed
using no more time than C U D. So, if A has a DD -schedule then B must have one too.

Induction hypothesis. Assume the lemma is true for all job sets with v distinct
release times for 1 =v <u.

Induction step. We shall show the lemma is true when v = u. A and B have n; jobs
each at time r;. Schedule both job sets CUD and CUE using EQUAL during the
interval [ry, o). Let o and Bj, 1 =i=n, be the RPTs of these Jobs at time r,. Since
21 a;2Y) B, 1 =j = n,y,itfollows from Lemma 2.2 that Zl ajzY BL1=j=n; Let A’
and B’ be the set of jobs remaining to be processed in A and B at time r,. Let A" be the
corresponding set at time 7, in the DD-schedule S..Further let af, 1=i=n,, be the
RPTs in S of the jobs in the set CUD atr,. Then, Y, a} =Y, @/, 1=j=n,, by Lemma
2.1. Since A" has a DD-schedule, it follows that A’ has one too (induction hypothesis).
Now, since A’ has a DD-schedule and both A’ and B’ have u —1 release times and
satisfy the conditions of the lemma, it follows that B" has a DD-schedule too. Hence, B
has a DD-schedule. 0O

Our first nearly on line algorithm ONEDT utilizes EQUAL to schedule each phase
[ri viv1], 1S i=0({r,+1=d). It also uses two other subalgorithms ORDER and UNI-
FORM. ORDER sorts the jobs to be processed in each phase into nonincreasing order
of their processing times. UNIFORM performs the actual scheduling of each job for the
amount of processing time #'(i) computed by EQUAL. Note that the conditional of lines
13 and 19 of EQUAL guarantees that this can be done. The algorithm UNIFORM is
formally given in Gonzalez and Sahni [3].

THEOREM 2.1. ONEDT generates a DD-schedule for every job set J for which such
a schedule exists.

Proof. The proof is by induction on the number of distinct release times in J and is
very similar to that of Lemma 2.3.

Analysis of EQUAL. The loop of lines 7-9 contributes at most O(p) to the
algorithms complexity. The total number of iterations of the loop of lines 15-29 is at
most p. The conditional of line 18 can be true at most m times. Each time this happens,
O(m) time may be spent in lines 19-27. Hence, the total contribution of lines 15-29
is O(p +m?). The complexity of EQUAL is also O(p + m?).

Anmalysis of ONEDT.

Time complexity. Let n;, 1 =i =v, be the number of jobs released at the distinct
release times r;, 1 =i =v. Line 5 takes O(n; log n; +Z, i n,) time since we only sort the
jobs released at r; and merge these n; jobs with the uncompleted jobs released from ry
through r;_;. Note that these jobs are already in nonincreasing order of their RPTs. Line
6 takes O(N; + m>) where N; = Zl n;. Line 7 takes O(N) Therefore the time complex-
ity of ONEDT is O(n log n +nv +vm?*)= O(n*+nm?).

282 SARTAJ SAHNI AND YOOKUN CHO

Number of preemptions. We have v distinct release times. UNIFORM generates at
most 2(m — 1) preemptions [3] during the interval [r, ri+1]. Additional preemptions are
introduced since some of the jobs to be processed in [7;, r;+1] may have been processed
for some time in a previous interval. There are at most N;_; such additional pre-
emptions. Therefore, the total number of preemptions is at most Y ; (2(m —1)+ Ni_))=
O((m+ny)=0(mn+n?. 0O

ALGORITHM 2.3. First algorithm for DD-schedules.

line procedure ONEDT(d)
//d is the common due time for all the jobs//

1 R <set of jobs released at time 0
2 t<0
3 loop
4 -r< min {next release time, d}
5 call ORDER(R)
6 call EQUAL (r—¢, S, R, m, p, T)
//S : cumulative speed of processors//
//m: number of processors//
//p : number of jobs//
//T : computed processing time//
7 call UNIFORM (m, p, T)
8 if 7 = d then exit endif
9 Q «set of jobs released at r
10 R<QUR
11 ter
12 repeat /!
13 if all the jobs are completed then print (“DD-schedule exists’”)
14 else print (“No DD-schedule for the job set”)
15 endif

16 end ONEDT

The total number of preemptions may be reduced by using the equalization
strategy only until 2m —mlo+1 jobs have an equal RPT. The new algorithm,
MEQUAL, to determine the scheduling assignments for each phase is described in-
formally. MEQUAL behaves as EQUAL until nki becomes greater than 2m —mlo +
1. At this time jobs mlo, mlo+1,- -, nhi—1 have the same RPT. In case all the
processing time has been assigned (line 2) then MEQUAL terminates. In this case
MEQUAL is identical to EQUAL. In line 3 we increase t'(i), mlo =i =m using the
equalizing rule and keeping in mind that ¢'(i), m < i < nhi has also been assigned to this
interval. This steg'b?haves asif t(m+1)=0.1If at the end of this step, t(m) ¢'(m) then
itmustbe that 1,7 r'())=A*Y_ s;and ()~ ' ()= G+ D)= +1), 1 =i =m.If
t'(m)=t(m)then the RPT of job m is zero. In lines 6-12 we assign as much of jobs nhi
to p as possible. Note that since t'(m)=t(m) = t(nhi), the assignments made in lines
6-12 cannot violate Fact 1 with w = A. If all of jobs nhi to p can be assigned then, the
remaining time of the processors is allocated equally to jobs m +1 to nhi — 1. Thus,
whenever MEQUAL behaves differently from EQUAL the RPTs of jobs m+1 to
nhi—1 is the same at termination. There are at least m — mlo + 1 such jobs.

ALGORITHM 2.4. Final equalizing rule for DD-schedules.

line procedure MEQUAL
1 use the equalizing rule, EQUAL, until it either terminates or
nhi >2m —mlo +1 (line 10). If EQUAL terminates then return.

NEARLY ON LINE SCHEDULING 283
2 it Y ()= A * S(m) then (i)« t())— '(i), 1 =i <nhi;
return; endif
nhi<2m—mlo+2
3 continue to increase the assignments ¢'(i), mlo =i <m using
the equalizing rule with the assumption ¢(m +1)= 0. Now, the
equalizing rule will terminate either with ¢'(m)=t(m) or
t'(m)# t(m). If.t'(m)# t(m) then Z?:‘fl t'(@)y=A*S(m)
4 if £'(m)# t(m) them (i)« t({)—1'(i), 1 =i <nhi
return
endif o
5 AMTLFT < A * S(m)—Y " (¢()—1' (i)
6 for i < nhi to p do
7 if AMTLFT > (i) then t'(i)« t(i); AMTLFT « AMTLFT —¢(i)
8 else t'(i)« AMTLFT
t(Net(N-r@G)r1sj=si

10 return

11 endif

12 repeat

13 fori<m+1to nhi—1do

14 t'(i)< t'(i)+ AMTLFT/(nhi —m —1)
15 repeat

16 t(@)et()—t'@),1=i=p

17 return

18 end MEQUAL

Example 2.2. Assume we have 3 machines with speeds § = {3,2, 1}, 7 jobs with
processing times t ={10,9,8,7,6,5,4}and A=7.

If we use EQUAL, the RPTs of these jobs after scheduling are {1, 1,1, 1,1, 1, 1}
When we use MEQUAL, we will first equalize the 6 largest jobs to have an RPT of 5.
Next, MEQUAL will continue to use EQUAL but with only the first 3 jobs. The RPTs
of these 3 jobs will be 0 after this step. We have used up 30 units of processing time out
of 42 units we are given for the interval. The last job with RPT 4 is now assigned (lines
6-10) and is completed. We have 8 units of processing time left. We execute the jobs
with initial RPTs 7, 6 and 5 this time (lines 3-5) for 8/3 more units. The final RPTs of
the jobs by MEQUAL are {0, 0,0,7/3,7/3,7/3, 0}. Note that the minimum finish time
for both sets is the same and is 7/6. O

The following lemma shows that the processing assignments made by MEQUAL
can be completed within the given interval.

LEmMa 2.4. £'(i), 1=i=p, generated by MEQUAL are such that they can be
completed in A units of processing time.

Proof. We have 2 different cases according to when return of control is made by
MEQUAL.

Case 1. The return of the control is made at one of steps 1, 2 or 4. We have
assigned only using EQUAL thus far and EQUAL generates only valid sets of
processing assignments.

Case 2. Return of control is made at either line 10 or line 17. In this case
£(j)<t'(i), j>m and i =m. Since, max;=n {Yi-, I'({)/Li-, s:}=A is guaranteed by
EQUAL and from lines 6-15 it follows that Y/ _, '(i)=A % Y| s;, Fact 1 guarantees that
the ¢'(i)’s are a valid assignment set. [

Let ¢, 1=i=p, t; =1, 1 =i<p, be any set of p processing times. If the cor-
responding task set is used by EQUAL then let a;, 1=i=p, be the RPTs. Let b,

284 SARTAJ SAHNI AND YOOKUN CHO

l=i=p, be the RPTs when MEQUAL is used. We have seen, earlier, that a; = a;,,,
1=i/<p. Assume that MEQUAL does not terminate in lines 1 or 2. It is easy to see that
a; = b;, 1 =i <mlo. Also, there may exist a k, mlo = k = m, such that b, > b,,.,. If such a
k exists then we can show that b, Z bymo1 = - Z by and a; Z b, mlo =i =k. This
follows from the observation that MEQUAL tries to use all remaining space to increase
the assignments of only jobs mlo to m whereas EQUAL uses this same space to increase
the assignments of many more.tasks. Let o (-) be such that b, = b, +1), 1 =i < p. From
the preceding discussion and the knowledge that b,,., = bym+l=j=2m—mlo+1,we
can conclude that a; Z b, (), 1 =i =, and bo(j+1)= bo(j+2)=" " * = Do (m).

LemMMA 2.5. LetA, B,C, D, E, d, e;andl be as defined in Lemma 2.3. Assume that
dize,1=i=j, andej+1 = e, j+1<i=m. Further, assume that le d; = Zi e;and > m.
If A has a DD-schedule then B also has one.

Proof. First assume that the number of distinct release times in A and B is 1. Sort
A=CUD and B=CUE into nonincreasing order of processing times. Let these
times respectivelybe o; and 8, 1 Si=n,. s Z ;4 and B; = Bi41, 1 =i <n;.Let r be the
largest index such that a; Z B3, 1 =i =r. If r < m then from the assumptions on D and E,
it follows that 8,4, = 8, r + 1 <j = m. When r = m, the lemma is proved by using Fact 1
and the knowledge, a; =B, 1=i=r, and Y|' @, =Y]' 8. When r<m, we use the
acliditiorllal inflormatlion Y BT s éZ'IH ,6’,-/2'1+1 si, r<j<m, and Y[B/Y7 s<
b Bi/X, si= Zl o/ Si.

Now assume the lemma is true for all job sets A and B with u < v release times. We
shall show the lemma is true for all job sets with v release times. Let a; and 3; be as
above. Use EQUAL to compute the assignments for C U D and C UE in the interval
A=r;—r;. Let «; and B; be the respective RPTs. From the working of EQUAL, it
follows thata; ZB;, 1=i=randif r<m thenB,,; =B8/,r+1<j=m.Let A and B' be
the job sets remaining at r, following the use of EQUAL in [ry, r,]. It follows that A’ and
B’ satisfy the conditions of the lemma and have only v — 1 release times. Also, A’ has a
DD-schedule. So, B' and hence B have DD-schedules. [

Let MONEDT be the algorithm resulting when line 6 of ONEDT is replaced by a
call to MEQUAL.

THEOREM 2.2. MONEDT generates a DD-schedule for every job set J for which
such a schedule exists.

Proof. The proof is similar to that of Lemma 2.5 and uses the results of the
discussion preceding this lemma. 0O

Analysis of MONEDT. The complexity of MONEDT, is the same as that of
ONEDT, i.e., O(n*+nm?). Its complexity can be easily reduced to O(m?n + mn log n)
by using a heap. The changes needed to ONEDT to get the improved MONEDT are:

(1) delete line 5;

(if) change EQUAL to MEQUAL in line 6;

(iii) maintain a max-heap of jobs with nonzero RPT;

(iv) in line 10 insert the Q into this heap;

The heap insertion of change (iv) requires O(|Q|log n) time per iteration. Hence
its overall contribution to the computing time is O (Y. (|Q| log n))= O(n log n). We now
need to modify EQUAL so that when it is called from line 1 of MEQUAL, the job times
are obtained from a heap. This requires the insertion of an instruction between lines 7
and 8 to delete an element from the max-heap and to set ¢(i). A check for i>
m —mlo +1 is also made. When this happens a jump to line 10 followed by a return to
MEQUAL is made. Since only O(m) items are deleted from the heap, the total time
spent on this call to EQUAL is O(m*+m log n). When EQUAL is used from line 3 of

NEARLY ON LINE SCHEDULING 285

MEQUAL it works as before (i.e. using the times ¢(i), mlo =i =<m rather than
extracting times from the heap.) Hence, the time for line 3 of MEQUAL is O(m?).
Lines 4 and 5 take O(m) time. If the loop of lines 6-12 is iterated k; times on the ith call
to MEQUAL then the time needed is O(k; log n) to extract the next k; times from the
heap plus O(nhi log n)= O(m log n) time to insert the nonzero RPTs back into the
heap (line 9) in case a return is made from this loop. If a return is made from line 17
instead then the total time spent in lines 13--15 is O(m). Line 16 requires reinsertion
of the nonzero RPTs into the heap. There can be at most nhi — 1 such RPTs as lines
13-17 are executed only when all jobs indexed nhi to p are fully allocated in lines 6-12.
So the time needed in lines 13-17 is O(m log n). Hence, the ith call to MEQUAL takes
times O(m2+(m +k;)log n). If there are v release times then the total time spent in
MEQUAL is O(mav +(mv +Y k;)log n). Note that when the loop of lines 6-12 of
MEQUAL are iterated, at least k; — 1 jobs have a zero RPT and so are not considered in
future iterations. Hence, Y k;= O(n). Also v =<n. Therefore the time spent in
MEQUAL is O(m?*n +mn log n). The total time spent in UNIFORM is less than this.
So, the overall complexity of MONEDT is O(m’n +mn log n).

If v is the number of release times then UNIFORM introduces at most O(mv)
preemptions. At most 2m +1 of the jobs scheduled in any interval may remain
uncompleted by the end of the interval. This results in at most 2m + 1 additional
preemptions per phase (except the last phase when all jobs must be completed). The
total number of preemptions is therefore O(mv)= O(mn). This bound of O(mn)
agrees with the lower bound established in [10] on the worst case number of pre-
emptions. [

Acknowledgmente We are grateful to an anonymous referee for suggesting the
use of a heap to reduce the complexity of MONEDT from O(n*+nm *yto O(m?n +
mn log n). The corresponding analysis was also provided by the referee.

REFERENCES

[1] J. BRUNO AND T. GONZALEZ, Scheduling independent tasks with release dates and due dates on
parallel machines, Technical Report No. 213, Pennsylvania State University, State College, Dec.
1976. .

[2] T.GoNzALEZ ANDD. JOHNSON, A new algorithm for preemptive scheduling of irees, Technical Report
No. 222, Pennsylvania State University, State College, June 1977.

[3] T. GONZALEZ AND S. SAHNI, Preemptive scheduling of uniform processor systems, J. Assoc. Comput.
Mach., 25 (1978), pp. 92-101.

[4] W. HORN, Some simple scheduling algorithms, Naval Res. Logist. Quart., 21 (1974), pp. 177-185.

[5] E. HORVATH, S. LAM AND R. SETHI, A level algorithm for preemptive scheduling, J. Assoc. Comput.
Mach., 24 (1) (1977), pp. 32-43.

[6] A.RINNOOY KAN, Machine scheduling problems, Ph.D. thesis, Mathematische Centrum, Amsterdam,
1976.

[71 J. Liu anD C. Liu, Bounds on scheduling algorithms for heterogeneous computing systems, IFIP
Proceedings, August 1974, pp. 349-353.

[8] R. MCNAUGHTON, Scheduling with deadlines and loss functions, Management Sci., 12 (1959), pp.
1-12.

[9] S. SAHNI, Preemptive scheduling with due dates, Technical Report #77-4, University of Minnesota,
Minneapolis, April 1977; Operations Res., to appear.

[10] S. SAHNI AND Y. CHO, Scheduling independent tasks with due times on a uniform processor system,

Technical Report #77-7, University of Minnesota, Minneapolis, May 1977.

