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- Layering Algorithms For Single-Row Routing

SANGYONG HAN anD SARTAJ SAHNI, MEMBER, IEEE

Abstract—We develop two fast algorithms for the layering problem
that arises when the single-row routing approach to wire layout is used.
Both of these algorithms are for the case when the upper and lower
street capacities are two. While neither of these algorithms guarantees
the production of an optimal layering, it has been emp'irically deter-
mined that both will produce better layerings than an earlier proposed
algorithm [13] for this problem. In addition, our algorithms run much
faster than the earlier algorithm.
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I. INTRODUCTION

SYSTEMATIC approach to the interconnection

problem of large multilayer printed circuit boards in
which pins and feedthroughs are uniformly spaced on a
rectangular grid has been proposed. This approach con-
sists of a systematic decomposition of the general multi-
layer wiring problem into a number of independent single-
layer, single-row routing problems. There are five phases
in this decomposition [11], [8]:

1) via assignment,

2) linear placement of via columns,
3) layering,

4) single-row routing,

5) via eliiination.

In this paper, we are concerned only with the third and
fourth phases: layering and single-row routing. We are
givenaset V= {1,2, - - - , n} of n nodes that are evenly
spaced along a straight line; and a set L = {N,N,, -+ -,
N,,} of m nets. Each net N, represents a set of nodes that
are to be made electrically equivalent. The nets satisfy the
following conditions:

ONNN=g i=*j

m
@ UN={1,2---,n}
i=1
The nodes may be regarded as vias/pins that penetrate all
layers of the multilayer board.

Node j, j € N; is a touch point of net i. The nets are to
be realized in a minimum number of layers by the use of
nonoverlapping wires that are composed solely of hori-
zontal and vertical segments. Fig. 1(a)-(c) shows some
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of the legal ways to realize the net { 1, 3, 6, 9} on a single
layer. The wire layout must satisfy the additional require-
ment that a vertical cut made at any point along the axis
formed by the nodes intersect, at most, one horizontal
segment from each net. Thus, the wiring of Fig. 1(d) is
illegal. Another constraint is that no two conductor paths
for two distinct nets have a common electrical junction.

The area above the line of nodes is called the upper
street while that below this line is the lower streer. Each
street has fracks that run parallel to the line of nodes (Fig.
2). Horizontal wire segments must be layered in tracks
and no track may hold more than one wire segment at any
point (of course, several nonoverlapping wire segments
may be packed into the same track). Let K, and K, denote
the number of tracks in the upper and lower streets, re-
spectively. Fig. 2 shows one way to realize a net list L =
{(1,6, 11), (2, 10, 15), (3, 13, 16), (4, 12), (5, 9),
(7, 14), (8, 17) } on two layers, both of which have K,
=K, =2.

Much work has been done on the development of fast
algorithms to route a single row on a single layer. Kuh ez
al. [5] and Tsukiyama ez al. [12] have developed neces-
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sary and sufficient conditions for a net set to be realizable.
In [5], a simple construction is used to show that when
K, and K, are sufficiently large, L is realizable. This con-
struction, however, results in an algorithm of complexity
O(m'n), where | V| = nand |L| = mto determine if the
routing is possible with a given K, and K,. Raghavan and
Sahni [7] have developed an algorithm of complexity
O (k!'*k*n* log k), where k = K, + K, for this problem.
This algorithm is quite practical when k is small but im-
practical when k is large. For the case K, < 2 and K, <
2, Tsukiyama et al. [12] have developed an O(mn) al-
gorithm. This algorithm is, however, slower than that of
[7]. Han and Sahni [2], [3] have developed what are pres-
ently the fastest algorithms for optimal single-row routing
on a single layer.

The case of routing a single row when many layers are
available has received much less attention. Tsukiyama,
Kuh, and Shirakawa [13] have investigated this problem
in some detail. They restrict themselves to the case K, =
K, = 2 and point out that their findings can also be applied
to the case when K, =2 and K, = 1 (or K, = 1 and K, =
2). Furthermore, it is observed that the case K, = 1, K
= 1 is quite simple to solve in an optimal manner.

The significant results obtained in [13] for the single-
row layering and routing problems with K, = K, = 2 are
as follows. ,

Result 1: Define the maximum density d,,(L) of a net
list L to be the maximum number of wires that cross any
vertical cut. For example, the maximum density of the net
list of Fig. 2 is 6. The net list L can be transformed into
a net list L’ with the following properties:

1) Every net in L’ contains exactly two nodes.

2)d,(L)y=d, (L") =d,(L) + 1.

3) If L’ can be routed in k layers when K, = K, = 2,
then so also can L. Furthermore, the routing for L
may be obtained in O (n) time (recall that n is the
number of nodes) from that for L'.

Result 2: When K, = K; = 2, the minimum number of
layers r needed to route the net list / satisfies the inequal-
ity

[du(L)/4] =r=< [d,(L)/3].

Using results 1 and 2, an O(n’) layering and routing
algorithm is developed. This algorithm is heuristic in na-
ture and does not guarantee to use a minimum number of
layers. In fact, at this time, it is not known whether the
minimum layering problem for the case K, = K; = 2 is
NP-hard.

In this paper, we develop two new heuristic algorithms
for the layering and routing problem when K, = K, = 2.
These are based on the single-layer algorithm described
in [3] for K, = K; = 2. Both algorithms have a time com-
plexity O(kn), where k is the number of layers in the
solution. The overhead associated with the second algo-
rithm is slightly higher than that associated with the first.
Both algorithms are significantly faster than the one pro-
posed in [13]. Furthermore, experimentation with random

instances indicates that our algorithms often use fewer
layers.

II. PRoBLEM FORMULATION AND TERMINOLOGY

As a consequence of Result 1 of [13], we can restrict
ourselves to net lists L, in which each net consists of ex-
actly two pins. Since our algorithms are based on the al-
gorithms described in [3], we can actually work directly
with multipin nets. It is, however, easier to describe the
algorithms for the case of two pin nets, and we shall make
this restriction in the remainder of this paper.

Our problem is to partition L into the subsets L, L,,
- - -, L, such that the nets in each partition can be real-
ized in a single layer (with K, = K; = 2) and r is mini-
mum.

Since we make use of the K, = K, = 2 algorithm of
[3], we briefly restate that algorithm as it relates to two
pin nets. This algorithm constructs a wire layout by mak-
ing a single left to right scan of the nodes. Each node is
classified by its type. For the case of two pin nets, only
two classifications are needed. Let i, j, i < j, be the two
pins in some net. i is of type B (beginning) and j of type
E (end). The beginning nodes in Fig. 3 are 1, 2, 3, and
5. Nodes 4, 6, 7, and 8 are the end nodes.

As in [7], each possible ordering of nets that can be
encountered by a node is maintained simply as an ordered
list of net indices. There is no explicit division between
the upper and lower streets. Such an explicit division is
neither desirable nor necessary. Only the relative order
(top to bottom) is relevant; this same order is reflected in
the realization.

An advantage of this approach is that functionally
equivalent situations, such as the ones in Fig. 4(a) and
(b), are not treated separately.

The cut number of node i is the number of nets that
cross node i. This count does not include the net that be-
gins or ends at i. The cut numbers for the nodes of Fig.
3are: cut(l, ---,8)=1(0,1,2,2,2,2,1,0).

Let P; denote the net ordering encountered when node
i is reached during a left to right scan of nodes. For Fig.
3,wehave P, = ¢, P, = (1), P; = (1,2,), P, =(1,3,
2),Ps =1(3,2),Ps=1(4,3,2), P, =(4,2),and Pg =
(2).

The wire layout algorithm of [2] begins with P; = ¢
and attempts to obtain a valid sequence P, P,, - - - , P,.
If node i is an E-type node, then we need merely check if
the net corresponding to this touch point can, in fact, be
wired to this node when K, = K; = 2. Note that the only
time we have difficulty is when |P;_,| = 4. The wiring
is not possible if the net in question is in position 1 or 4
of P;_, (See Fig. 5).

Let us consider the case when node i is of type B. Let
(Ni, N,, * -+, Np) be the permutation of b nets that ar-
rives at this node and let N, be the net that begins at this
node. Clearly, if b > 3, then the net list cannot be real-
ized with K, = K; = 2. If b = 0, then the permutation
arriving at i + 1 is (N,). If b = 1, then there are two
possibilities for the permutation arriving at i + 1: (N,
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Fig. 5. Outer nets cannot be wired to i.

N,) and (N,, N;). However, these are symmetric andr,
since K, = K, if a layout can be achieved using (N,, N,),
then it can also be achieved using (N, N,). So, we may
simply use the permutation (N,, N,).

When b = 2, there are three possibilities ((N;, N,, N,),
(Ny, Ny, N7), and (N,, Ny, N,)) for the permutation ar-
riving at node i + 1. Let { v}, v,, v, } be the touch points
of Ny, N, and N, that are to the right of node i. If all of
these have a cut number that is less than 3, then the net
corresponding to any ; can be wired to v; independent of
the permutation that arrives at v;. In this case, we may
use any one of the three possible permutations for node i
+ 1.

Assume that at least one of the v,’s has a cut number
that is 3. Let v; be the leftmost such touch point. Let N,
€ {N,, N,, N, } be the net with touch point v;. Let (N,,
Ny, N,, Ny) be the net permutation that arrives at v;.
Clearly, when K, = K, = 2, the net connection to v; can
be completed if N, = N,or N, = N,

Among the three possibilities for the permutation arriv-
ing ati + 1, there is exactly one that guarantees N, = N,
or N, = N,. This is the permutation that has N, in the
middle. While it may be possible to complete the wiring
to v; using one of the other two permutations (this happens
when one of the other two nets ends before v;), it is not
too difficult to see that if a net set can be reallzed using
one of these other permutations (when K, = K, = 2), it
can also be realized using the permutation with N, in the
middle.

The final case to consider is b = 3. Now we have ex-
actly two possible permutations for i + 1: (N,, N,, N,,

97

1 2 \,5 6 8 { L 1: — }
Y4 "7
Ny N
Fig. 6.

N3) and (N, N,, N,, N3). Let v, and v, be the end points
of nets N, and N,, respectively. Let v = min {vy, v, ). If
any one of the nodesi + 1,i + 2, , v — lisatouch
point of N, or N5 or a node of type B, then the wire layout
cannot be completed with K, = K, = 2, independent of
the permutation chosen for i + 1, so assume that there is
no such node. Regardless of which permutation is chosen,
both N, and N, can be wired to their end points and the
permutation leaving v is (N,, N,, N3), where a = 2 if v,
> v, and a = x otherwise. So, when b = 3, we may use
either permutation.

Example 1: Consider the net list L = {N,, N5, - - - ,
N;}, where Ny = {0, v}, Ny = {0,, 05}, Ny = {lh,
vi}, Ny = {vg, v7}, Ns = {vs, via}, No = {1y, 014},
and N; = {0, v)5}.

The layout shown in Fig. 6 was obtained by applying
the above algorithm. At v4, it is determined that both N,
and N; have touch points with cut number 3 (o5 and v,,).
However, N, should be in the middle as v5s < v,,. At vy,
N3 should be in the middle as Nj is the only net having a
touch point with cut number 3. (]

III. GREEDY ALGORITHM

The first algorithm that we propose for the layering
problem scans the nodes left to right and determines a
subset L, of L that can be realized in a single layer. This
subset is determined following the principles of the strat-
egy outlined in Section II and described in detail below.
Once L, has been determined, we determine a subset from
L — L, to layout in layer 2. This process is repeated until
we have determined L,, L,, - - -, L, such that L = L, U
Ly, w5 =W

Let P, = (N, N,,, - - -, N,,) be the net ordering en-
countered at node i. To determme L;, we begin with P, =
L —q&andL'*L—L, —L,— - —1L;_, Let N,be
the net in L (if any) with touch point i. Note that there
may be no net in L' with touch point i. This will happen
for several i’s when we are dealing with layers 2, 3, 4,

, etc. If N, exists, let v, and v,, v, < v,, be the end
points of N, (clearly, i€ {v,, v,}). We have three cases
to consider.

Case 1: N, does not exist.
In this case, we simply set P, ., = P,.
N, exists and begins at i (i.e., i is of type B).
In this case, we need to determine whether or
not N, should be added to L;. This decision is
made by considering the four cases below.
a) |P;| = 4.

In this case, the addition of net N, causes

Case 2:
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infeasibility.
So, set P; ., = P;.
b) |Py| =3

Let vy, v,, and v; be the end points of nets
N, N,,, and N, respectively, (recall that
P; = (N, Ny, N)). If min {v,, v,, vs,
v} € {vy, v}, thenset Py = (Ny, Ny,
Ny, Ny;) (note that (N, Ny, Ny,, Ny, ) will
do just as well) and add N, to L;. Note that
the insertion of N, into the second or third
position of P; ,; creates no difficulties and

~ also allows all four nets to terminate using
the given number of streets (Fig. 7).
When min {v,, v,, v3, v, } is not an ele-
ment of {v,, v,}, N, cannot be added to
this layer as the routing of the four nets
Ny, Ny, Ny, and N, cannot be completed
with K, = K; = 2.

¢) |P;| = 2. !
In this case, N, can be added to L; with full
assurance that N,,, N,,, and N, can all be
routed to their end points. Of the three or-
derings (N, Ny,, N,), (N, N,, N,;), and
(Ng, Ny, Ny,) possible for P; . |, choose the
one that has the smallest end point in the
middle. This will maximize our chances of
adding more nets to L;.
d) |P;| < 2.

Add N, to L;. Choose any of the possible
orderings for P, . .

Case 3: N, exists and ends at i (i.e. i is of type E).
Note that because of the way in which nets are
selected for N, and the orderings P;, P, * - -,
P; constructed, we are assured that N, can ter-
minate at / without violating the street con-
straints K, = K, = 2. P, | is obtained from P;
by deleting N,. OJ

Example 2: Consider the following net list with 16
nodes and 8 nets:

N = {1, 5} N, = {2,10} N, = {3, 11}
N,={4,12} Ns={6,15} No={7,13}
N; = {8, 14} Ny = {9, 16}.

This is shown graphically in Fig. 8.

The algorithm begins by constructing L;. We begin with
L, =P = ¢. Atnode 1, we get L, = {N,;} and P, =
(N,). At node 2, we get L, = {N;, N,} and P; = (N,,
N,) (note that P; = (N,;, N,) is also acceptable). At node
3,L, = {N,, N, N3} and P, = {N,, N|, N3) as N, has

o o °
1 2 3 4 5 6 7 8 9 10 11 12 13

°
14 15 16

Fig. 8. Net list for Example 2.
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Fig. 9. Realization for the (a) first layer and (b) second layer.

the first end point. At node 4, L, = {N,, N,, N3, N, } and
Ps = (N,, N, N4, N3) and at node 5, we get Pg = (N,
N,, N3). No change takes place in L;. At nodes 6, 7, 8,
and 9, no change in L; occurs as the nets that begin at
these nodes do not satisfy the conditions of case 2b).
When the algorithm to determine L, terminates, we have
L, = {N;, N, N3, N;}. The layout for L, is easily ob-
tained from the P;’s (see [2]).

To determine L,, we begin with L' = L — L; = {Ns,
Ng, N;, Ng}. L, is determined to be L’. The layout for
both layers is shown in Fig. 9. O

Complexity Analysis

Let k be the number of layers used and n the number of
nodes. Using appropriate data structures, each L; can be
found in O (n) time. Hence, the total time needed by the
greedy algorithm of this section is O (kn). From the P;’s,
the wire layout may be obtained easily. ]

IV. BLOCKAGE ALGORITHM

The greedy algorithm of Section III selects nets for in-
clusion into a layer without considering the structure of
the nets on the right. This can cause the algorithm to per-
form poorly on certain net lists. We introduce the concept
of blockage in order to arrive at a new algorithm that can
be expected to give better layerings.

The concept of blockage is defined relative to the set of
nets already chosen for a layer. A blocked area of nodes
begins at a node i, which satisfies the following proper-
ties:

) |P;| =3.

2) Let P; = (N,,, Ny, N,;,) and let v;, v,, v; be the end
points of N,,, N,,, and N,,, respectively, and v, #
min { v, v,, v3}.
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Fig. 11. The blocked area.

The blocked area beginning at node i (above) ends at
the node which is min {v,, v,, v3}. Observe that, within
a blocked area, all nodes of type B cause the greedy al-
gorithm to enter case 2b). Only nets that begin and end
within the blocked area can be added to L;.

Example 3: Consider the following net list:

N, = {1, 5} N, = {2,12} Ny = {3, 11}
N, ={4,18} Ns={6,13} Ny = {7, 14}
N, = {8,15} Ng=1{9,16} Ny ={10,17}. .

This net list is shown graphically in Fig. 10.

Our greedy algorithm selects nets Ny, N,, N3, and N,
for L,. N, ends at node 5 and we have Pg = (N, N4, N3).
The area from node 6 to node 11 gets blocked (Fig. 11)
to all but those nets that begin and end in this area. There
are no such nets, and we have L, = {N;, N, N3, N, }.
The maximum density of the net set L — L, is 5 and two
more layers are needed to complete the routing. The rout-
ing obtained for the three layers is shown in Fig. 12. The
above net list can be routed in two layers using the layout
of Fig. 13. O]

As can be seen from Example 3, the creation of a
blocked area (and its extent) can be determined at the time
a fourth net is added to a P;. When net N, is added to P,
= (N,, Ny, N3) to get Ps = (N, Ny, N4, N3) we know
that a blocked area will begin at node 6 as the end point
of net N, is not smaller than the end points of nets N, and
N;. We also know that this blocked area will extend up to
node 11 which is where the first of N,, N3, and N, end.

The blockage algorithm to be developed in this section
attempts to minimize the extent of blocked areas. This
algorithm utilizes a zone representation for the nodes. A
zone is a region of nodes that consists of some number of
B-type nodes followed by some number of E-type nodes
(there must be at least one node of each type in the zone).
Consider the following net list:

N, = {1,5} N, = {2, 6} N; = {3, 10}
N, = {4,13} Ns={7,16} N = {8, 15}
N, = {9, 11} Ny = {12, 14}.

99
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Fig. 12. (a) First, (b) second, and (c) third layers.
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Fig. 13. (a) First and (b) second layers.

The zones created by this list are shown in Fig. 14. Notice
that the zone boundaries are displaced slightly from the
node positions. The zone representation of a net list is
obtained by beginning the net at the left end of the zone
in which it begins and ending it at the right end of the
zone in which it ends (Fig. 15).
A critical zone is defined to be one that contains 4 *
[d,(L)/47] nets. There are no critical zones in Fig. 15.
From the zone representation of a net list, it is easy to
determine blockages and their extent. Our blockage al-
gorithm, like our greedy algorithm, constructs L, L,
-, in sequence. We describe how each L; is con-
structed.

Algorithm Blockage

stepl: Let L be the nets not yet assigned to a layer.
Let P, = L; = ¢.
Construct the zone representation for the nets in
L.
number__of zones < number of zones
z< 1
step2: If z > number__of zones then stop
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zone 1

ol

15 16

Fig. 14. Start and end of zones.

zone 1 zone 2 zone 3

N, Ny N
N
2 N6
N Ng
N o
N,
P
%
o0

Fig. 15. Zone representation of nets of Fig. 14.

(b) 25 # zyand 7, # z5.
Let L" = {N,,, N,,, - - - } and let z,, be the zone in
which net N,, ends. Let v, be the end point of net
N,,. Let w,, be defined as:

%y — 2o if vy, > median (v}, v,, v5)

0 otherwise

If there is a net in L” with w,, = 0, then add this to
P. This choice avoids the creation of a blocked area.
Ties are broken as above.

If there is no net in L"” with wy; = 0, then pick one with
the least w),. Ties are broken as above. The addition of
this net to P will create a blocked area. If zone z is a
critical zone, then add this net to P. If zone z is not a
critical zone, then add this net to P only if the blocked
area does not include a critical zone.
case 2: v, # min {v,, v,, v3}:

We are in a blocked area. Pick a net from L” with end

srgp3y Leelt = {.N’f" N, * =+, Ny, } be the nets in L point less than min {v;, v,, v3}. If no such net exists,
that begin in zone z. then add no net to P. If nets with this property exist
step4: Let ¢ = min {|L'|}, 3}. Add nets from L', in df(::lnta p 310 net O'th. . }Ee s vtv1 i 1(s)i111)tr tlliet Kas t}?ig
the order they start, to P and L; until | P | = q. a Ort G net willh BEhiost ond p a
step5: If any nets remain in L', then select a possible property.
fourth net for P as described below. Example 4: We consider the example provided in [13,
step6: Delete from P all nets that terminate in zone z. Fig. 4]. The net list is
N, = {1, 16} N, = {2, 13} N; = {3, 12} N, = {4,9} Ns = {5, 10}
Ng = {6, 19} N, = {7, 21} Ng = {8, 24} Ny = {11,33} Ny = {14, 26}
Ny ={15,20} N, ={17,25} Ny ={18,27} N, ={22,38} Nj5-= {23, 36}
Nig = {28,34} N;;={29,39} Ni={30,40} Ny ={31,37} Ny = {32, 35}
step7: If |P| = 4 then z < min {z, 2, 73, 24} + 1 A graphical representation of this net list is given in
. else z czt 1 ‘ Fig. 16 and the zone representation is given in Fig. 17.
where z; is the zone in which the ith net of P ter-  The pets that begin in each of the six zones of Fig. 17 are
minates;
Delete all nets from P that have terminated before L = { Ny, N,, N3, N;, Ns, Ng, N, Ns}
zone z ,
step8: go to step2 L; = {N9}
In stepS, the fourth net is selected from L’ in such a Ly = {Nyg, Ny}
way as to minimize the extent of the blocked area created.
If a net remains in L', then |P| = 3. Let P = L, = {le, N13}

(Ny;s Ny, Nyy) and let vy, v,, v, respectively, be the end

points of these nets. Let z;, z,, z3 be the zones in which

these three nets end. Let L” = L’ — P. We consider two

cases.

case 1: vy = min {v,, v,, v3}:

@ z, = z0rz; = z;.

Following the addition of a fourth net to P, no new
nets can be added until zone z, + 1 or the zone
following the one in which the newly added net
ends. To allow for maximum net embedding, we
choose the fourth net from L” such that |z, — max
{21, z3} | is minimized. z, is the zone in which the
fourth net ends. Ties are broken by choosing the
net with rightmost end point.

Ls = {N14, le}
L¢ = {le, N7, Nig, Ny, Nzo}-

We begin by constructing L,. In step4, nets N;, N,, and
Nj; are added to P. The ordering is (N; N3 N,) as N; has
the first end point. Since some nets remain in L; — L;, we
attempt to add a fourth net to P in step5S. Since nets N,
and N; end in the same zone (z,), we are in case 1(a) of
the fourth net selection procedure and we choose a net
whose end point is in the closest zone to the end point of
net N;. Nets Ng and N, terminate only one zone from net
N,. Of these, N; is chosen as it has the rightmost end
point. The permutation P becomes (N; N3 N; N,). We
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Fig. 17. Zone representation for nets of Fig. 16.
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Fig. 18.

next move to zone 3. The nets N, and N; are deleted from
P as these terminate in zone 2. P is now (N; N;). Net Ny
is added to P in step4 to get P = (Nyo N; N;). In step3,
net N;; is added to P as it does not create any blocked
areas. This decision is made in case 1(b). P becomes (N
Ny N; N;), but N is deleted before moving to zone 4. In
zone 4, N, is selected and the ordering becomes P = (N
Ny; Ni3 N7). The nets N; and Ny, are deleted as they ter-
minate in this zone. From zone 5, Ny, is added to P to get
(N4 NyoNy3) in step4 and then N5 is added in step5 case
1(a) to get (N4 Nis Nig Ny3). Before moving to zone 6,
N, and N,5 are removed from P as these terminate in zone
5. Finally, N, and N4 are added to P in zone 6. We get
L, = {N,, N2, N3, N3, Nig, N1, Ni3, Nig, Nis, Ny, Nig }-

For the L, computations, we have L = {N,, Ns, Ng,
Ng, Ny, Ny, Ny7, Nig, Nyg}. The zones and zone repre-
sentations are shown in Figs. 18 and 19, respectively. All
the remaining nets get included into L,. The constructed
layouts for the two layers are shown in Fig. 20. O

Complexity Analysis

The beginning and end zone for n nets can be deter-
mined in O(n) time. Using appropriate data structures,
the work done in each zone can be carried out in time
proportional to the number of nets that begin and end in
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Fig. 20. Realization for the (a) first layer and (b) second layer.

that zone. Hence, the time needed to find an L; is O(n).
If k layers are used, O (kn) time is needed to determine
the k Lj’S.

V. EXPERIMENTAL RESULTS

To compare the relative performance of our algorithms
and that of [2], we coded all three in Pascal and obtained
sample run times and layerings for randomly generated
two pin net lists. All experiments were conducted on a
VAX 11/780.

Net lists with 100 nodes and 50 nets were generated at
random. For each of the densities 7, 8, and 10-20, five
instances were generated. Thus, our experiments in-
volved a total of 65 different instances. The results of our
experiments are tabulated in Tables I and II.

As can be seen, our greedy algorithm took between § to
35 of the time required by the algorithm in [13]. The
blockage algorithm took between § and 75 of the time taken
by [13]. Of the 65 instances tested, the greedy algorithm
used fewer layers than that of [13] for seven instances
while the algorithm of [13] used fewer layers for three
instances. The blockage algorithm used fewer layers than
the algorithm in [13] for ten instances and more layers on
one.

In addition to the 65 instances reported on in Tables I
and II, we laid out the example of [13, Fig. 4]. The greedy
algorithm used three layers while the other two used two
layers. The time needed to obtain the layout is:

[13]: 533 ms
Greedy: 66 ms
Blockage: 83 ms.
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TABLE I
DENSITIES 7, 8, 10-13
N Greedy Blockage
Density [TSUKS83] Greedy Blockage [TSUK s3] [TSUKs3]

! time l time { time

7 3 6916 2 200 2 283 1/35 1/24
3 6416 2 216 2 266 1/30 1/24
3 6900 3 233 3 250 1/30 1/28
3 6550 3 216 2 266 1/30 1/25
3 6383 2 216 2 300 1/30 1/21

8 3 | 2216 |3 183 |3 | 250 1/12 1/9
3 1933 3 233 3 250 1/8 1/8
3 2200 | 3 216 |3 | 233 1/10 1/9
3 1750 | 3 200 |3 | 250 1/8 1/7
3 1883 3 200 3 300 1/9 - 1/6

10 3 1226 3 216 3 233 1/6 1/5
3 1483 3 200 3 250 1/7 1/6
3 1416 | 3 183 |3 | 267 1/8 1/5
3 1333 | 3 200 |3 | 283 1/7 1/5
3 1234 3 216 3 217 1/6 1/6

11 4 6616 4 216 4 250 1/31 1/26
4 | 6383 |4 183 |3 | 266 1/35 1/24
4 | 6300 |4 216 |4 | 250 1/29 1/25
4 6683 4 234 4 250 1/29 1/27
4 6433 4 216 4 233 1/30 1/28

12 4 1966 4 183 4 266 1/11 1/7
4 1733 |4 | 216 | 4 | 233 1/8 1/7
4 | 2016 | 4 216 |4 | 266 1/9 1/8
4 1633 4 217 4 250 1/8 1/7
4 2050 4 233 4 233 1/9 1/9

13 4 1266 4 150 4 250 1/8 1/5
4 1483 4 233 4 250 1/6 1/6
4 1650 4 216 4 266 1/8 1/6
4 1516 4 216 4 250 1/7 1/6
4 1883 4 250 4 266 1/8 1/7

[ is the number of layers; time is in milliseconds.

TABLE I
DENSITIES 14-20
. Greedy Blockage
Density | [TSUKS83] Greedy Blockage [TSUK s3] [TSUK s3]
{4 time ! time { time
14 4 1566 4 216 4 250 1/7 1/6
4 1350 4 233 4 300 1/6 1/5
4 1266 5 216 4 283 1/6 1/4
5 1416 5 233 4 283 1/6 1/5
4 1783 4 200 4 258 1/9 1/7
15 5 6066 5 200 5 216 1/30 1/28
5 4016 5 233 5 250 1/17 1/16
5 1866 4 233 4 283 1/8 1/7
5 1783 5 200 5 250 1/9 1/7
5 3766 4 233 4 266 1/14 1/14
16 5 1766 5 233 5 250 1/8 1/7
5 2416 5 233 5 216 1/10 1/11
5 1500 5 183 5 300 1/8 1/5
5 6216 5 166 5 250 1/37 1/25
S 1716 5 233 5 233 1/7 1/7
17 5 1400 5 250 5 266 1/6 1/5
5 1566 5 216 5 250 1/7 1/6
5 1616 5 216 5 250 1/7 1/6
5 1366 5 233 5 233 1/6 . 1/6
S 1466 5 216 5 233 1/7 1/6
18 5 1850 8 250 5 233 1/7 1/8
5 1450 5 200 5 250 1/7 1/6
5 1333 5 166 5 250 1/8 1/5
5 1716 5 216 5 216 1/8 1/8
5 1516 5 250 5 316 1/8 1/5
19 6 3433 5 216 6 283 1/16 1/12
6 3116 6 200 6 266 1/16 1/12
6 5666 5 166 5 266 1/34 1/21
6 1483 6 234 6 250 1/6 1/6
5 1733 6 233 6 316 1/7 1/5
20 6 6266 6 214 6 316 1/29 1/20
6 3116 6 250 6 284 1/12 1/11
6 5666 6 250 5 266 1/23 1/21
6 1483 6 216 6 266 1/7 1/6
6 5566 6 233 6 266 1/24 1/21

l is the number of layers; time is in milliseconds.

VI. CoNcLusIONS
We have developed two fast heuristics for the layering
subproblem of single-row routing. Both are significantly
faster than the one proposed in [13]. In addition, the so-

lutions obtained by each compare very favorably to those
obtained by the algorithm of [13].
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