SIAM]J. COMPUT. © 1980 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, Fetruary 1980 0097-5397,80/09001-0007 $01.00/0

BOUNDS FOR LIST SCHEDULES ON UNIFORM PROCESSORS*

YOOKUN CHOt AND SARTAJ SAHNI#

Abstract. Bounds are derived for the worst case performance of list schedules relative to minimum finish
time schedules for uniform processor systems. The tasks to be scheduled are assumed to be independent and
only nonpreemptive schedules are considered.

Key words. list schedules, nonpreemptive schedules, uniform processors, independent tasks

1. Introduction. A uniform processor system consists of m, m =1, processors
Py, Py, - - -, P,.. Associated with each processor is a speed s;, s; = 1. In one unit of time P;
can carry out s; units of processing. Without loss of generality, we may assume s; < s;..1,
1=i<m and s, = 1. We are given n independent tasks that are to be processed. Task i
requires ; units of processing (f; is the task time of task 7). If task / is assigned to P; then
t;/s; time units are needed to finish this task. A nonpreemptive schedule is an assignment
of tasks to processors such that each task is assigned to exactly one processor. For each
processor the order in which tasks are to be processed is also specified. If T; is the set of
tasks assigned to P; then the finish time of P; is (3. r.t;)/s:. The finish time of the schedule
is the time at which all processors Y ;c r,t; have finished processing.

For the case when s; = 1, 1 =i = m the processor system defined above is known as
a system of identical processors. It is well known that finding minimum finish time
nonpreemptive schedules for identical processors with m =2 is NP-hard (see e.g. [7]).
Several heuristics to obtain “near optimal” schedules for identical processors have been
studied. Graham [4] has studied the performance of LPT schedules. In an LPT schedule
tasks are assigned to processors in nonincreasing order of task times. Whenever a task is
to be assigned, it is assigned to that processor on which it will finish earliest. Ties are
broken arbitrarily and tasks are processed in the order assigned. Let f be the finish time
of an LPT schedule for any given task set. Let f* be the finish time of an optimal
schedule. Graham [4] has shown that

flf*=4/3-1/(3m).

Another heuristic studied by Graham is the list schedule. This scheduling rule differs
from the LPT rule only in the order in which tasks are considered for assignment to
processors. A list (or permutation) of the indices 1, 2, - -, n is provided. Tasks are
considered in the order in which they appear on this list. If f is the finish time of a list
schedule and f* that of an optimal schedule for any given task set then it is known [3]
that:

ffrs2-t
m

Hence, for identical processor systems LPT schedules are better than arbitrary list
schedules by only a constant factor. Note that an LPT schedule is a special case of a list
schedule (i.e., the case when the tasks in the list are ordered in nonincreasing order of
task times). Other heuristics for identical processor systems have been studied by
Coftman, Garey and Johnson [1] and Sahni [9].

* Received by the editors July 25, 1978. This research was supported in part by the National Science
Foundation under Grant MCS 76-21024.

T Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455. Presently
at Seoul National University, Korea.

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

91

92 YOOKUN CHO AND SARTAJ SAHNI

Another special case of a uniform processor system is when s; =1, 1 =i/ <m and
sm > 1. This case has been studied by Liu and Liu [8] and Gonzalez, Ibarra and Sahni
[2]. Liu and Liu [8] considered a variation of the LPT rule defined here. They require a
task to be assigned to that processor that becomes idle first rather than to the processor
on which it will complete first. For this rule they show that

f/f*<{ 2(m—1+54)/(sm+2) fors,=2,
= (m—1+s,,)/2 for s,, >2.
Gonzalez, Ibarra and Sahni [2] show that for LPT schedules
1+V17

fiff=y 4 7

3/2-1/2m), m>2.

Finally, LPT schedules for general uniform processor systems have been analyzed
by Gonzalez, Ibarra and Sahni [2]. They show that

FrE=2m/(m+1).

m=2,

Liu and Liu [8] have analyzed list schedules for the case when si=1,1=i<m and
Sm < 1. Their analysis assumes that the next task on the list is to be assigned to the first
idle processor. Under this assumption they obtain the bound:
" m—1

¥t -

1t Sm+m—1

A survey of similar results for other machine and task set models appears in [5]. In
this paper we analyze arbitrary list schedules for the case of general uniform processor
systems and also for the special case when s; =1, 1=/ <m and s,, > 1.

In § 2 we show that for the general case

(1+5)/2, m=2,

_—
1t 2{1+(\/2m—2)/2, m>2.

For the case of m = 6 the bounds given above are tight in the sense that there exist
task sets and lists for which f/ f* equals the stated bound. For m >6 we are unable to
show the bound tight and suspect that it is not tight. We also present an example that
shows that f/ f* is not bounded by any constant. Hence, while for identical processors
LPT schedules are better than list schedules by only a constant factor, for general
uniform processor systems the ratio of the finish time of an LPT schedule to that of an
arbitrary list schedule is not bounded by any constant (but by some function of m).

" In § 3 we consider the special case of s; = 1,1=1<m ands,, > 1. For this case we
show that

. <(1+J§)/2, m=2,
f/f*={3—4/(m+1), mz=3.

Furthermore, the bound is tight.

2. General uniform processor systems. In this section the following theorem is
established:

THEOREM 1. Lett, 1 =i = n be the task times of n independent tasks. Lets, 1=i=m
be the speeds of the m processors in the system. Let f be the finish time of the schedule
obtained using any given list L and let f* be the finish time of an optimal schedule for the

LIST SCHEDULES ON UNIFORM PROCESSORS 93

task set. Then,

A J(1+V5)/2, m=2,
f/f*{1+(J2m -2)/2, m=3.

Furthermore, for m = 6 there exists task sets, lists and processor systems for which f/ £
equals the above bound.

Theorem 1 will be proved in several steps. First, we derive some relanonshxps
between f/f* and the s;’s and #’s. In the following it will be assumed thats; =s,=- - - =
Smy $1=1 and f* = 1. We shall also assume that the tasks have been indexed so that the
list is given by L=(1,2,3, -, n). Note that these assumptions do not affect the
generality of the proofs. Any problem instance that violates one or more of these
assumptions may be transformed into an equivalent problem instance satisfying all the
assumptions by sorting the s;’s, reordering the tasks and appropriately scaling the s;’s
and 1;’s. We shall also assume that in case of a tie, the list scheduling algorithm assigns
the task to the processor with highest index. Since our proof will be a proof by
contradiction, it is necessary to develop relationships only for the smallest n (for any
given m) for which the theorem may be violated. Thus, if ¢, - - -, £, defines a task set
with least n for which the theorem does not hold then it is easy to see that the finish time
of the list schedule is determined by task #. To see this, observe that if i < n determines
the finish time then we can eliminate tasks i+1, . and consxder only tasks
1,2, -, i For this set, f is unchanged and f* is not increased. So, f/f* does not
decrease and we have a smaller instance violating the bounds of the theorem. Now,
since task » finishes at f we can 1magme the list schedule to look like Fig. 1. Here j is any
index in the range [1, m] and f F;+t./s;. Let F; be the finish time of P, 1 =i=m,
before task n is scheduled. :

m

5

Y,

o

Y, T
T

Fy

FIGURE 1

P

Since we are assuming f* =1, it follows that

(1) :Ztiég:sia
(2) t, =max {t} = s,

From the definition of list schedules, it follows that

(3) F,-+t,,/s,-=>—_f, 1

lIA

i=m,

94 YOOKUN CHO AND SARTAJ SAHNI
or s;Fi+1t, _Z_Sf, 1=i=m. Using (3) with i = m we obtain
n
(4) Suf EsmFn+t, =Y ¢,
1

Hence, f=Y " $i/ Sm.
From (3), we obtain
(5) " s(f-F)=t, 1=si=sm,

Summing (5) for 1 =/ =m and using (1), we get

Ysif =Y siFi = (m—1)t, +1,
1 1
or
Zs.-f.s_(m~1)t,,+2s,~E+t,,
1 1
é(m == 1)[,, +Z i
1
sE(m—-1)t, +Y s.
1
Hence,
(62) f§1+(m—1)t,./2s,~‘
1 i
(6b) §1+(m—-1)sm/z Si.
1

LEMMA 1. f/f*=(1+V4m —3)/2, m = 2.

Proof. Assume the lemma is false. Consider the smallest n for which it is false. From
the preceding discussion we may assume f* = 1 and that the list is (1, 2, - - - ,n). Hence
equations (1)—(6) hold.

Using x to represent the ratio 1" 5;/s,, we obtain (7) from (4) and (6b).

(7) f=min {x, 1+ (m —1)/x}.
The maximum value of the right hand side of (7) is obtained when
x=1+(m-1)/x or x’~x—(m-1)=0 or x=(1+V4m—3)/2.

Hence, f =(1+v4m—3)/2. So, the lemma must be true for all m, all task sets and all

lists. O B
When m =2, (1+v4m—3)/2=(1+v5)/2. This observation together with the

following example proves Theorem 1 when m = 2. _

Example 1. Let s1=1, s,=(1+V5)/2, t;=1 and t, = (1+V5)/2. (Note that by
assumption L = (1, 2).) It is clear that f* = 1. In the list schedule however, both tasks 1.
and 2 get assigned to P, and

f=(t1+1)/s2=(1+5)/2.

When m =3, (1+V4m — 3)/2=1+(H2m —2)/2=2. This together with Example
2 establishes Theorem 1 for m =3,

LIST SCHEDULES ON UNIFORM PROCESSORS 95

Example 2. Consider, s;=s,=1,53=2,t;=t,=1 and t3=2. Again, f*=1.In the
~ list schedule all three tasks get assigned to P;. Hence, f= 2. Note that if a different tie
breaking rule is used then we may replace s; and ¢ by 2+e¢. In this case f=
(4+¢)/(2+ &) whuch approaches 2 as ¢ > 0.

The bound of Lemma 1 is not tight for m > 3. This is established by obtaining a
smaller bound. First, we derive some more inequalities. We readily observe that in
every list schedule, task 1 is always assigned to P,,. Since we may assume n > 1, it follows
that P,, always has at least one task (other than task) assigned to it. Consider the status
of the list schedule just before task n is assigned to a processor. Let ¢’ be the task time of
the last task assigned to P,, (note that this task cannot be task n as it has not yet been
assigned). Let G; be the finish time of P, 1=i=m just before ¢’ was assigned to P,,,. It
follows that G; = F,, 1 =i = m. Since ¢’ was assigned to P,,, if follows that:

(8) F+t/s;=zGi+t/s;2G,+t' /S = F,, 1=i=m.
Using ¢ to denote #, and substituting ; = m in (3) we obtain
SmFm+1Z5af or Fnz=f—t/s,.
Substituting into (‘8) we get
9 F+t/s,=f~ t/s,.. or s,-E+t',2,s,»f—ts,-/sm, 1=i=m.
Further, it follows from f* =1 that
(10) P+t =Smeq+Sm.

LEMMA 2. f/f*=1+(2m—2)/2, m = 4.

Proof. Suppose the lemma is not true. Consider the least n for which
11) fIfF>1+(2m-2)/2.

We may assume f* =1 and that the listis (1,2, -+, n). Let ¢ and ¢ be as defined
before. We first recall the following inequality:
L=

(12) YsiFi+t= Si.
1

M3
-3

From (3) with i =m and m — 1 we get
Sme1Fm1+ B + 20 Z f(Sn_1 + 5m).

So,
Y SiF;+ 20 Z f(Sme1+ Sm).
1

This together with (2) and (12) yields

Ziﬂ Si — Sm—1

(13) Eljs,-+smé}?(sm_1+sm) or f=1+ TR

Equations (11) and (13) together yield:

+\/2m—2<1+21 Si = Sm—1

1
2 Sm-1+sm

96 YOOKUN CHO AND SARTAJ SAHNI
or

(14) (Sm-1+8m) <

o)

Summing up m -1 mequalmes from (3) (i.e. 1<i=m) and inequality (9) with
i=1, we get

i::s,-Fi«i-(m — 1)r+t’§§ s,-f—-slt/sm.
Substituting (12) into the above equation, we get

g s;+(m ~2)t+t’§§ s,f~s1t/sm.
From this and (2) we get
(15) §Si+(m-—2)t+t’+s1§i::s,~f.

Also, from (6b) and (11) we get

v2m —

(16) : V22 (o —1)s,, / S s

The next step is to show that if (11) holds then ¢ > Sem-1- Suppose t = s,,-1 then from
(15) and the knowledge ' = max {t;} =s,,, we get

S,‘f.

m
Y sit(m—2)Sm 1+ S +51=
1

=3

Rearranging terms, we get

a7n f§2+(m—3)sm_1/2 S
1

This together with (11) gives

1+(V2m=2)/2<2+(m —3)s,,._1/§ si
1

or
s e =
(18) V2m—2 2<S':‘1-
2(m —3) 21 Si

Adding 1/(m —1) times (16) to (18) we get

(19) ~/2m—2-2+~/2m—2<sm_1+sm
2m-3) 2(m-—-1))
Combining (19) and (14) we get '
V2m—-2-2 an—:— 2 /1 sm——l)
2m—3) 2m-1) Sam-2\ y5/

LIST SCHEDULES ON UNIFORM PROCESSORS 97

Simplifying, we get ;

Sme1 _V2m—2-2
m < .

PR 2(m—-3)

This contradicts (18). So, ¢ >s,,_,. Hence, task # is scheduled on P,, in . If ¢ is
also on P, then t'=s,, —t. Otherwise, t' =s,,-;. Hence,

(20) t'=max {Sp,_1, Sm — t}.

: We shall now show that no matter which of s,,,_; and s,,, — £ is maximum we arrive at
contradicting relations. So, f=1+ (\/ 2m—2)/2.
Summing (3) with i = m and m —1 and (9) with 1=/ =m —2, we obtain

m am m-—2

ZSiE+2t+(m—2)f'§fZS,'— Z Sit/Sm.

1 1 1
Substituting from (2), (10), and (12) we reduce this to

) m . m—2 ' am

Y SitSmo1+ S +(m =3+ Y s;=fYs:

1 * 1 1
or

(21) f§2+(m—3)t’/§s,-.
1

First, let us consider the case s,,—1 =Zs,, — . (20) yields ¢’ =s,,_;. Substituting into
(21) we get

f§2+(m—3)sm_1/§si.

This is the same as (17) and together with (11) and (16) can be used to derive (19)
and arrive at a contradiction as before.
If §pp1 <sm—t then t'=s, —t and t <s,, — 5,,—1. Substituting into (21) we get

(22) f§2+(m—3)(sm—-t)/‘12 s

Adding (22) and (m —3)/(m — 1) times (6a) we get

2m—4 . m—3 (m-=3)s,
——f=2+ +
m—lfm2 m—1 YiUsi

Substituting for f from (11) we get

2m——4/1 \/2m——2)<2+m—3_*’(m—3)sm

pe L m-1 Y&
or
2m—4 Q2m-4V2m-2 _m=3_(m-3)s,
m—1 2(m—1) m—1 Yis;
or

(m —2)\/2m -2 (m —3)8m
m—1 o Xis

98 YOOKUN CHO AND SARTAJ SAHNI

or
(m—2)\/2m—2—(m—1)<
(m—1)(m~3) XUsi

Combining with (4) we get
e <m~1>(m 3)
(m-=-2V2m—-2—(m— 1)

One may easily verify that the right hand side of (23) is no more than 1+
(x/ 2m —2)/2 for m =4. This contradicts (11) and establishes the lemma. 0

To complete the proof of Theorem 1 we need to show that the bound is tight for
m =4, 5 and 6. The next three examples do this.

Example 3. m =4, s1=5,=1, 33:@/2 sa=s3+1. t1=1=.5,t3=1, t4—\/6/2
and ts=1+v6/2. Clearly, f*=1.

Figure 2(a) shows the list schedule. f=1+v6/2=1+(2m =2)/2.

E,mmple 4. m= 5 §1=8p=8§3= 1 54-—‘/2 S5 = 1+\/2 t1—~t2°—tq— 1 f4—\/2
ts=1+v2. f*=1. The list schedule is shown in Figure 2(b) and f 1+V2=
1+(2m—2)/2.

Example 5. m=6, si=s;=s3=s4=1, 5s=v10/2, 56=1+v10/2. n,=1,= 5,
tz3=ts=1s=1, t6—\/10/2 and = 1+(\/10)/2 Again, f*=1, f 1+\/10/2-
1+(\/2m 2)/2 (see Fig. 2(c)).

(23)

1 +V6)2 —p] + V2 el o/ TP sty

TVITTY 7777 k/l J/l'r/r_r — V7Y /:_,__, TV

=1+6/ j/ 21 +V6/2] ss=1+V2 1/‘/2 1+V2/] so=1+~10/2|9,14/1 [V10/2{1 +V10/2

sa= 1462 1/;/1—/111171/1 s /// 1Mol " / { ;/// (1L L]

51 =Va2 /53 se=v2 [/1/] ss=v102 (5Y1/)
s2=1 s3=1 sa=1
S]'*l s>=1 s3=1
(a) m=4 si=1 s2=1
n=>, (b) m=35 si=1
e (c) m=6

n=7
F1G. 2. List schedules for Examples 3, 4 and S.

The questlon that naturally arises at this time is: What happens when m >6? Is it
possible for f/ f* to get as large as the bound given in Theorem 1? We have been unable
to generate examples achieving this bound for i > 6. The worst examples we were able
to generate for m =7 and 8 are given in Examples 6 and 7. These were arrived at by
considering a certain job distribution pattern, deriving inequalities that led to a cubic
equation. A root of this equation yielded s,, and the remaining numbers were obtained
by back substitution.

Example 6. m =7. Let r be a real root of the cubic equation 47> — llr +r—1=0.
S1 —S2~S3—-1 sa=r+1/r-2, ss——r~r/(r~1) se=r—1, s7=r t;y=r*—3r+2— 1/r,
hh=r ——3r+r/(r-—1) ts=1—t1—ty, ta=r —3r+1 ts=1—1, ts=1, t7—r+1/r—
tg=r—r/(r—1),to=r~1, t;o=r. For an optimal schedule, the list is (10, 9, 8, 7, 6, 5, 4,
3, 1, 2) Clearly f*=1. An approximate value for r is 2.691. This yields s, = 1.063,
s5=1.100, s6=1.691, 5s7=2.691, t;=.797, t,=.760, t3=.033, 1,=.170, ts=.240,
te=1, t7=1.063, t3=1.100, to=1.691 and t;,=2.691. For the list schedule consider

LIST SCHEDULES ON UNIFORM PROCESSORS 99

thelist (1,2, - - -, 10). The resulting schedule is shown in Fig. 3(a) andf= 2.69....The
bound of Theorem 1 when m =7 is 2.732.

Example 7. m =8. Let r be a real root of the cubic equation 4r°—11/°—1 =0,
s1=$2=83=84=1, ss=r+1/r=2, se=r—r/(r—=1), s;=r—1, sg=r. t =
r2—3r+1—1/r, L=1, t3=r2~3r+r/(r-1), t4=r2—2r—r/(r—1), ts=1—1t;, tg=
I—ts—t1, t7=1 tg=r+1/r-2, to=r—r/(r—1), tio=r—1, t;;=r. For an optimal
schedule, the listis (11, 10,9, 8,7,6, 5, 1, 4, 3, 2). Again f* = 1. An approximate value
for ris 2.782. Using this, we get ss = 1.141, s = 1.221,5,=1.782, 54 =2.782, t; = .035,
fr = 1, 3= 955, ty= 615, ts= 045, le = 350, 7= 1, lg= 1141, lg= 1221, tio= 1782,
1;;=2.782. Assume a list schedule is constructed using the list (1,2,---,11). The
resulting schedule is shown in Figure 3(b) and f = 2.782 The bound of Theorem 1 is
2.87.

<« 2.691 — < 2.782 >
57=2691 |1 6 | 7| 9 10 55=2.782 |1] 2 | 7] 8 l 10] .
se=1.691 | 2 8 s;=1.782 | 3 9
ss=1.100 |[3{5 s6=1.221 4

s4=1.063 |4 ss=1.141 |56

s3=1 sa=1

32:1

(a) m=7,n=10

(by m=8,n=11

F1G. 3. List schedules for Examples 6 and 7.

While we have been unable to establish a tight bound for m > 6, we can show that
the bound on f/ f* must increase as m increases. Hence, there is no constant k such that
f/f*ék for all m. This result should be contrasted with the bound for identical
processors which is itself bounded by 2.

. THEOREM 2. There exist task sets, uniform processor systems, and lists for which
fIf*z |(loga Bm —1)+1)/2].

Proof. Let k = (logx 3m —1)+1)/2. We shall construct an example that achieves
the above bound when m is such that k has integer values (i.e. when m = 3,11,43,---).
There are k sets of processors G, 1 =i = k. Each processor in G, has a speed of 2.
|Gi|=2*"%"', 1=i<k and |Gi|=1. Thus, the total number of processors is m =
142142 4272 = 24" - 1) /3 +1.

We shall have k sets of tasks T, 1 =i =k. The task time of a task in T, is 2’;
1=sisk Also, |T;| =22 1=i<k and |T|=1.

It is easily verified that f* = 1. Consider the list in which all tasks appear as follows:
T tasks followed by T, tasks followed by T tasks etc. The resulting list schedule is
given in Fig. 4. The schedule consists of k columns. Each column contains tasks with
identical task times. In column i, 1=/ <k the processors in G, i+1=j=k will be
processing tasks with a task time of 2. The number of tasks on a processor in G,
i+l=sj=kis ol Thus, the total number of tasks scheduled on all processors in G; will
be 2"_">i=[G,-l=2"_'.>l<22k_2"’1=22kM"_"71 for i+1=j<k and 27 for G,. Therefore

100 ‘ YOOKUN CHO AND SARTAJ SAHNI

the total number of tasks in column 7 is

Kol akmjmict | mk—i I S ak—2ic1f ki
T 27T e § 25T
j=i+1 ji=1

. k—i—-1 . .
=22k—21—‘1 Z 1/2]+2k—x

J=t

= 221/ 2((1/2)F T - DA/~ 1)+ 25

= 9B ity g ol

- 22k—2i—1 _ 2k—~i + 2k—i - 22k—2i——1.
In column i, we need 22k7271 vasks with task time 2. We observe that the number
of tasks with task time 2" is exactly 22* 7>~ for 1 =i < k. Thus, all tasks with the same
task time are scheduled in one column, i.e., all tasks from 7}, 1 =i = k will be processed
in column i. Note that exactly k columns can be scheduled with the given tasks. It is clear
that any task in column j, 2 =i =k cannot be processed in column j, 1 =j =i. Hence,

f=k. O

task time of the tasks in each column

Set s |G| 2 2° e A S
G 2¢ 1 [2K7|2+7 2° 22021
Goa 2 |l 2; 2!
G278 [2! 2
Gioa 2°7° 2 2
2* | 2
2
S
2|2 o * numbers inside the blocks represent the number
2| 2 of tasks on a single processor within each block.
G, 4 27| 2
G, 2 227 g

F1G. 4. List schedule for Theorem 2.

3. The case s; =1, 15/ <m and s,, > 1. In this section the following theorem is
established:

THEOREM 3. If s; =1, 1 =i<m and s,, > 1 then
2 1+v5)/2, m=2,
fir=|

3—4/(m+1), m=3.

For each m, m = 2 there exists task sets, lists and s, for which f/f* equals the above
bound.

LIST SCHEDULES ON UNIFORM PROCESSORS 101

For m =2 and 3 the bounds for Theorems 1 and 3 are the same. Moreover, the
examples given in the last section for m = 2 and 3 can be used here too. So, the theorem
needs to be proved only for m > 3.

For m >3, consider any task set, m, s,,, and list. Let s = 5,,,. Let f be the finish time of
the corresponding list schedule and f* the optimal finish time. We shall show that the
following inequality holds.

24) | =1+ in g 2)
s+m—1

Since s/(s +m — 1) is an increasing function of s, it follows that the right hand side
of (24) is maximized when s = 2. Hence, (24) reduces to

B o 2(m—1)
ST+ m+1
=3-4/(m+1).

We prove (24) by considering two cases. Let F; be the finish time of P; in the list
schedule.
Case 1. [f=F,,]. Let F = min; {F;}. Clearly, the following inequality must hold:

(m-1D)F+sf=Y 4
1
or

(25) Fé(:izi—sf)/(m—;).

Let ¢ be the task time of the last task assigned to P,,. We may assume this is the last
task in the list. If not, we can dispense with the remaining tasks and not reduce f/f*. We
observe that F +¢=f and sf* =r. Using these and (25) we get:

sfrzf-Fzf— (L t—sp)/(m-1).
The preceding inequality together with the inequality Y #; = (s + m — 1)f* yields:
(26) fiffs1+s(m-1)/(s+m—1).

Now, let ¢’ be the length of the last task assigned to P,, in the list schedule and which
was not assigned to P, in the optimal schedule. Clearly such a task exists as otherwise
F=f*. Let SUC(t') be the sum of the task lengths of the tasks assigned to P,, after t' in
the list schedule. Clearly, SUC(¢') = sf* and ' = f*.

Also, F+1t' 2f—- SUC(t")/s. Hence,

s(F+1t)=sf-SUC(t")
= sf — sf*
or F+frz=f—f* or Fz=f-2f*

From this and (25) we obtain

27) zt = (f-2f*)(m—1)+sf

102 YOOKUN CHO AND SARTAJ SAHNI

Since Y. t; = (s +m — 1)f*, (27) results in (28)

2(m 1)

(28) fip=id=——r.

Combining (26) and (28) we get (24).

Case 2. [f;éFm]‘ In this case, f> F,.. Without loss of generality, we may assume
f=F,_y. Lettbe the length of the last task assigned by P,,_;. As before, we can assume
that this is the last task to be assigned to any processor. Note that no F;, i # m may be
less than f —t If any F, i<m—1 is greater than F—t then we can decrease the
processing requirements of the last few tasks assigned to P; so that F; is now ‘equal to
f —t. This decrease will not change the list schedule but may decrease f*. So f/f* does

not decrease and we will only be considering a worse case. Hence, we may assume
F= f t=F,1=i=m-2.

It is easy to see that sF,, +f+(m —2)F =Y 1, = (s + m — 1)f*. Since F+t=f and
sF,+t>sf, it follows that sF, +t+(m— D(F+1)>(s+m—2)f. But, sF,+f+
m-2F=Yt,=(s+m-1f* So, (s+m—-DfFf—F+(m—1t>(+m— 2)f. This
together with the equation ¢ = sf* yields

(29) Fte] o
S m

Let ¢’ be the length of the last task assigned to P,, in the list schedule and which is
not assigned to P, in f*. If such a ' does not exist then F, = f*. If the task with length ¢
was on P,, in f* then f < F,, + t/s = f*. Otherwise, t = f* andf<F +1t/s <2f*. Ineither
case f/f* <2 and the theorem holds. So, we may assume ¢ exists. Let SUC(t') be as
defined in Case 1. Now, F+1 =f-SUC(t)/s. Since, SUC(t') = sf*, the previous
inequality becomes sF +st' = sf—sf* or F4f 2= f f*orF =F=2f

Substituting sF,, +¢ >fandf—— t = F into sF,, +f+ (m=2)F=(s+m—1)f* weget

(30) (m—1)F+sf=(s+m—1)f*.
Using F = f—2f* in (30) yields

2(m 1)

(31) fiprs1+Sm—

(29) and (31) yield (24). This completes the proof for the upper bound of Theorem
3. The next example shows that the bound is tight.

Example 8. Forany fixedm,mz3letn=(m—-3)(m+1)+3ands,,=2,5;,=1,1=
i <m. The n task times are t,=1/(m+1), 1=i=n-3, t,.,=t,-;=1and t, =2. By

—_
~N
N

w2

sp=1 /"Z/

FIG. 5. List schedule for Example 8.

LIST SCHEDULES ON UNIFORM PROCESSORS 103

assigning task n to P, tasks n —1 and n —2 to P,,_; and P,,_, respectively and assigning
(m +1) of the remaining tasks to each of the remaining processors we get a schedule
with finish time 1. It is easy to see that this is optimal and so f* = 1.

If the list for scheduling is (1, 2, - - -, n) then the resulting list schedule is as in Fig.
5. For every two tasks with index = n —3 assigned to P,,, one tasli with index=n -3 is
assigned to each of the remaining processors. The finish time f is (m —3)/(m +1)+
4/2=3—-4/(m+1).

REFERENCES

[1] E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON, An application of bin-packing to multi-
processor scheduling, this Journal, 7 (1978), pp. 1-17.

[2] T. GoNzALEZ, O. H. IBARRA AND S. SAHNI, Bounds for LPT schedules on uniform processors, this
Journal, 6 (1977), pp. 155-166.

[3] R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell System Tech. I., 45 (1966), pp.
1563-1581.

[4] Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 263-269.

[5] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN, Optimization and
approximation in deterministic sequencing and scheduling: A Survey, Mathematisch Centrum,
Amsterdam, BW 82/77, 1977.

[6] E. HorowITZ AND S. SAHNI, Exact and Approximate Algorithms for Scheduling Non-Identical
Processors, J. Assoc. Comput. Mach., (1976), pp. 317-327.

[7] Fundamentals of Computer Algorithms, Computer Science Press, Maryland, 1978.

[8] J. W.S. Liu anND C. L. L1u, Bounds on Scheduling Algorithms for Heterogeneous Computing Systems,
Proc. IFIP, (1974), pp. 349-353.

[91 S. SamNi, Algorithms for scheduling independent tasks, J. Assoc. Comput. Mach., 23 (1976), pp.
116-127.

