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Single-Row Routing in Narrow Streets

SANYONG HAN anD SARTAJ SAHNI, MEMBER, IEEE

Abstract—We develop fast linear time algorithms for single row routing
when the upper and lower street capacities are less than or equal to three.
A similarly fast algorithm is developed for the case when one of the
streets has a capacity 1 and the other has an arbitrary capacity. Experi-
mental results show that our algorithms are many times faster than
previously developed algorithms.

I. INTRODUCTION

O has proposed a systematic approach to the interconnec-
Stion problem of large multilayer printed circuit boards in
which pins and feedthroughs are uniformly spaced on a rec-
tangular grid [6]. This approach consists of a systematic de-
composition of the general multilayer wiring problem into a
number of independent single layer, single-row routing prob-
lems. There are five phases in this decomposition [8], [5]:

Via assignment,

. Linear placement of via columns,
. Layering,

. Single row routing,

. Via elimination.
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In this paper, we are concerned only with the fourth phase:
Single row routing. In the single-row routing problem, we are
given a set V'={1,2,- -, n} of n nodes that are evenly spaced
along a straight line; and a set L = {N;,N,, - -+, N, } of nets.
Each net represents a set of nodes that are to be made elec-
trically equivalent. The nets satisfy the following conditions:

W) NON =6, i#]
@ U v=11,2,-n)
i=1

jeN; is a touch point of net i. The nets are to be realized in
a single layer by the use of nonoverlapping wires that are com-
posed solely of horizontal and vertical segments. Fig. 1(a)
shows some of the legal ways to realize the net {1, 3; 6, 9}.
The wire layout must satisfy the additional requirement that
a vertical cut made at any point along the axis formed by the
nodes can intersect at most one horizontal segment from each
net. Thus the wiring of Fig. 1(d) is illegal.

The area above the line of nodes is called the upper street
while that below this line is the lower street. Each street has
tracks that run parallel to the line of nodes(Fig. 2). Horizontal
wire segments must be layed in tracks and no track may hold
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Fig. 1.

more than one wire segment at any point (of course, several
non overlapping wire segments may be packed into the same
track). Let K, and K, repectively, denote the number of tracks
in the upper and lower streets. Fig. 2 shows one way to realize

i the nets (N17N29.-.7N5):({1> 7}7 {29 8}7 {3;6}5{4: 9}7

{5, 10}) when K, =2 and K, = 3.

In this paper, we are specifically concerned with obtaining
net realizations (when they exist) given ¥ (node set), L (net set),
K, (upper street capacity), and K, (lower street capacity).

This problem has been studied before. Kuh et al. [3] and
Tsukiyama et al. [9] developed necessary and sufficient con-
ditions for a net set to be realizable. In [3], a simple con-
struction is used to show that when K, and K are sufficiently
large, L is realizable. This construction, however, results in an
algorithm of complexity O(m!n) where |V|=n and |L|=m.
Raghavan and Sahni [4] have developed an algorithm of com-
plexity O(k! * k * n * logk) where k =K, + K; for this problem.
This algorithm is quite practical when k is small but impractical
when k is large. For the case K, <2 and K; < 2, Tsukiyama
et al. [9] have developed an O(mn) algorithm. This algorithm
is, however, slower than that of [4].

Here, we shall develop fast O(n) algorithms for the case K,, <
3 and K; <3 as well as the case K; =1 and K,, arbitrary. Ex-
perimental results show these algorithms to be several times
taster than that of [4] for these street capacities. The case
K, and K; <3 is actually solved by developing algorithms for
the subcases K, =K;=2; K, =K;=3; and K, =3, K;=2.
These algorithms together with that for K, =1 and K, arbi-
trary cover all the possibilities for K, <3 and K; < 3. Note
that the case of K; =0 and K,, arbitrary is trivially solved in
linear time.

Before presenting the algorithms, we introduce some nota-
tion. Following [4], nodes are classified by type:

(a) Node i is of type B if it is the left extreme node of a net,
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i.e., it is the beginning node for some net. The type B nodes
in Fig. 2 are 1,2, 3,4,and 5.

(b) A type E node is a node at which a netiends. Le.,itis
a right extreme node for some net. The type E nodes in Fig.
2are6,7,8,9,and 10.

(¢) A middle or “nonextreme” node of a net i is a type M
node. If @ and b are, respectively, the B and E nodes of a net
i, then N; - {a, b} is the set of middle or type M nodes for this
net.

The cut number of a node is the number of nets covering
that node, i.e., the number of nets between whose extreme
nodes the node in question lies. The net (if any) with touch
point i is not included in this count. Cut numbers for the nodes
of Fig. 2 are given in this figure.

A k-zone [9] is a segment of the node axis beginning at a B
type node with cut number k and ending at the next £ type
node with this cut number. Thus all cut numbers within a
k-zone are greater than or equal to k. The example of Fig. 2
has the foliowing zones:

0-zone:
1-zone:
2-zone:
3-zone:
4-zone:

nodes 1 through 10
nodes 2 through 9
nodes 3 through 8
nodes 4 through 7
nodes 5 through 6

In general, of course, a net list may have several k-zones for
any given k.

In all our algorithms, we shall attempt to obtain the net real-
ization by processing the nodes from left to right. Asin [4],
each possible ordering of nets that can be encountered by a
node is maintained simply as an ordered list of net indexes.
There is no explicit division between the upper and lower
streets. Such an explicit division is neither desirable nor nec-
essary. Only the relative order (top to bottom) is relevant;
this same order is reflected in the realization.

An advantage of this approach is that functionally equivalent
situations, such as the ones in Fig. 3(a) and (b), are not treated
separately.

II. K,=kanNnD K;= 1

As noted in Section I, the layout will be constructed by scan-
ning the nodes from left to right. Assume that the layout has
been obtained upto node i - 1. Let (N;,N,, - ,Np) be the
permutation of the nets that arrive at node 7 from the left (Fig.
4(a)). We shall show how to obtain an arrival permutation for
node i + 1 such that this permutation will lead to a feasible lay-
out if one exists.

If node i is of type E or M, then it must be a touch point for
one of the nets N;, 1 <j<b. If it is a touch point for the net
N, and p <b - 1, then the routing cannot be completed with
K, =1 because at least two nets (NV,_, and V,) must pass be-
low node i (Fig. 4(b)). If p=b -1 and i is of type M, then
the arrival permutation for node i+ 1 is (N;, Ny, -+, Np).
If p>=b - 1andiis of type E, then the arrival permutation for
node i+ 1 is obtained from (V,, N,, -, Ny) by simply de-
leting NV, .

When node i is of type B, we need to be somewhat careful
about the construction of the arrival permutation for nodei + 1.
It is easy to see that there are at most two possibilities for this
permutation (Fig. 5).

Let NV, be the net that begins ati. If b > k, then no feasible
layout is possible. So, assume that b <k. When b =0, (V) is
the only permutation possible for i + 1. When b > 0, we have
two possibilities: (Ny, Ny, -+, Np_y, Ny, Np) and (N, N,,
-+« Np_y, Ny, Ny). We need to determine which of these
two will lead to a layout.

Let v, and v, respectively, be the end points of nets V; and
N,. Let v=min {v,, v,}. We observe that if any of the nets
{N,,N,, -+, Np_1} have touch points before v, then the lay-
out cannot be completed and this will be detected as soon as
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one of these points is reached. So, assume that we have the,*

situation of Fig. 6. The cut number atiisb. Let {v;,v,, -,
v, } be the touch points of N, and N, that are no greater than
v. It is readily seen that the cut number at each of these points
must be at least b.

If every v; has a cut number of b, then Ny, N, * -+ , Ny, and
N, are the only nets that arrive at any v; and regardless of
whether the permutation is (M, N,, -+ ,Np,N)or (Ny,N,,
<+, Np_y, Ny, Np), the corresponding net can be wired to it’s
touch point.

If at least one of the v;’s has a cut number that is larger than
b, then there is at least one net that starts after i and arrives at
j. This net cannot possibly be above both N, and V,. Hence
the net with touch point v; cannot be wired at v; if it does not
occupy the bottom position at i.

Thus if both nets N, and N, have touch pointsin {v;," - -,
v} that have a cut number greater than b, the layout cannot
be completed with K; = 1. Therefore, the choice between (V,,
Ny, Ny, Ny)and (N, Ny, -+, Ny_;, Ny, Np) is made
by determining if there is a v; with cut number greater than b.
If there is, then pick any one of these and place the net corre-
sponding to this point at the bottom.

By choosing appropriate data structures, the above strategy
can be implemented in O(n) time. Also, the resulting algorithm
has negligible overhead and can be expected to run many times
faster than earlier algorithms.

Example 2.1: In this simple example, we have a net list which
has 6 nets and 12 nodes. Net list L is given as follows:

Ny ={v;,v10}, N, ={vy, 012}, N3 ={v3, 0y, }
Ny ={vs,v,},Ns ={vs,vg}, N ={vg,09}.
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When K, =5 and K = 1, the above net list can be realized, as
in Fig. 7. Atuv,, N, is placed above N, as only NV, has a touch
point, v,o, with cut number greater than 1. The same rule is
used to place N4 and N5 at v, and vs. However, N3 and Ny
can be placed at either of the two possible locations in the
incoming permutation as their touch points do not have a cut
number larger than their initial cut numbers. L

II. K, =K;=2

If we know the net permutation that arrives at an £ or M type
node, then we may easily determine whether or not the net
corresponding to this touch point can, in fact, be wired to this
point when K, =2 and K;=2. Also, the net permutation
leaving the node is unique and easily determined.

Therefore, we may restrict our discussion to the case when
we are scanning a node i such that node 7 is of type B. Let
(Ny, N,, -+, Np) be the permutation that arrives at this node
and let NV, be the net that begins at this node. Clearly,if b > 3,
then the net list cannot be realized with K, =K;=2. If b=

0, then the permutation arriving at i + 1 is (V). If b =1, then

there are two possiblities for the permutation arriving at i + 1:
(Ny, Ny) and (N, N;). However, these are symmetric and
since K, = K;, if a layout can be achieved using (V,, N, ), then
it can be also achieved using (V;,N,). So, we may simply use
the permutation (N, NV,).

When b = 2, there are three possibilities, (N, , N, , Ny), (N,
N,,N,)and (N,, N, N,) for the permutation arriving at node
i+1. Let{v,, vy, -, v} be the touch points of N,, N,,
and NV, that are to the right of node i. If all of these have a
cut number that is less than 3, then the net corresponding to
any v; can be wired to v; independent of the permutation that
arrives at v;. In this case, we may use any one of the three
possible permutations for node i + 1.

Assume that at least one of the v;’s has a cut number that is
3 (if any node has a cut number > 3, then the net set cannot
be realized with K, =K;=2). Let v; be the leftmost such touch
point. Let N, € {N;, N,, N} be the net with touch point v;.
Let (N, N, N4, N,) be the net permutation that arrives at v;.
Clearly, when K, =K;=2, the net connection to v; can be
completed ift NV, =N, or N, = Ny.

Among the three possibilities for the permutation arriving at
i+ 1, there is exactly one that guarantees NV, =N, or N, = Ny,.
This is the permutation that has V, in the middle. While it may
be possible to complete the wiring to v; using one of the other
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two permutations (this happens when one of the other two nets
ends before v;), it is not too difficult to see that if a net set can
be realized using one of these other permutations (when K, =
K;=2), it can also be realized using the permutation with &V,
in the middle.

The final case to consider is & = 3. Now we have exactly two
possible permutations fori + 1: (N,, N, ,N,,N3)and (V,, Ny,
N, ,N3). Letv, and vy, respectively, be the end points of nets
N, and N,. Let v=min {v,, v,}. If any one of the nodes
i+1,i+2,---,v-1isa touch point of N; or N3 or a node
of type B, then the wire layout cannot be completed with K, =
K;=2; independent of the permutation chosen for i +1. So
assume that there is no such a node. Regardless of which per-
mutation is chosen, both NV, and NV, can be wired to their touch
pointsj, i <j <vand the permutation leaving vis(V,,N,, N3)
where @ = 2 if v, > v, and a = x otherwise.

So, when b =3 we may use either permutation.
ceding discussion leads to the following theorem:

Theorem: If a net set L can be realized with K,, =K; =2,
then it can be realized by handling B nodes in the manner de-
scribed above.

Example 3.1: Consider the net list L={N,;, N,, -, N¢}
where Ny ={vy, v7}, Ny ={v,, vs, 012}, N3 ={v3, 010}, N =
{va,v6},Ns ={vy,v13},and Ng = {vg, vy, }.

The layout shown in Fig. 8 was obtained by applying the
above algorithm. At vs, it is determined that both NV, and NV,
have touch points with cut number 3 (vs and v;y). However,
N, should be in the middle as vs <wv,y. Atwvg,N3 should be
in the middle as N5 is the only net having a touch point with
cut number 3. L

The pre-

It is an easy matter to arrive at an O(n) algorithm that is
based on the above discussion. This algorithm is conceptually
much simpler than those of [9] and [4]. It is asymptotically
faster than that of [9]. While it’s asymptotic complexity is
the same as that of the algorithm in [4], it’s relative simplicity
allows it to run much faster.

IV. K, =K;=3

We first observe that if i is a touch point of type M or £ in a
k-zone for k<3, then the net corresponding to i can be routed
to node i independent of the permutation of the (k +1) nets
arriving at i. Fig. 9 illustrates the case k = 3.

Futhermore, if node i is of type B and in a k-zone for k <3,
then the net corresponding to node i can be inserted at any
point in the permutation arriving at node i. Fig. 10 illustrates
the case k = 3.

Hence, if there is no 4-zone, then the net set can be realized
by making decisions arbitrarily at the B nodes. So,assume that
there are some 4-zones (and possibly some 5-zones, too). Let
a, b, c,and d be the four nets that enter the first (i.e, leftmost)
4-zone.. From the preceding discussion, we note that all 24
permutations of these four nets are possible arrival permuta-
tions. However, these 24 may be partitioned into two 12 sets
each with the property that the two permutations in each set
are symmetric (abcd is symmetric to dcba and adcb is symmetric
to beda). So, we need to consider only 12 possible arrival per-
mutations at the start of the first 4-zone.

Once we determine which (if any) of these 12 permutations
permits routing beyond the start of the first 4-zone, we can
determine the wire layout preceding the first 4-zone.
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Consider one of the 12 nonsymmetric permutations (say
abced) that are candidates for the arrival permutation at the
start of the first 4-zone. The first node in this zone must be
of type B. Let e be the net that starts at this node. There are
only 3 possible entry points for this node (Fig. 11). Inall three
of the resulting permutations, nets ¢ and d are the outermost
nets. Furthermore, throughout this 4-zone, these two nets will
remain the outermost nets of the permutation and the arrival
permutation at every node in the 4-zone will contain at least
5 nets. Hence, if either @ or d has a touch point within the 4-
zone, the connection to this touch point cannot be made and
the permutation abed is infeasible.

Example 4.1: Consider the net list given in Table I. This net
list consists of 11 nodes and 5 nets. There is only one 4-zone
(from node 5 to node 7) and no 5-zone. Twonets(V; andV,)
have touch points inside this 4-zone.

The 12 possible asymmetric arrival permutations for node 5
are:

N,N,Ns N, N, N, N4 N,
N,N,N, N; Ny N, N, N,
N,NsN, N, N,N;NsN,
N, NyNsN, NyN,N;sN,
N3N, N, Ny N3N, N, N,
Ny NyN, N, NoNyN,N,.

Since N3 and N, have touch points within the 4-zone, per-
mutations with these nets at position 1 or 4 are infeasible.
Eliminating these infeasible arrival permutations leaves us with
just two candidates (N, N3 N4 N, and N; N4 N3 N,) for the
arrival permutation at node 5. Both of these yield the same
set of emerging permutations ({V; Ns Ny N, ,N; Ny Ns N, })
from the 4-zone. Since, there are no other 4-zones, we may
arbitrarily pick one of the remaining feasible candidates (say
N, N3 N, N,) and obtain the routing. In order to get this
permutation at node 5, we need to place V, below N, at 2,
N; between NV, and N, at 3 and N, between N3 and V, at 4.

Regardless of whether Vs is placed above or below N, at
5, the routing can be completed. Suppose we elect to place
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N between N, and N,. The resulting layout is shown in
Fig. 12. L

Suppose that abed is not infeasible in the sense of the pre-
ceding paragraph. Then, we may lay out nets ¢ and d, as in
Fig. 13. Pick any of the three inner track permutations (ebc,
bec, bce), say ebc. 1f there is no 5-zone within the 4-zone,
then each of these 3 nets (e, b, ¢) may be connected to it’s

,* touch points within the 4-zone. If there is a 5-zone, then let f

be the net that starts at the first 5-zone. There are exactly two
possibilities for the permutation following the first node in
this 5-zone: efbc and ebfc.

Within the 5-zone, however, no new nets may start. Also,
only nets b and f can connect to their touch points. Hence,
if either e or ¢ has touch points in this 5-zone, then the per-
mutation aebed is infeasible. If this is not the case, then at
the end of this 5-zone the emerging permutation is aebcd or
aefcd depending on which of b or f terminates. So, the emerg-
ing permutation and feasibility are not affected by the place-
ment of net f, that is, it does not matter whether the permuta-
tion aefbcd or aebfed is used within the S-zone.

We may continue with the permutation that emerges from
the first 5-zone and proceed to route the remainder of the first
4-zone. If all three of the permutations of Fig. 11 are deter-
mined to be infeasible, the abed should be discarded from the
list of candidate entry permutations for the first 4-zone.

The procedure described above may be applied to each of
the (at most 12) candidate permutations. If all are determined
to be infeasible, then the net set cannot be realized. If some
candidates remain, then let S be the corresponding set of per-
mutations that can emerge from the 4-zone. From §, symmet-
ric permutations may be eliminated. Hence, IS t < 2.

Example 4.2: In this example, the net list consists of 16 nodes
and 7 nets as below.

N, ={1,16},N, ={2, 14} ,N; ={3,6, 12} ,N, = {4, 8}
Ns ={5,13},Ns ={7,10,15},and N, = {9, 11}.

This net list has one 4-zone (from node 5 to node 12) and two
S-zones within this 4-zone. The first of these S-zones starts at
node 7 and ends at node 8 while the second S-zone begins at
node 9 and ends at node 11.
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All feasible permutations at the start and end of the 4-zone Yuand
are shown in Fig. 14. Feasible permutations at the start of the UTVW = Suw === Suyvw
two 5-zones are also shown. Since netsstarting ina 5-zone may woyw
be arbitrarily placed in one of the two possible locations (3rd oy
or 4th), the figure shows just one placement. Fig. 15 shows

Fig. 16.
| ]

a layout corresponding to the top row of Fig. 14.

If there is no next 4-zone, then we may pick any of the re-
maining candidates for the first 4-zone and complete the
routing.

Assume that there is a next 4-zone. Let A be the set of nets
entering this 4-zone. Let 4 be the set of nets emerging from
the previous 4-zone. Clearly, |4|=|B|=4. Letj=]4N B|.

When j = 4, S becomes the set of candidate permutations for
the start of the new 4-zone. In between the previous and the
new 4-zone, no new nets may begin and connections to all
touch points can be made.

Consider the case j=3. LetB={u,v,w,x}andletx=B-4
and y =4 - B. To get the candidate permutations for the start
of the new 4-zone, delete x from each of the permutations in
S and insert y at each of the four possible insertion points
(Fig. 16). From the resulting set T eliminate symmetric per-
mutations. Following this, |T| <= 12.

Where j < 3, we may arbitrarily pick one permutation, from
S and use this to complete the layout in and preceding the
previous 4-zone. All 12 asymmetric permutations of 4 be-
come candidate permutations for the new 4-zone.

Using the process described above, we may proceed from
one 4-zone to the next until we are either done with the last
4-zone or we have determined that the net set cannot be real-
ized. If the last 4-zone is completed, then the layout following
this is easily obtained. The strategy presented above can be
implemented to run in O(n) time.

V. K,=3andK;=2

This case can be solved efficiently in a manner similiar to the
case K, =K;=3. Now, of course, we need to be concerned
with the 3-zone and 4-zonesrather than the 4-zones and 5-zones
(there can be no 5-zones in the K, =3, K; =2 case if the net
set is to be realizable).

VI. EXPERIMENTAL RESULTS

Our algorithm for the cases K, =K;=3 and K, =3, K,=2
were coded in Pascal and run on a VAX 11/780. For com-
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TABLE II
Nisiber | Numiber RAGH's Algorithm OUR Algorithm
of of min max avg min | max | avg
nodes it time time time | time | time | time
50 8 1600 6583 4304 183 466 308
100 8 4650 9800 6960 383 718 525
R00 6 14433 | 17583 | 16003 | 1000 | 1466 | 1173
300 4 23250 | 28333 | 24721 | 1550 | 1816 | 1625

times are in milliseconds

TABLE III

Number | Number RAGH's Algorithm OUR Algorithm
of of min max avg min | max avg
nodes it time | time | time | time | time | time
50 8 966 | 1866 | 1354 200 3186 256
100 i 2533 | 3216 | 2807 516 616 543
200 3 5483 | 6450 | 5861 | 1033 | 1083 | 1061
300 2 9450 | 9466 | 9458 | 1566 | 1633 | 1599

times are in milliseconds

parative purposes, we also ran the Pascal code for the algorithm
of [4]. This code was made available to us by Dr. Raghavan.
The observed run times are shown in Tables II and III.

We considered single-row routing instances with 50, 100,
200, and 300 nodes. For each node size 10 random instances
were generated in such a way that the maximum cut number
was less than the number of available tracks. Tables II and III
give the number of instances (out of 10) that could in fact be
routed with the given street capacities.

As can be seen from the tables, our algorithm for the case
K, = K;=3 took about one fourteenth of the time taken by
the algorithm of [4] on the instances tested. For the instances
generated for the case K, =3 and K; = 2, our algorithm took
about one fifth the time taken by the algorithm of [4].

We also generated a data set with 87 nodes and 33 nets that
had many nodes with cut number 5. On this data set our algo-
rithm took 516 ms while that of [4] took 21 s: a factor of 40
difference! For this run, X, and X, were both 3.

VII. ConcLUSION

The single-row routing problem is a very important problem
for the design automation of digital systems. The single row
routing problem was previously shown to be NP-hard for a
general case. Therefore, it is unlikely that there are efficient
algorithms that always generate an optimal routing. We have
developed, however, several single row routing algorithms for
a narrow street congestion which is particularly of interest in
the design of practical case. For the case when K, =k, K, =
I and K, =K, =2, a linear O(n) algorithm was shown. And
for the case when K, =3 and K; =2 or 3, a very efficient routing
algorithm was presented and it’s performance was analyzed.
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