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ABSTRACT. An optimal algorithm to route data in a mesh-connected parallel computer is presented. This
algorithm can be used to perform any data routing that can be specified by the permutation and complementing
of the bits in a PE address. Matrix transpose, bit reversal, vector reversal, and perfect shuffle are examples of data
permutations that can be specified in this way. The algorithm presented uses the minimum number of unit
distance routing steps for every data permutation that can be specified as above.
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1. Introduction

It is well known that the performance of a parallel computer is often limited by the time
spent communicating data from one processing element (PE) to another. For example, the
sorting algorithms developed by Thompson and Kung [16] and Nassimi and Sahni [9]
make use of only O(log’n) comparison steps to sort n” elements on an n X n mesh-
connected computer (MCC). These algorithms, however, require O(n) data routing steps.
For large n, the time spent doing useful work (i.e., comparisons) is negligible compared to
the time spent moving data from one PE to another. As another example, consider matrix
multiplication and inversion. It is easy to see that if enough PE’s are available, then two
n X n matrices can be multiplied using O(log n) arithmetic steps. Csanky [4] has shown
how to invert a matrix using only O(log’n) arithmetic steps on a parallel computer.
However, it is also known (Gentleman [6]) that if an MCC is used, then O(n) data routing
steps have to be performed for both multiplication and inversion. Hence, the complexity
of these operations is determined not by the time spent performing arithmetic operations
but by the time needed to route data from PE to PE.

The problem of communicating data between PE’s has received much attention in the
literature, and many PE interconnection schemes have been suggested. Lang [7] and Stone
[13] consider shuffle-exchange networks, Lawrie [8] considers Q-networks, and Swanson
[14] considers k-apart interconnections.

In this paper we are concerned only with mesh-connected computers (MCC’s). The basic
MCC model we look at is a g-dimensional generalization of an ILLIAC-1V-like computer
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{1]. Our model differs from the ILLIAC IV essentislly in the absence of end-around
connections. Our model is an SIMD machine [5] with N = 27 identical PE’s. The PE’s may
be thought of as arranged into a g-dimensional ny-1 X ng_» X + -+ X ng array, where each
n; is a power of 2. Two methods to identify a PE are used. One is the standard array
element reference PE(i;-1, ig-2, ..., i) with 0 < ih <= — 1, 0=k < g. In the second
indexing method the PE’s are numbered 0 to N — 1 using the standard row-major
representation of a g-dimensional array. The row-major index of PE(i,—1, iy-2, ..., o) is
given by m = Y120 ajij, where ao = 1, and a; = a,.1 * nj—1 for | < j < g. The PE with the
row-major address m will be referred to as PE(m). Or, representing the addresses in binary,
m = My 1My « -+ Mo, the PE may be referred to as PE(n,_1m,-» - - - mo). Note that since
each n; is a power of 2, the least significant log no bits in the row-major address correspond
to i; the next log n; bits correspond to #;; ...; and the most significant log n,-; bits
correspond to i,

Our MCC model is the same as that used in [9] and [16] and has the following properties.

(1) Each processor PE(ig-1, ..., i) is connected to its (at most 2¢) nearest neighbors
PE(g-1, ..., e £ 1, ..., lo), 0 =k < ¢, provided they exist.

(2) Each PE has at least three registers R,, R, and R,. R, is the routing register and R,
and R, are storage registers.

(3) The MCC has a routing instruction

ROUTE(L, /),

where 0 < k < ¢ and |j| < n,. The effect of this instruction is to move the data in the
routing register of every PE to the routing register of the PE j units away along the kth
dimension. That is, the contents of the routing register in PE(iy—1, ..., &, . .., lo) are moved
to PE(ip-1, ..., i+, ..., o) for all iy, iy, ..., io. This move (or shift) may be regarded
as “end-off.” When j is positive, we refer to the route as a positive route along the kth
dimension; otherwise it is referred to as a negative route. The time required by the hardware
to execute this instruction is @ + & » |j|, where a and b are constants. Each time a
ROUTE(k, -J) instruction is used, we shall say that one long-route and |j| unit-routes have
been used. One should note that the route instruction defined allows data to be routed
along only one dimension at a time. Furthermore, all data are routed in the same direction.
This is in accordance with {9] and [16].
(4) The MCC has a register transfer instruction

R’ «~R
and a register swap instruction
R’ R,

where R and R’ € {R,, R,, R,}. It is possible to specify that only certain PE’s be involved
in the transfer or swap. This is done by specifying a PE selection or enable mask. We shall
use a “processor address mask” as suggested by Siegel [12]. The mask has log N positions.
Each position may have value 0, 1, or x. Each position in the mask corresponds to a bit in

.the binary representation of a PE address (using the row-major indexing scheme). The

effect of the mask is to require enabling of all PE’s whose address bits agree with the mask
in all non-x positions. Thus, if log N = 3 then the mask 0 x 1 enables PE(1) and PE(3). For
notational simplicity, we shall specify the processor address mask by specifying a sequence
of signed integers, +i, where -+ specifies that bit i is to be 1 and —i specifies that bit i is to
be 0. “Don’t care” bits are not included in the sequence. For example, if p = log N = 3
then the instruction

R, « R, (-0, 2)

means that for each PE whose (row-major) address has a 0 in bit O and a | in bit 2 (i.e.. the
mask 1 x 0), the content of R, is to be moved to R,. So, PE(4) and PE(6) are the only PE’s
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fof which the transfer is made. Note that the transfer for all enabled PE’s is done in
parallel.

Let ¢ be the time required by a register transfer or swap instruction, and let a and b be
the constants explained above. Then the total routing time of an algorithm is Nia + N2b
+ Nje¢, where Ny, Ny, and Nj are, respectively, the number of long-routes, unit-routes, and
register transfers or swaps.

The permutation routing problem may be specified by a vector D(m), 0 =m =N — 1.
Data are to be routed from PE(m) to PE(D(m)). Thompson [15] suggests solving this
routing problem by mapping the Benes network [3] or the Waksman network [17] onto the
mesh interconnection scheme of an MCC. This approach has some drawbacks. First,
extensive preprocessing is required to determine which pairs of PE’s are to exchange data
at each stage. The best sequential preprocessing algorithm known [17] takes O(N log N)
time. Second, the PE selectivity needed requires O(IN) bits, with bit i a zero iff PE(/) is not
selected. This is undesirable (and impractical) when N is large. Siegel’s selectivity scheme
[12], as described above, requires only log N “bits,” with each bit being one of 0, 1, x.

A second approach to this problem is to associate a destination tag D(im) with the data
item in PE(m), and then sort these tags (moving the associated data item each time a
destination tag is moved). The sorting can be done using the efficient algorithms of [9] and
[16]. The drawbacks of this approach are (i) the added complexity of creating and loading
destination tags, and (ii) additional routing steps required to move the tags (i.e., in addition
to those needed to move the data). However, both of the above approaches work for all

permutations.

In this paper we study a subset F of all routings definable by permutations. A
permutation is in F iff it can be defined by a vector A = [A,1, Ap-s, ..., Ao} (recall that
N = 27), where

@) Are {0, %1,...,x(p-1D}, 0=si<p, and '
i) [|Ap—1ls |Ap—2], - .., | Ao]] is a permutation of [0, 1, .. 4 p — 1].

The destination of the data item in each PE can be computed from this vector as follows.
Consider PE(m,-1mp-2 - -+ mo). The destination for the data in this PE is d = dp-1dp-2
«oodywhere fori=0,1,...,p~ 1 we have

d — mi if A,‘ZO,
W Y i A< O

Note that we distinguish between +0 and —0 (-0 < +0 = 0). Also, note that the total
number of permutations specifiable in this way is 2°p! = N(log N)!.

Intuitively then for each permutation P € F the index of the destination PE for PE(m)
is obtained by permuting the bits in the binary representation of m and complementing
some bits. The vector A specifies how the bits are to be permuted and also which bits are
to be complemented. | A;| tells us where bit i is to go, and the sign of A; tells us if the ith bit
in m is to be complemented.

As an example, consider the case N = 16, p = 4, and A = [0, 3, —1, —2]. The
destination PE for the data in PE(m = mamgam, mq) is mymigrm, riis. So, for example, the data
from PE(0) are to be moved to PE(7) and the data from PE(15) are to be moved to PE(8).

While F contains only N(log N)! of the possible N! permutations, it is nonetheless a very
rich class. In fact, most of the common permutations arising in practice are included in F.
For N = 27 processors, Stone’s perfect shuffle is given by A = [0, p —~ 1, p — 2, ..., 1];
shuffled row-major [16] can be obtained from row-major on an n X n MCC using A =
lp—=Lp/2—=1p—2p/2-2, ...,p/2 0] and a matrix transpose is given by A =
[p/2—1,p/2—2,...,0,p— Lp~—2,...,p/2] Table I gives the A vectors defining some
of the commonly occurring permutations. (Note that p must be even for the first and the
last two permutations in the table.) Bit reversal is encountered in the computation of the
fast Fourier transform (FFT). In vector reversal the data in PE(m) are moved to
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TABLE 1. Some COMMON PERMIUTATIONS

Permutation Vector representation

Matrix transpose tp/2-4L....,0,p—1,...,p/2]

Bit reversal [0,1,2...,p—1]

Vector reversal [~(p= 1), =(p—2),...,-0]

Perfect shuffle f0:p= Lip=2; s 1]

Unshuffle Lp =2, p~=3,.: 0,p—1]

Shuffled row-major [p—Lp/2=1Lp—2,p/2-2,...,p/2,0]
Bit shuffle [p-Lp=3, .., Lp=2,p—4, ..., 0]

PE(N — m — 1). Bit shuffle can be used to unscramble from “shuffled row-major” to row-
major. Unshuffle is the inverse of a perfect shuffle and restores row-major order from a
perfect shuffle. Circular shifts and p-ordered vectors [11, 14] are examples of permutations
not in F.

Orcutt [11] presents algorithms for perfect shuffle and bit reversal on an n X n MCC.
Both of his algorithms use O(log #) long-routes and 4(n — 1) unit-routes. The algorithm we
present in this paper can be used for every permutation A € F. In addition, our algorithm
uses the absolute minimum number of unit-routes possible for each permutation in F. It
thus performs a perfect shuffle faster than Orcutt’s algorithm and uses only 2» unit-routes.
A bit reversal is performed in 4(n — 1) unit-routes (the same as required by Orcutt’s
algorithm), which is the minimum number of unit-routes in which a bit reversal can be
performed. However, while Orcutt has two different algorithms for these two permutations,
we use the same algorithm for all A € F. Our algorithm spends O(log”N) time to determine
how the routing is to be carried out.

The organization of this paper is as follows. First, in Section 2 we develop a lower
bound, B(A), on the number of unit-routes needed to perform the permutation A. This
lower bound is used in Sections 3, 4, and 5 to develop the routing algorithm. In Section 3
we present two building blocks for our algorithm. In Section 4 we show how the
permutation A is to be factored in order to route in the minimum number of unit-routes.
The complete algorithm for a two-dimensional MCC is also given in this section. Section
5 presents the general algorithm for g-dimensional MCC’s.

Finally, in Section 6 we determine the efficiency of the g-dimensional routing algorithm
in case it is used on MCC’s with wraparound. Let y(A) be the lower bound on the number
of unit-routes needed to perform A when the MCC has a wraparound connection. It is
shown that y(A)/B(A) = § when A contains no bit complementation, and y(A)/B(A) = §
otherwise. Hence, the algorithm can be speeded by at most a factor of 3 if wraparound
connections exist.

2. The Lower Bound

In this section we obtain a lower bound, B(A), on the number of unit-routes needed to
permute the data in a g-dimensional MCC according to the permutation A. The strategy
used to arrive at this bound is based on the observation that moving the data from
PE(iy-1, ig-2, - . ., bo) to their destination PE(j -1, fo-2, - .., jo) requires |jx — x| unit-routes
along the kth dimension, 0 < k < g — 1. The bound is derived by treating each dimension
separately: for dimension k, we identify a PE for which the “distance” | j» — x| is maximum.
The lower bound, B(A), will be shown to be twice the sum of the maximum distance for
each dimension. Before obtaining B8(A), we develop some terminology.

Let m = mpy_1Mp—2 - - - Mo be the (row-major) address of PE(, 1, ..., d) inan ng1 X ny»
X -++ X ng g-dimensional MCC. Define the set

I={p-1L,p—2,...,0}

as the set of bit indices. As pointed out in Section 1, each i, corresponds to a subset of the
bits in the address m. That is, the rightmost log no bits determine jo, the next log n, bits are
equal to i, etc. Accordingly, we define I, to be the set of bits corresponding to the kth
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dimension, i. Thus Iy = {logne — 1, ..., 0}, I, = {log(mno) — 1, ..., log no}, etc. Any bit
index j € I may be thought of as having two components u( j) and I( j), where u( j) tells us
which I, the bit j falls in and /() gives the position of the bit within L. More formally, u( /)
= k iff j € 1. And,

u(N—1

p=j- ;O log n,.

Example 2.1. Let N = 64; q = 2; no = 4; and n, = 16. Six binary bits are needed to
represent the index of any processor. Let m = msmymsmamini be the index of PE(#, &)
It should be easy to see that iy = msmumsme and i = mimo. So, we have I, =
{5, 4,3, 2} I = {1, 0}; u(5) = u(4) = u@) = u®@) = L u(l) = u0) =0 I5) =3
4)=213)=112)=0 I(1)=1; 0)=0.

Next, given any permutation A, we partition the set of bit indices, I, into four disjoint
sets L, R, S, and E as below:
(i) L (bits moving Left)
L = {i € Lu(|Ai]) = w(@) and |A;] > i}.
That is, L is the set of all bits whose destination is a bit position to its left but in the same

dimension.
(ii) R (bits moving Right)

R = {i € Lu(| Ai]) = u(i) and [A;] < i}.

So, R is the set of all bits whose destination is a bit position to its right but in the same
dimension.
(iii) S (bits staying in the Same position)

S={ie:|A] =i}
@v) E (Exiting bits) ’
E = (i € Lu(A) # u()),
i.e., E is the set of all bits with a destination in a different dimension.

For every bit-index set J, J* denotes the subset (i € J:A; = 0} and J~ denotes the subset
{i € J:A; < 0}. J, denotes the subset J-I, (- denotes set intersection). A(J) represents the
set of destinations of the index set J. Hence, A(J) = {|Ai|:i € J}.

Example2.2. Consider the two-dimensional MCC of Example 2.1. Let the permutation
be defined by A = {5, =3, 1, 4, 2, 0}. Figure 1 shows the bit movement. L = {2}; R =
{4; S={0,5;and E= {,3). Lo=@, Li= 2 L*" =L = (2}; L =&, R{ =
{4}; and A({0, 1, 2}) = {0, 2, 4}.

Let m = mp_1mp— --+ my and d = d,_1dp—2 -+ do be, respectively, the row-major
addresses of PE(iy-1, ..., io) and PE(ji-1, - .., jo). The distance DISTx(m, d) from m to d
along dimension k is js — i, 0 < k < q. Letting g(i) = 2", we get

DISTw(m, d)y = Y. (d: — mi)g(i).
icl,

For a given k, we now want to find an address m and destination address 4 under the
permutation A such that |DIST(m, d)| is maximized. Note that the address pair (m, d)
will not necessarily have the maximal distance along any other dimension.

Define T} to be the set of bit positions either in I, or having a destination in I,. Denoting
set union by “+” and intersection by “.”, T, may be expressed as

Tr=Ip + - A7'(1),
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\/\/

FiG. 1.. Bit movement for Example 2.2

where A7'(I) denotes the set of bits with destination in 1. That is,
A_I(Ik) == {il'Ai‘ S Ik}
Now, DISTx(m, d) may be rewritten as

DISTw(m, d) = 3, (di — m)g(i)

il
~ Z d;A;g(lA D il 2 m,-g(z) = Z aQ, (21)
T, i€l €Ty,
RSN
where »
diag8(Al), CAAJETL and i€,
o = Ty (i)9 ’Az! & I, and i€ Ik,
dag(Ad) — mgli), |AJEL and i€ L.

The value of a; depends on m; and the destination of bit i. For example, if i € S#, then
A, =i € I and dja; = m;. Hence, oy = 0. If i € S, then again |A;| = i € I,. Now,
dja, = ;. So, when m; = 0, a; = g(i), and when m; = 1, a; = —g(i). As another example,
consider the case i € L{. Now, A; € I, and dja,| = mi. So a; = mi( g(|Ail) — g(7)). Note that
g(iA D>gasi€ L. When m; = 0, o; = 0. When m, = |, o = g(|A]) — g(z) Table 11
gives the value of o; under the different possibilities for i, A;, and m. of and & are,
respectively, the values of o; when m; = 0 and 1. k(i) = |a — o/, ‘

From Table 11 we immediately obtain the following lemma.

LemMa 2.1. Let A be a permutation. Let d be the destination PE for PE(m).
DISTy(m, d) is a maximum for the PE(m) with the following bit assignment:

1 if i€ LE+(EY-A7'(Iy),
m; = 2
0 0thelese.

Let m be a PE such that m, is as given by Lemma 2.1 for all i € T,. Let 4 be the
destination PE for PE(m). Let m be the complement of m. The destination PE for PE(m)
is easily seen to be d. From Table II it follows that each a; in DISTx(7, d) is O or less.
Consequently, to route from i or d, negative routes are needed, while to route from m to
d, positive routes are needed. Since these cannot be overlapped, to move m to d and m to
d, DISTi(m, d) + |DIST.(, d)| unit-routes along the kth dimension are needed. This
yields our lower bound Bi(A) on the number of unit-routes needed along dimension &. We
have

Bu(A) = DIST(m, d) + | DISTx(r, d)|
= DISTi(m, d) — DISTx(i, d) = Y hu(i). (2.2)

T,
Note that since DISTu(m, d) = —DIST(r, d), we get
DISTk(m, d) = é(ﬂk(A))

Since Lemma 2.1 holds for every dimension (not necessarily for the same address m),
the bound B,(A) is valid for all k. Observing that routes along one dimension cannot move
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TABLE II. «; VALUES FOR DIFFERENT BIT TYPES

i type o a) ha(d)
1 i€ St 0 0 0
2 i€ S ? g() 10 2g()
3 ieL} 0 g(lAD — g g(lAaih — g
4 i€elx g(A) S 40)] g(lAD + g()
5 i€ER} 0 —(g) — glA) gl — g(A
6 i€ Ry g(AD -g() g + gdAl)
7 i€ Ey . 0 —g() g
8 i€ ET-AT(Iy) 0 g(AD glAD
9 i€ E AT\ g(AD 0 g(AD

items along any other dimension, the lower bdund B(A) is obtained by summing the unit-
routes needed along all dimensions. Thus,

g-1 q-1
BAY= 3 Bu(A)= 3 3 hi(d)
k=0 k=0 i€T,
We wish to rewrite this into the more compact form Y er A(f) for an appropriate A( ). To
obtain h( ) we consider the contribution of each bit i. We consider two cases:

Case 1. i@ E. Inthiscasei€ I;and |A;| € I, for some j. This bit contributes only to
Bi(A) and

s flglAaD - g if ie @+ RS+ S,
k(i) = k(1) = {g(‘ Ai) + g0 if ie (Lj'f +R; + ij)_

Case2. i€ E. Now,i€ I;and|A;] €1, j#* r. Soinow contributes to both 5;(A) and
B-(A). From Table 11 it is clear that k(7)) = g(i) and k(i) = g(| A:]). Hence,

h@) = g(|A:]) + g(d) for i€E.
Combining these two cases together, we get the following theorem.

THEOREM 2.1.  To perform the permutatidn A on an MCC, at least B(A) unit-routes are
needed. B(A) is given by the equation \

B4) = ZEII h(®), (2.3)

where

hi) = {'g(lf’fl) —g)| i i€L*+R*+SY),
g(4:]) + gd otherwise.

While (2.3) is an elegant form for B, it is not very convenient for hand computation of
B. We now present two equivalent forms for. 8. The first of these is used in Sections 3
through 5 to obtain the routing algorithm. The second form is convenient for hand
calculation of 8 and is used in the examples at the end of this section.

The form of B used to arrive at the routing algorithm is obtained from (2.3) by separating
out the contributions of bits that get complemented (i.e., A; < 0). Table III gives the values
of h(i) for each bit type when complemented (i.e., A; < 0) and when not complemented
(i.e., A; = 0). If we look at the column for uncomplemented bits, we see that their
contribution to 8 is given by f(/, | A:]), where f(i, j) is as defined below:

co g — gD if u(@) = u()),
fGj)= {g(z) +g(j) otherwise.

The last column in the table gives the additional contribution of a complemented bit.
From this column and the definition of f, we immediately obtain

B(A) = 3 fi. 1D +2 ( S, g0+ ¥ g(|Ai|)>. (2.4)

1E(S™ -+
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TABLE IIL CQN_;HRIBUTXON OF Bn; i 1O B(A)
Bit type A;z0 A, <0 Difference
E 8(A) + g() gAD +g(h) 0
S 0 2e() 2g(0)
L g(A) =g g(AD + g 2g()
R g0 — g(A) g +g(Al 2g(AD

B
—

(b)

E;
or L
i€EM
or
E R
(a)

Fic. 2. Illustration of sets M and Q: (a) a bit in M; (b) a bit in Q

The form of B suitable for hand calculation is easily obtained from (2.4). This form uses
the following subsets of I (see Figure 2):

G M=(R +E)-AL + E),

(i) Q = L-A(R). ‘ :

In words, M is the set of all bit positions of type R or E that will be replaced by bits
from positions of type L or E. Q is the set of all bit positions of type L for which the
incoming bit is from a position of type R. In terms of M, Q, $7, L™, and R, 8 may be
written as

B‘A)=2(,-§Mg"7‘.§qg‘”>”( EL_,)gmﬁE%_g(lAil)). e

€S+

The correctness of (2.5) is proved in the following lemma.
Lemma 2.2.  Equation (2.5) is correct.
Proor. We simply have to show that

Y fG A =2 (_Z gl — 2, g(l))-
el €M €eQ

Define M" = (R + E)-A(R) and Q' = L-A(L + E). It is easy to see that M + M’ = R +
Eand Q + Q"= L. Hence, | = M + M’ + Q + Q' + S. From the definition of fand the
fact that A is a permutation of the bit indices, it follows that Yier f(7, | A:]) will contain
exactly two occurrences of g(i) for each i. When i € Q these two terms come from f(i, | A;])
and f(, |A/]) where i = |A;|. Since i € L, f(i, |Ai]) = g(|Ai|) — g(i). Also, JE R (as i € Q
= L-A(R)). Hence, f(J, |A/]) = g()) — g A]) = g(j) — g(i). So both occurrences of g(i) are
negative. Using a similar argument, one may show that when i € M, both occurrences of
g(i) are positive; and when i € (S + M’ + Q’), one occurrence of g(i) is positive while the
other is negative. This completes the proof. [

Example2.3. Consider ann X n MCC. Let n” = 2°. For the perfect shuffle permutation,
M={p-Lp/2-1},Q=8=L"=R" =0 (p—-1)=1Ilp/2~1)=p/2 - 1and
glp—1)=g(p/2 — 1) =2""" From (2.5) we obtain

BA)=2(g(p— 1) +g(p/2 = 1)) =2+ 27" =2n.
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TABLE IV. THE LowEr BOUND FOR SOME COMMON PERMUTATIONS ON AN nn X n MCC

Permutation M,Q,S,L,R” KA B(A)

Matrix transpose M={p-1Lp=-2...,0} 4n—1)

Bit reversal M={p-Lp—-2,..., 0} 4(n—1)

Vector reversal ST={p-Lp-2,...,0} 4(n—1)

Perfect shuffle M= (p - Lp/2-1} 2n

Bit shuffle Mo=Eo= {p/2-1,p/2-2,..., [p/41) 8n — 6x2/P/41 — 2402 P 1P
M, =

(Eo) {(p—2.p—4 ..., 2p/40) 3

For vector reversal, S7 = {p — 1 p —2,...,00and M = Q=L =R~ = . Hence,

p/2—1

B(A) =2 Z g =4 Z 2 = 4(n — 1).

Table IV gives the values of the sets M, Q, $7, L™, and R™ for many of the permutations
of Table 1. Only nonempty sets are explicitly specified. The last column gives the value of
B. In the entry for bit shuffle, M is partitioned into Mo = M-I and M; = M: ;.

Before concl{xding this section, we derive an upper bound on B(A) independent of A.
THEOREM 2.2. B(4) =229 (. — 1).
Proor. From (2.3) it follows that B(A) is maximized when L™ + R™ + S = (. So,

BA='S (81AD +50)=2 3 8()=2 3 (1)

For an n X n mesh, this implies B(A) < 4(n — 1). ~ [

It should be easy to see that the lower bound obtained in this section depends only on
the restriction that data can be routed in only one direction during each unit-route.
Relaxing the model to allow arbitrary PE selectivity during,a route or arbitrary arithmetic
capability in a PE does not affect the bound. However, permitting multidirectional
movement of data during a route will lower the bound.

3. Preliminaries to the Algorithm

In this section two routing algorithms which are building blocks of our overall permutation
routing algorithm are developed. The first of these handles bit complementation and the
other handles bit interchanges.

3.1 Brt COMPLEMENTATION. Let C; = [p _—‘l,p —2,...,i+1,—i,i—1,...,0]bea
permutation which differs from the identity permutation only in that the ith bit is
complemented. The permutation C; is easily performed by first routing the data in all PE’s
whose address has a 1 in bit position i to the'corresponding PE with a 0 in bit position i.
This requires a negative route of length g(i) along dimenson u(i). Next, data from PE’s |
with the ith bit equal to 0 are routed to their corresponding PE’s using a positive route of
length g(i) along dimension u(i). This is stated more formally in procedure COMPLE-
MENT. It should be evident that the number of unit-routes R(C,;) used by COMPLEMENT

is R(Ci) = B(C:) = 2g().

procedure COMPLEMENT())
//Perform the permutation C,. Data to be permuted//
//is in the R, registers//
R, < R, (i) //transfer to routing registers for PE’s with bit i = 1//
ROUTE(u(i), —g(i)) //move to corresponding PE’s with bit i = 0//
R, < R, (—i) //only PE’s with bit /i = 0 are enabled//
ROUTE(u(f), g(i))
R, < R, (i) -

end COMPLEMENT
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F16. 3. Data movement for bit interchange B,,. Each quadrant represents one-fourth
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3.2 Bir INTERCHANGE. Let B;; denote the permutation [b,-1, by-q, ..., bo] in which b;
= &j, bj = i, and b, = r for r & {i, j}. In addition, if u(i) = u(}), then b, = 0 and b, = 0.
In words, By is a permutation in which only bits i and j get interchanged (with possible bit
complementation). Bits may be complemented only when i and ; are in different dimen-
sions. Figure 3 shows the data exchanges corresponding to this permutation for all sign
combinations of b; and b;. _

The permutation B; can be performed in a very straightforward manner using only
B(By) unit-routes. Our algorithm (procedure INTERCHANGE) considers the following
cases:

(1) u() = u(j). In this case the data movement is as in Figure 3(a). Data in a PE with
bit i = 0 and bit j = | get interchanged with those in the corresponding PE with bit i = 1
and bit j = 0. Note that PE’s with bits / and j the same are not affected. This interchange
is carried out by first moving the data from the PE’s with bit i = 0 and bit j = 1 (i.e., PE
selectivity (—, j)) to the PE’s with bit i = 1 and bit j = 0 (i.e., PE selectivity (i, —f)) (lines
3 and 4). This requires |g(i) — g(;)| unit-routes along dimension u(i). Then, using an
additional | g(?) — g(/)| unit-routes along dimension u(i), data from PE’s (i, —j) are moved
to PE’s (—i, j) (lines 6 and 7).

(ii-a) u(i) # u(j) and (b; and b, positive). (See Figure 3(a).) Once again there is no bit
complementation, and the interchange is between PE’s (—i, j) and (;, —). In lines 12 and
13 data from PE’s (—i, j) are moved to the PE’s (i, —) by using —g(/) unit-routes along
dimension u( ) and then g(i) unit-routes along dimension u(7). In lines 14 and 15 the move
from (i, —j) to (—i, j) is accomplished. The total number of unit-routes is 2(g(d) + g(y).

(ii-b) u(’) # u(j) and (b; and b; negative). (See Figure 3(b).) In this case data in PE’s
(=i, —j) are to be interchanged with data in PE’s (i, j). Note that data in PE’s (—i, ;) and
(i, =) are not affected by the permutation. The permutation By is carried out in a manner
similar to that of (ii-a). The code is given in lines 17-21. The total number of unit-routes
is 2(g(d + g()))-

(ii-c) u(i) # u(j) and (b; < 0 but b; = 0). (See Figure 3(c).) Now, the data movement
may be described by the cycle: Move data from PE’s (—i, —j) to PE’s (—i, J); from (—i, j) to
(@, )); from (i, j) to (4 —j); and from (i, —j) to (=i, —). The code for this routing is given in
lines 23-31. The total number of unit-routes is again 2( g(i) + g( D)

(li-d) u(i) # u(j) and (b: = 0 and b; < 0). (See Figure 3(d).) The data movement here
follows a cycle similar to that for case (ii-c). Data from PE’s (—i, —J) are to be moved to
PE’s (i, —); from (i, —j) to (i, j); from (i, j) to (~i, j); and from (=i, j) to (—i, —j). The
code for this is similar to that of lines 23-31 and is omitted. The number of unit-routes
needed for this case is also 2( g()) + g()).

The length of procedure INTERCHANGE can be reduced somewhat by combining
cases (1i-b), (ii-c), and (ii-d). We have chosen not to do this in our presentation as the
longer version more clearly describes the data movement. As remarked in the case
discussion, the number of unit-routes, R(B;), used to perform B equals 2/(i, /) = B(B,)
(recall that L™ = R™ = §™ = J for By).
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line procedure INTERCHANGEC(, J, by, b))
//Perform the permutation B;//
case

1
2 wu(i) = u(j): //This implies b, = 0 and b; = 0//
3 R, « R, (=i, )
4 ROUTE(u(i), (i) = g(/))
5 R, < R, (4, —j)
6 ROUTE(u(i), (/) — (1))
7 R. < R (—4,))
8 u(i) # u(j):
case
10 :b; = 0'and b; = 0: //Figure 3(a)//
11 R, <R (-4 ))
12 ROUTE((/), ~g(/)); ROUTE(u(:), g())
13 R, o R (G, =)
14 ROUTE(u(?), —g(i)); ROUTE(u(}), g(/))
15 R, « R, (=i, j)
16 :b; < 0 and b, < 0: //Figure 3(b)//
17 R, « R, (~i, —/)
18 ROUTE(u(), g()); ROUTE(u( 7 g
19 - RreR(G))
20 ROUTE(u(i), —g(i)); ROUTE(u( 7). =g
21 R « R/ (—i, —f)
22 :b; < 0 and b; = 0: //Figure 3(c)//
23 R, « R, (—i, )
24 ROUTE((j), (/)
25 R, < R (—i,j)
26 ROUTE(u(i), g(i))
27 R, < R ()
28 ROUTE(u(j), —g(}))
29 R, = R (i, —j)
30 ROUTE(u(i), —g(i))
31 R; « R, (—i, —j)
32 :else: //Figure 3(d). The code for this is similar to that for b, <Oand b;=0//
33 endecase
34 endcase

35 end INTERCHANGE

4. Two-Dimensional MCC’s

Any permutation A for a two-dimensional MCC can be performed in B(A) unit-routes
using procedures COMPLEMENT and INTERCHANGE of Section 3. First, however,
the permutation A must be factored so that it is the product of permutations of type C; and
B,. (If X, Y, and Z are three permutations, then X = Y- Z iff permutation X is equivalent
to first performing permutation Y and then Z. Y and Z are factors of X; X is the product
of Y and Z.) The factorization of A into factors of type C; and By is to be done in such a
way that the sum of the unit-routes needed for each factor does not exceed S(A).

We first show how to factor out bit complementation for bits of type S, L™, and R™. Let
ibea complemented bit. Then A may be factored as A = C;A” where A’ differs from A
only in that A/ = |A;|. Such a factorization will be called precomplementation. The
permutation A may be performed using COMPLEMENT for C; and then performing A’.
The number of unit-routes R(A) used is R(C,) + R(A") = 2g()) + R(A’). From Table III
one readily obtains the following relationship between B(A) and B(A’):

B(A)Y — 2g(D) if ieS™+L7,
BA) = {B(A) - 2g(| Ai) if iERT, 4.1
B(A) if ieE".

From (4.1) and the knowledge that B(C,) = 2g(i), it follows that if precomplementation
is used for i € (E~ + R7), then B(C;) + B(A’) > B(A); and if it is used fori € (S8~ + L7),
then B(C)) + B(A’) = B(A). Since we are attempting to obtain an algorithm using only
B(A) unit-routes, precomplementation cannot be used for i € (E” + R7).
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Fic. 4. Bit movement for Example 4.1

i € R™ can be handled using postcomplementation. Note that every permutation A in
which bit i is complemented can also be factored as A = A’Cja, where A’"is as before.
Such a factorization is called postcomplementation. Equation (4.1) still holds for A’ and we
see that B(A") + B(Cja,) = B(A) fori € R™. '

i € E” cannot be factored out using either post- or precomplementation and yet meet
the requirement on 8. This does not pose a problem at this point as complementation of
such bits is permitted in B,-type permutations. By repeatedly applying pre- and postcom-
plementation for bits in S + L™ + R, A may be factored into the product form below:

A= JI C-A" ][ Cay

€S +L) iER™
This factorization has the property that

BAY= Y BECY+PBA)+ ¥ B(Cay.
(5 +L7) i€R-
Example 4.1. Let A = [-3, —4, +2, —0, =5, —1]. For an 8 X 8 MCC we get ST =
{4}, L” = {0}, R = (5,2}, E” = {1}, and E* = (3} (see Figure 4). Thus, A is factored
into the product

A= C4Co[3, 4, 2, O, "‘“5, l]CaCo

Our algorithm will perform A by first performing C, and C, using COMPLEMENT;
then the permutation {3, 4, 2, 0, -5, 1] will be performed (in a manner yet to be specified);
and finally, C; and Co will be performed using COMPLEMENT.

Once complemented bits in (8™ + L™ + R7) have been factored out, we are left with a
permutation in which all complemented bits are from E~. We now discuss how a

- permutation A with this property can be performed in S(A) unit-routes. We shall factor A
into factors of type By;. This factorization is a little more involved than that used earlier. In
order to develop the factorization, we need to introduce some terminology. This is done
below in Definitions 4.1 and 4.2.

Definition 4.1.  Let A be any permutation. Bits / and j are interchangeable in A iff there
exists a permutation By (as defined in Section 3) such that if A = B,A’ then B(A) = B(By) .

+ B(A').

Definition 4.2. For any i, j, i # j, the (i, j) path denoted P(i, j) is the sequence of bit
indices defined as follows:

Gi=1,..,J) if w(@)=u(j) and i>j,
PG =3Gi+1,...,)) if u(i)=u(j) and i<},
Goi= Lo i= 1), = 1), o j= L) if u(i) # u()).

Note that when u(i) # u(j), P(i, j) consists of a descending bit sequence in L. followed
by an ascending bit sequence in L., (see Figure 5).

Lemma 4.1, Let i, j, and k be distinct bit indices. f (i, j) = f (i, k) + f(k, ) iff k is on the
(i, j) path.

Proor. We prove only the “if” part. The “only if” part is not used in the later
development and is left to the reader.

Case 1. u(i) = u(j). k must be in L and either i < k < jor i > k > j. Without
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loss of generality, we may assume i > k > j. Hence, f(i, j) = g(i) — g(J), f@ k) =
g(i) — g(k), and f(k, j) = g(k) — g())- !

Case 2. u(i) # u(j). Now, either (u(i) = u(k) and i > k) or (u(j) = u(k)y and j > k).
If the latter is the case, then f(i, j) = g(/) + g(j); fG, k) = g() + glk); and f(k, j) =
g(j) — g(k). If the former is the case, then /' (i, j) = g(i) + g(j); S, k)= g(i) — g(k); and
fk,j) =gk +g(j). O

TueoREM 4.1  Let A be any permutation in which all complemented bits are of type E~.
Bits i and j are interchangeable iff i is on the { j, |A;|) path and j is on the (i, | Ai]) path.

ProoF. Once again we prove only the “if”” part. The “only if” part will not be used by
us and its proof is left to the reader. : _

Define the interchange permutation By = [b,_y, ..., by] with b, = r for r & (i, J} and b,
and b; as below:

b = J if A=0 or ui)=uj),
“|=j  otherwise;

bw{i if Ai=0 or u(i)=u())
)j = : i
- otherwise.

Thus, bits { or j are complemented by By only when i and J-are in different partitions L.
and L). It s easy to see that A may be written as A = B;A” where A, = A, for r & {i, ¥
and

A if b=
A““{|A,- if b=

L] A if b=},
A’_{!Ail if b= —j.

From the definition of A, B, and A/, it follows that all bits in A’ that are complemented
are in E. Hence, from (2.4) we obtain

BA) = Elf (r, |AZD. “4.2)

Using (2.4), Lemma 4.1, 8(B;) = 2f (i, j), and (4.2), we obtain
BA) = glf(n [AA)
=fGIAD+IGIAD+ % 1 1A
=SCHD+SGANAD + G D +1G |A)]) + rel;;i‘ﬂf(r, |AZD
=Y@)H+ UMD+ AD + re,me)f(r, [AZD
= B(By) + B(A").
Hence, i and j are interchangeable in A. [

The preceding theorem tells us how a permutation A should be factored into products
of the type B;. The next theorem shows that every permutation A for a two-dimensional
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TABLE V
Ar v Ap Imax i Af oo Ag
32107654 3 4 32170654
32170654 4 5 32710654
32710654 S 6 37210654
37210654 6 7 73210654
73210654 2 3 73216054
73216054 3 4 73261054
73261054 4 5 73621054
5 6

73621054 76321054

MCC can be factored as the product
A= Il Ci'HBij" ‘Ig CiA,j» 4.3)
wEeRr-

i€(S~+L")
where each By is an interchange on an interchangeable pair (7, j).

THEOREM 4.2. Let A be a permutation for a two-dimensional MCC. If there exisis an r
such that |A,| # r then A contains an interchangeable pair of bits.

Proor. We consider two cases:

(i) L ## @. In this case Ly # @ for some k € (0, 1}. Let Imax = max{L;} and i =
min{j:j € (Ex + Ry) and j > Imax}. Note that since L, 5 &, there must exist at least one
j with the desired property. So, i exists. One may verify that bits /max and i are
interchangeable.

(i) L = &. Since |A,| # r for some r, the sets Eo and E, cannot be empty. Let ¢ =
min(Eq) and e, = min(E;). Since L = &, e; must be on the (e, |A.|) path, and e on the
(e1, |A.,|) path. Hence, e, and e, are interchangeable. []

The preceding theorem together with our earlier discussion on pre- and postcomple-
mentation guarantees that every permutation for a two-dimensional MCC can be factored
as in (4.3). Since procedures COMPLEMENT and INTERCHANGE perform their
permutations in B(C;) and B(B;) unit-routes, respectively, it follows that A can be
performed in B(A) unit-routes.

Example 4.2. Consider the permutation A =[p/2 —1,...,0,p—1,..., p/2] fora
1 X n MCC. This defines the transpose of a square matrix stored in row-major order on a
one-dimensional MCC. S=E=@. Lo={p/2-1,...,0}and Ro= {p—1,..., p/2}."
All bit exchanges fall into case (i) of the above theorem. Let us work out the bit exchange
sequence with p = 8. We have A7Ag- - - Ao = 32107654. Imax = 3 and i = 4. Following the
interchange, A%A¢---Ab = 32170654. Now, Imax = 4 and i = 5. A%AG---Aj is now
32710654. The sequence of Imax, i, and A’ values is given in Table V. The bit exchange
sequence is (3, 4); (4 5); (5, 6); (6, 7); (2, 3); (3, 4); (4, 5); (5, 6); ... It should be clear that
for general P, O( P %) bit exchanges will be needed. Hence, performmg the permutation A
will require O(p®) long-routes, O(p %) register transfers, and B(A) unit-routes.

While all permutations can be performed with S(A) unit-routes using pre- and postcom-
plementation and the bit interchange factorization as suggested by Theorem 4.2, this
process may require O(p?) bit interchanges (Example 4.2). This in turn would require
O(p®) long-routes and register interchanges. The number of bit interchanges can be
reduced to O(p) by factoring A according to the cycles contained in A. Define D M) =
i, D(i) = |Ai|, and D'(i) = |Ap()|. i and j are in the same cycle of A iff i = D'(j) for
somer, r<p-—1

Example 43. Let A = [5,0, —4, 1, =2, =3]. D°(4) = 4, D'(4) = 0; D*4) = D'(0) =
3: D%4) = D%0) = D'(3) = 4. Thus, bits (4, 0, 3) form a cycle in A. The other cycles are
(5) and (1, 2).

It is easy to see that the cycles of any permutation A are disjoint.
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THEOREM 4.3. If A is a permutation composed of k disjoint cycles then performing A
requires at least p — k bit interchanges.

Proor. Trivial. O

To perform A using the fewest number (i.e., p — k) of bit interchanges, we require that
bit interchanges be performed only between interchangeable bits in the same cycle.
Following along the lines of Theorem 4.2 one can show that every cycle containing at least
two bits contains an interchangeable pair.

Procedure PERMUTE(A, p) uses COMPLEMENT and INTERCHANGE to perform
the permutation A on a two-dimensional MCC with N = 27 processors. Lines 1-3 eliminate
all bits in 8™ + L™ In lines 4-24 permutation cycles are followed until an interchangeable
pair of bits is found. The loop of lines 5-23 forces the algorithm to stay in the cycle for j
until this cycle contains only one bit. If a cycle contains no bit in L then the interchangeable
pair is found exactly as in Theorem 4.2. This is done in lines 7-12. If the cycle contains a
bit in L then the first interchangeable pair found (line 17) is used. Note that u(i) =
u(lmax). The reader may verify that the signs (but not the values) of the third and fourth
parameters in the calls to INTERCHANGE (lines 11 and 18) adhere to that given by
. Theorem 4.1 for b; and b;. The values of these parameters are ignored by the procedure
INTERCHANGE.

It is easily seen that PERMUTE takes O(p®) = O(log?N) time to determine the routing
sequence. The number of unit-routes is S(A), and the number of long-routes and register
transfers are both O(p). For an n X n MCC, it follows from Theorem 2.2 that PERMUTE
uses at most 4(» — 1) unit-routes for any permuiation.

ALGORITHM 4.1

line procedure PERMUTE(4, p)
//Perform A on a two-dimensional MCC//
for j «- 0 to p — 1 do //precomplementation//

i
2 ifj € (S™ + L") then [COMPLEMENT(j); 4, «- —4,]
3 end
4 for j «< 0 to p — 1 do //bit interchanges along cycles//
5 while | 4,] 5 j do
6 i« j; eq <« e < p, success < false
7 if i € L then [repeat
8 €u) < min(i, eu)
9 i |Ai;
10 until i € L ori=j
1 if i & L then [INTERCHANGE(eq, €1, 4e,, 4e,);
12 t—|Aeg); Aey < |Ae]; A, — 1]
13 else
14 jrepeat
15 . ifi€ L then Imax «i
16 else
17 [if |Ai} < imax or i € E then
18 [INTERCHANGE(, Imax, | A, | Atmax])
19 te— A A; < Apnax, Atmax < I
20 success « truel];
21 ie—|A)
22 until success]
23 end
24 end
25 for j «< 0 to p — 1 do //postcomplementation//
26 if A; = —j then COMPLEMENT( )
27 end

28 end PERMUTE

Example 44. Let us apply the algorithm to the perfect shuffle permutation, A =
[0,p—L,.... 1], performed on an n X n array. The algorithm yields the following sequence
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INTERCHANGE: (1,0) (3.2) 2,0
Y
0(1(2|3 0(2]|1|3 0,213 018(1|9
41567 46573 8110|911 21103 |11
8|9|10/11 8|10} 9 |11 46157 4112|5113
12(13(14{15 12114|13|15 1413715 6 (14| 7 |15

Fig. 6. Perfect shuffle
of INTERCHANGPE’s:

(P/z— l’P/Z—z)’(P/z_z’P/2—3)9’(1’0)’
(p-Lp=2,(p—2p—3)....,(p/2+ 1, p/2), (p/2, 0).

Let N = 4 X 4; thus p = 4. The sequence of bit interchanges becomes
(1,0) 3, 2); (2,0).
The PE-exchanges corresponding to this are shown in Figure 6.

Example 4.5. Consider the bit shuffie permutation on a 16 X 16 array. Then A =
[7,5,3, 1,6, 4, 2, 0. The algorithm gives the following sequence of bit interchanges:

(2, 1); (1, 4); (3, 5); (6, 3).

5. g-Dimensional MCC’s (g > 2)

When ¢ > 2, some permutations may not contain interchangeable pairs. As an example,
consider the case g = 3 and A = [A,-y, ..., AJ] where A, =r, r & (i, k}, Ai=j, Aj=
k, and Ay = i for some i € I, j € I, and k € L. B(A) = 2(g(i) + g(j) + gk)). The
factorization A = BB has B(By) + B(Ba) = 4g(i) + 2(g(j) + g(k)) > B(A). All other
factorizations also have a f value in excess of 5(A). '

In order to perform permutations in S(A) unit-routes, it is necessary to handle bit
interchanges in a different manner when u(i) # u(j). The interchange of bits i and j is
carried out in three stages: FOLD(i); EXCHANGE, j), and UNFOLD(i):

FOLD(). During FOLD(/) the data in all PE’s with ith bit 1 are moved to the
corresponding PE’s with ith bit 0 and transferred to register R,. Procedure FOLD is a
formal description. "

EXCHANGE(, j). When EXCHANGE is invoked, all relevent data are lying in the -
R, and R, registers of PE’s with bit i = 0. Let us denote by ey, 1, €2, and e3 the data
originally in PE’s (=i, =), (i, j), (i, =), and (i, ), respectively (see Figure 7(a)). Thus, e,
e, s, and e; data are in registers Rs (=i, =j), Rs (=4, j), Re (=i, —j), and R; (=4, j),
respectively, when EXCHANGE is invoked (Figure 7 (b)).

‘EXCHANGE interchanges the data so that if, following the exchange, data in R, (=)
are moved to R, (i), then the bit permutation B;; will have been performed. There are four
cases to be considered:

(i) A; = 0and A; = 0. In this case we want to end up with e, €1, €2, and es data in
R; (=i, —=j), Re (=i, —j), Ry (=i, j), and Re (4, j), respectively (Figure 7 (c)). This may be
accomplished by moving data from R, (j) to R, (=) and from R, (—j) to R, (). This is

- done in lines 2-6 of procedure EXCHANGE.

(i) Ai<0and A;<O0. The final data arrangement required is shown in Figure 7(d).
This may be accomplished by first interchanging the data in R, and R, to get the
configuration of Figure 7(e). Next, e; and e; may be exchanged using the same steps as in
case (i). Finally an interchange between R, and R, is needed. One may verify that lines
1-7 accomplish the exchange.

(iii) A;<0and A;=0. Figure 7(f) shows the final data arrangement needed (see also
Figure 3(c)). One may verify that EXCHANGE obtains this arrangement.
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FiG. 7. Bit movement for EXCHANGE

(iv) A; = 0 and A; < 0. This time the data arrangement needed is as in Figure 7(g)
(see also Figure 3(d)). One may verify that EXCHANGE obtains this arrangement.

UNFOLD(). This procedure moves data from R, (—i) to R, (i). Hence, it accomplishes
the move indicated by the arrows in Figure 7(c), (d), (f), and (g).

ALGORITHM 5.1

procedure FOLD(i)
R, <R, ()
ROUTE(u(i), ~g(i))
R; < R, (=)

end FOLD

ALGORITHM 5.2

line procedure EXCHANGEY, /)
t if A; <0 then R, & R, (—i)

2 R, < R, (j)

3 - ROUTE(u(/), —g(j)

4 R, <> R/ (—)

5 ROUTE(u(/), g(/)

6 R, —R, ()

7 if A, < 0 then R, <> R, (—i)

8 T —|Al A —|A] A T

end EXCHANGE
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ALGORITHM 5.3

Procedure UNFOLD(i)
R, « R, (—i)
ROUTE(u(i), g(i))
R, « R, (i)

end UNFOLD

Let us see how FOLD, EXCHANGE, and UNFOLD can be used to perform the
permutation A defined at the beginning of this section. The factorization to be used is
A = B;B;. This can be carried out as follows: -

FOLD(i); EXCHANGE(, j); EXCHANGE(, k); UNFOLD().

The total number of unit-routes is 2( g(?) + g(Jj) + g(k)), which is equal to B(A).

Now, let us see how this three-stage interchange may be used to perform any permutation
A in B(A) unit-routes. The permutation algorithm is conceptually quite similar to
PERMUTE. We follow cycles in the permutation. If the current cycle contains a bit i € L,
then it must also contain an interchangeable pair as required by line 17 of PERMUTE. In
this case the bit interchange proceeds as before. The two-dimensional and g-dimensional
algorithms differ only in their handling of a cycle containing no bit of type L. In this case
PERMUTE enters the then clause of line 11. At this time the cycle including bit i contains
only bits of type E and R. Such a cycle is an RE-cycle. We shall show how to remove all
bits of type E from an RE-cycle leaving behind a set of cycles containing only bits of type
R and L. '

Let i be the smallest bit on an RE-cycle. Bit i must be of type E. Follow the cycle
starting from bit i (see Figure 8(a)). Let the sequence of type E bits be i, i1, iz, ..., ir. Note
that u(|4. |) = u(i) as the portion of the RE-cycle from i, to / includes only bits of type R.
If the bit exchanges (i, i), (i, &2), . . ., (i, i) are carried out (in that order), then the RE-cycle
is broken into a set of disjoint cycles which include only bits of type R, S, and L (see
Figure 8(b)). These cycles have the property that performing the permutations described
by them completes the permutation required by the original RE-cycle.

Procedure RE-CYCLE follows an RE-cycle carrying out the bit interchange sequence
described above. It is assumed that i is the smallest bit on the cycle and so i € E. The

L I-\L{I [ & | lrJ}dl [a [ o] Lle\/lil |
R \R/\E/R\,/v R

(b)
Fic. 8. Handling an RE-cycle: (a) an RE-cycle in A; (b) cycle structure following exchanges of E-type bits
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number of unit-routes used is 2( g(i) + g(i1) + g(z) + - -~ -+:g(i.)) where iy, i, . . ., i- are the
remaining bits of type E on the cycle.

procedure RE-CYCLE(/)
FOLD(i)
loop
J< 1A )
while j & E and j 7 i do j < |A,| end //skip R type bits//
if j = i then [UNFOLD(/); return] //end of cycle//
EXCHANGE(, j)
forever '
end RE-CYCLE

If we look at the cycles created following an application of RE-CYCLE we see that
every bit i, iy, ..., i, (i.e., that was previously of type E) is now of type L* or S*. Let B(C)
be the sum of the £ values for all the created cycles. Using (2.3) and the fact that all bits
previously of type E get changed to bits of type L™ or S7,_one can easily see that S(A) =
B(C) +2(g(i) + g(i) + - - - + g(ir)). Hence using RE-CYCLE in place of INTERCHANGE

in line 11 of PERMUTE enables us to perform any g-dimensional permutation A in S(A) .

unit-routes. The changes to PERMUTE are

(i) delete ey < e; « p from line 6,
(ii) delete line 8,
(iii) replace the then clavse of lines 11 and 12 by RE-CYCLE().

Since in the then clause of line 11, /= jand |A.| = r for r <<j and | A;] 5 ¢, it follows that
iis of type E and is the smallest index on the cycle. So, it satisfies the requirements for RE-
CYCLE. Clearly, the number of long-routes and register transfers used by PERMUTE
remains O(p) and the number of unit-routes is B(A).

6. MCC’s with Wraparound

 In this section we determine the amount by which PERMUTE can be speeded if the MCC

has a wraparound connection. Two kinds of wraparound connections are considered:

(1) Orthogonal Wraparound (OW). Here, each PE(i;1, ..., i, ..., i) is connected to
PE(iq~1, ...,(fk e i l) mod ny, - io), 0= k<q

(ii) Propagating Wraparound (PW). Each PE(ig-1, ..., i, ..., lo) is connected to
PE((ig-1, ..., ix £ 1, ..., &) mod N), 0 < k < ¢q. For ¢ = 2, this yields the ILLIAC IV
wraparound scheme.

In the following discussion we shall restrict ourselves to OW MCC’s. Later we will show
the connection between the results obtained for OW MCC’s and corresponding results for
PW MCCss.

A permutation A contains a wraparound distance (or simply I, distance) § along the kth
dimension if it requires data to be moved from PE(m) to PE(d) such that DISTu(m, d) =
Yier, (di — my)g(i) equals either 8 or n, — 8. Note that if any permutation A maps PE(m)
to PE(d), then it also maps PE(r) to PE(d) and DISTw(m, d) = —DISTx(r, d).

THEOREM 6.1.  Let A be a permutation containing the I, distances 8, 8, . . ., §; such that
0=8<8:< -+ <§=<nf2 Let MAXGAP = max;<i=,;{8; — 8,1} where §; = 0. A lower
bound vy, on the number of unit-routes along dimension k needed to perform A on an
OW MCC is given by

yr = min{28;, n. — MAXGAP}.
Prook. The expression for y, may be rewriiten as

yi= min {28, (m — 8) + 8i-1).

=iz
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TABLE VI. B AND y VALUES FOR SOME PERMUTATIONS
ON AN n X n MCC

Permutation B Y
Matrix transpose 4n—1) 2(n—1)

Bit reversal 4n—1) 2n—1)
Vector reversal 4n—1) 2(n - 2)
Perfect shuffle 2n 2(n—1)

Bit shuffle (p/2 even) 8”3_ 2 2vn Sn; 2 Vn

Let Z* and Z7, respectively, be the number of unit positive and negative routes used by
any algorithm to perform A on an OW MCC. Without loss of generality, we may assume
Z" = Z". We wish to show that Z* + Z~ = v,.. If Z~ = §, then Z* + Z~ = 28; = y,. So we
may assume Z~ < §;. Let i, i =< j, be such that §;-1 =< Z” < §;. As pointed out earlier, every
permutation containing the distance §; must also contain the distance —8§;. Since Z~ < §,,
it follows that the routing for the distance —8; must be carried out using positive routes and
the wraparound connection on this dimension. Hence Z* = n, — 8. So Z* + Z™ =
(p—8)+6ia=v. O

y = Y{s v is a lower bound on the number of unit-routes needed to perform a
permutation A on an OW MCC. '

Example 6.1. For an n X n OW MCC, the matrix transpose permutation A =
[p/2—-1,...,0,p— 1, ..., p/2] contains all distances 1, 2, ..., n/2 for both I, and I,.
To see this, observe that data from PE(mp_i---mye 000--.0) are to be routed
to PE(000-::0mp-i1- - -myp). DISTy(m, d) = —Yi.. mg(i), and DISTo(m, d) =
—DIST.(m, d). By assigning all possible 0, 1 values to m,_y- - -my,s, all distances for I, are
obtained. The distances for I, are negative but we know that —DIST:(m, d) also exists
along dimension 1. Using only the distances in the range [0, n/2}], we have MAXGAP =
1 and §; = n/2. Hence, yo = y1 = n — 1 and y = 2(n — 1). Table VI gives the y values
obtained for some other permutations. The y values for bit reversal and perfect shuffle are
obtained by showing that all distances 1, 2, ..., n/2 exist. For vector reversal, it can be
shown that only the odd distances 1, 3, 5, ..., n/2 — 1 exist. The lower bound for bit
shuffle is derived later.

From the proof of Theorem 6.1 it is easy to conclude that any permutation can be
performed in y unit-routes on an OW MCC with “enough” registers and the ability to
route many pieces of data from one PE to another in one step. To see this, let 0 < 8, < 6,
< .-+ < §; = n/2 be the only I, distances contained in A in the range [0, n,/2]. (Note that
a distance 8 > n;/2 is equivalent to the distance —(n, — 8), and § < —n,/2'is equivalent to
the distance n; + 8. So effectively all distances in any A can be thought of as in the range
[~n:/2, nx/2].) Now, if 28; < n, — MAXGAP, then y, = 26;. All routings in dimension k
can be performed using §; positive routes followed by § negative routes. If 26; > n, —
MAXGAP, then y; = (nx — 8;) + 8;—1 for some i, i €[1, j]. Now the routing for dimension
k can be carried out using n, — §; positive routes and 8;-; negative routes.

The preceding scheme, of course, cannot be used on OW MCC’s with a fixed number
(independent of the nx’s) of registers and an ability to send only one word of data from one
PE tq another in one unit-route.

Let a™be the minimum number of unit-routes needed to perform permutation A on a
PW MCC. The following theorem establishes a relationship between y and a.

THEOREM 6.2.  For every permutation A, a =z y — 2(q — 1).

Proor. First, we observe that in a PW MCC data in PE(i,—1, ..., i, ..., i) can be
moved to PE(jo-1, ..., jas fk-1, ..., &) by routing along dimensions k, k — 1, ..., 0.
However, routes along dimension r cannot be used to change a dimension s for s < r.

From Theorem 6.1 we know that y» < m — 1, 0 < k < ¢. Since routings along
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dimensions k, k > 0, do not affect distances along dimension 0 in a PW MCC, it follows
that ao = Yo.

First, we shall establish that o; = y; — 2 when all o, are restricted to be no more than n,,
0 = r < g. Under this restriction, we see that for any dimension j, j > 0, the I; distance can
be reduced by at most 1 because of routes in other dimensions. Now, using the same
argument as used in Theorem 6.1 we see that ; = y; — 2 (for any distance sequence
81, ..., &, distance §; can decrease by at most 1, and n, — MAXGAP can decrease
by at most 1). So under the restriction o < n,, 0 < r < ¢, it is the case that a =
Yoyzy—2g— 1) _ .

When o, is allowed to be more than n,., the theorem follows from the observation that
the number of additional lower dimension routes needed to decrease a higher dimen-
sion distance exceeds or equals the gains to be obtained by this decrease. For example, in
an n; X ng PW MCC suppose ao > no routes are used in dimension 0. The maximum
decrease in any I distance is [ao/nol. So ay = y1 — 2fav/no]. Hence

ar+ oo = yo+ y1+ (e — yo— fao/m0l) = yo + 1 + (a0 — 1o + 1 — 2 [ao/nol).

Let ap = ano + b for some @ > 0 and 0 < b < np. We see that ag — no + 1 — 2[ae/no] =
-2.S0a=y-2. 0O

The remainder of this section is devoted to obtaining a lower bound on the ratio y/£.
The reasons for doing this are twofold. (i) This bound will give us the maximum
improvement one can expect in permutation routing algorithms when going from an MCC
without wraparound connections to one with such connections. (i1) This bound tells us
hew inefficient it may be to use PERMUTE on an MCC with wraparound connections
and ignore these connections while performing a permutation A. We shall show that
v/B = 4 when A has no complemented bits of type S, L, or R; and y/f = 4 when such bits
are allowed.

Before obtaining the above bounds on the ratio y/f, we shall obtain a relationship for

ve int terms of the MAXGAP in an unordered sequence of I, distances ai, as, . .., a; where
a; € [~ nel.

THEOREM 6.3. Let a = ay, as, ..., a; be a sequence of Ir distances contained in the
permutation A. Then, :

Ye = wa) = min{2aq;, n, — MAXGAP(a)},
where MAXGAP(a) = maxi<i<;{a; — ai1} and ao = 0.

Proor. We shall show that the sequence ay, . . ., g; can be transformed into a sequence
of I, distances 8y, ..., &, with the property 0 < 8 < 8 < « -« < 6, < /2 and p(d) = p(a).
Since yx = p(8) (Theorem 6.1), it will follow that vy, = u(a). _

First, consider the sequence of I, distances b = (b4, by, .. ., bj) obtained by sorting « into
nondecreasing order. Clearly, b is a sequence of I. distances in A and b, = a; and
MAXGAP(b) = MAXGAP(a). So u(b) = u(a).

Next, eliminate from » multiple copies of any distance so as to get a sorted sequence of
distinct distances (—x and +x are distinct) ¢ = ¢y, €2, ..., Cs. p{c) = p(b).

Since every permutation containing an I, distance x also contains an I, distance —x
(DISTw(m, d) = —DISTw(, d)), we can transform c¢ into an ordered sequence of non-
negative distinct distances f = fi, fo, ..., fr. This is obtained from ¢ by replacing each
negative ¢; by —¢; and inserting —¢; into the correct spot in the ordered sequence. Clearly,
fi = ¢; and MAXGAP(f) <= MAXGAP(c). So, u( f) = (o).

Now, we need to eliminate from f all distances greater than n,/2. Assume f; > n/2 (if
fe < n/2, then all f; < n,/2 and y, = u( f) and we are done). If A contains an [, distance
x, then it contains the distance —x which is equivalent to the distance n, — x. Hence we
may replace each f; > n,/2 by the distance n, — f; to get the ordered distance sequence h
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= hy, hs, ..., he. Each h; is distinct. To get h from f, some rearrangement and elimination
may be necessary. It should be clear that every distance in k is an I, distance in A and
MAXGAP((h) = MAXGAP(f). However, h, < np/2 < f.

Since 2f; > ni > mp — MAXGAP(f), p(f) = nx — MAXGAP(f). We wish to show that
wh) = min{2h,, n — MAXGAP)} = p(f) = m — MAXGAP(f). If ih) = np —
MAXGAP(k), then since MAXGAP(h) = MAXGAP(f), wh) = p(f). So assume

w(hy = 2h,.

Let r be largest index such that f <= np/2. If np — frr1 S fr (fre1 €XiSts as f; > nx/2), then
he = fr and 2k, = 2 = (e — fro1) + fr 2= me — MAXGAP(f) = p(f). K np — fre1 > fo, then
by = 1y — fra1 and 2k, = 2 = fran) > (1 = fra1) + fr = m — MAXGAP(f) = u(f). O

THEOREM 6.4. vi/Br =% when Sy + L; + Ry = @.

Proor. We shall show that whenever S; + Lz + Ry =, A contains a'sequence § of
I, distances for which p(8)/B8: = . Hence, vi/fr = % .

Let X = Ep + RS + 8f and Yy =L} + (B-A7'(10) = {i-1, s, . . ., io}. We may assume
that i,, ..., Ip are ordered such that

IA I>lAih2‘>°">‘Aiol'

L2

Let m be the address of any PE and let SEL, be the set of T}, bits (see Section 2) in m
having value as given in the statement of Lemma 2.1. From Table Il it is easy to see that
if X;, C SELy, then DIST(m, d) = Yieser,—x, hx(i). Let G(s) = X, + {i-: bit » is one in the
binary representation of s}. By choosing SELx = G(5), 0 = s < 2 — 1, we see that A
contains the following distance sequence &: '

Go=20 //SELR = Xp//

81 = hu(io) J/SELy = X, + {io}//
8y = hx(i1) . //SELp =X, + {ir}//

8y = h};(i1) + hk(io) //SELk Xy + {l], lo}//
84 = hy(is)

8 = hk(iz) + hk(io)
8¢ = hp{ia) + (i)
87 = hu(iz) + ha(ir) + ha(io)

;S,« = Yiev, ha(i) = Bu/2 //8ELy = X + Y= Tr//

For 8, we see that
a—1
MAXGAP(8) = max (8, — 8—1) = hp(is) — 2 ha(ir)
1=r=j
for some g, 0 < a=<¢— 1. Recall that for i € Y, |Ai| € I and h(i) = g(lA,-D. Using this
and the fact that n, is a power of 2, we obtain
m=F gD+1= J s+ 2g(IA b

il =393
2 z;lAl

t—1 t—-1
= ¥ glA) + (A )= L BBy + 2ha(ia).

r=a+1

Hence,
t-1
-~ MAXGAP@) = ¥ (i) = Y ha(i) = Bi/2.
=0 ) €Y,

From this and the observation that 28, = B, > B./2, it follows that u(6) = B./2. [
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Theorem 6.4 can be used to arrive at the y value for the bit shuffle permutation given
in Table VI. For the case of an MCC without wraparound, we can show that (assuming
p/2 is even)

Bo=2(n— vn) and Bi=2n—1)/3.

Hence, yo = (n —va) and y1 = (n — 1)/3. We can get a better bound on y, using Theorem
6.3 and the distance § = £,/2 = (n — 1)/3 (recall that DISTw(m, d) = B,/2 for m chosen
as in Lemma 2.1). We get y1 > p() = min{2(n — 1)/3, n — (n — 1)/3} = 2(n — 1)/3. So
Yy=v+yn=0Gn-2)/3-Vn ’

The bound yx/Br = } does not hold for all A with Si + Ly + Rz # @. To see this,
consider A = [0, —1] and a | X 4 MCC. From Table II and eq. (2.3) we obtain B8 = f,
= 2(g(l) + g(0)) = 6. The only I, distance, §, on a 1 X 4 OW MCC is 1 corresponding to
the exchanges between PE(0) and PE(3). Hence, y = min{2, 4 — §} = 2. So v/B =% We
shall next show that y/f = 1 for all permutations A.

THEOREM 6.5.  vi/Br = } whenever 8, > 0.

Proor. This theorem is proved by considering five cases. Each case establishes the
theorem for a range of B, values. Note that S € [0, 2(nx — 1)]. The details of the proof
may be found in [10]. [

7. Conclusions

We have developed an algorithm to perform a rich class of permutations on an MCC. If
the MCC has N = 27 PE’s, then our algorithm uses O(log?N) units of control unit time to
decide the routing sequence. The number of unit-routes used is B(A), where A is the
permutation being performed. Hence it is optimal as far as unit-routes are concerned. The
number of long-routes is O(log N). In Section 6 we showed that if the algorithm is used on
MCC’s with wraparound, then it will use no more than three'times the optimal number of
unit-routes. .
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