Scheduling Independent Tasks with Due Times on a Uniform
Processor System

SARTAJ SAHNI AND YOOKUN CHO

University of Minnesota, Minneapolis, Minnesota

ABSTRACT. An algorithm to preemptively schedule n tasks on m uniform processors is presented. It is assumed
that each task is available at time 0. Associated with each task is a due time by which it is to be completed. The
algorithm schedules all tasks to complete by their due times whenever possible. The asymptotic time complexity
of the algorithm is O(n log n + mn). It generates O(mn) preemptions in the worst case. An example of n tasks
requiring O(mn) preemptions is also presented. The algorithm can also be used when all tasks have the same due
times but different release times.

KEY WORDS AND PHRASES: independent tasks, preemptive schedule, due time. uniform processors, complexity

CR CATEGORIES: 5.25,5.3,54

1. Introduction

Let P= (P, P, ..., P,} beaset of m processors. Let ¢, r;, and d;, | < i< n, be the task
times, release times, and due times, respectively, of 7 independent tasks. Associated with
each processor P; is a speed s;, s; > 0. Processor P; has an effective processing capability of
s; units of processing per time unit. Task J can be processed on P; in t;/s; units. The
processors are said to be uniform, as they operate at a constant speed independent of time.
When 5; = I, 1 =i < m, the processors are said to be identical. In this paper we are
concerned only with preemptive schedules. A schedule S for the 7 tasks is a DD-schedule
iff the processing of each task commences no earlier than its release time and completes no
later than its due time. A DD-schedule will also be referred to as a Jeasible schedule.

For the case of identical processors, Horn [3] presents an O(n®) algorithm to obtain a
DD-schedule for any set of n independent tasks for which such a schedule exists. Sahni
[5] presents a fast algorithm that obtains DD-schedules (whenever they exist) when all
tasks have either the same release time or the same due time. For the case of two uniform
processors, Bruno and Gonzalez [1] present an O(n?) algorithm that obtains a DD-schedule
(whenever one exists). Gonzalez and Sahni [2] have developed an O(n + m log m)
algorithm that can be used when all tasks have the same release time and.also the same
due time.

In this paper we study the case when all tasks have the same release time. Different
tasks may, however, have different due times. Our algorithm to construct a DD-schedule
(if one exists) for this case takes O(mn) time in the worst case. DD-schedules containing at
most mn preemptions are generated. While the algorithm is discussed in terms of a set of

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.

This research was supported in part by the National Science Foundation under Grants MCS 76-21024 and MCS
78-15455.

Authors’ present addresses: S. Sahni, Department of Computer Science, University of Minnesota, 136 Lind Hall,
207 Church St. SE, Minneapolis, MN 55455; Y. Cho, Computer Science Department, Seoul National University.
Seoul, Korea.

© 1980 ACM 0004-5411/80/0700-0550 $00.75

Journal of the Association for Computing Machinery, Vol. 27. No. 3. July 1980, pp. 550-563

Scheduling Independent Tasks with Due Times 551

tasks with the same release time, it should be noted that the algorithm may also be used
when all tasks have the same due time but different release times. As pointed out in [3]
and [5], the two situations are isomorphic. An instance of one may be transformed into an
instance of the other by simply interchanging the roles of due times and release times.

2. Preliminaries

In this section we develop an algorithm that constructs a DD-schedule (if one exists) for
n independent tasks all of which have the same release time and the same due time. The
processor model assumed is, however, more general than the uniform processor model. In
the next section this algorithm will be used to construct a DD-schedule (if one exists) for
the one-release-time-many-due-time problem for a uniform processor system.

A generalized processor is a processor whose speed is a nondecreasing function of time.
While the ideas presented in this section can be applied when the processor speed is given
by any nondecreasing function of time, we limit ourselves here to the case where the speed
changes only a finite number of times. Thus the characteristics of any generalized processor
G in the time interval [0, d] may be described by a finite list of pairs (0;, v:), | =i = p.
o; and v, respectively, represent time and speed. G operates at speed v; in the interval
[0, 6:+1]. We may assume that 01 = 0, 041 = d, 0; < 641, 7: = 0, and v < vi+1. The effective
processing capability, L, of G in the interval [0, d] is equal to Y21 (6i+1 — 00y

A generalized processor system (GPS) is an ordered set of m generalized processors
{Gy, Gy, ..., Gn}, m = 1. This set of generalized processors has the property that at each
instance ¢ € [0, 4], the speed of G, is no less than that of Givy, | =i < m.

It should be pointed out that a uniform processor system in which the processors have
been ordered by speed is a special case of a GPS. The algorithm we shall develop here for
a GPS is different from that developed in (2] for uniform processor systems. Theorem 1
gives a necessary and sufficient condition that every set of n tasks must satisfy if they are
to be completed in the interval [0, d] on a GPS. The remainder of this section is devoted
to the proof of this theorem. Since the proof is constructive, it immediately leads to an
algorithm for obtaining a DD-schedule for the case when all tasks have the same release
time and the same due time. From now on we shall refer to a generalized processor simply
as a processor. This should lead to no confusion.

THEOREM 1. Let {Gy, Gy, . .., Gn} be an m processor GPS. Let t;, | < i< n, be the task
times of any set of n independent tasks. Assume t; = tix1, | =i < n, and that n = m. Let
Ti=Yit, 1 <i<m and T, = Y7 1, Let L, be the effective processing capability of G in -
the interval [0, d], | =i < m. The n tasks can be scheduled to complete by time d iff
max{Ti/¥i L} < L.

The statement of the theorem assumes that n = m. In case this is not true (i.e., n < m)
we may discard Gn+y, . . ., G from the GPS as there is no advantage to scheduling a task
on any of these processors. This follows from the following observations: (i) a task may be
scheduled on at most one processor at any time, and (ii) at any instance ¢ € [0, d], each of
processors Gy, . . ., G, is no slower than any of Gps1, . .., Gn.

The “only if” part of the theorem is easily established. We need to show that if
max{Tl/Zﬁ L;} > 1, then the set of tasks cannot be completed in the interval [0, 4]. If we
consider only the largest i tasks, i < m, then for the same reasons as above we need consider
only Gy, ..., G. If T; > ¥ L; then these i processors do not have enough effective
processing capability in [0, d] to complete these tasks. It should be easy to see that if this
is the case, then these i tasks cannot be completed in [0, d] when considered together with
the remaining n — i tasks and m — i processors. Finally, if 7,, > YT L, then there is not
enough effective processing capability in [0. d] to perform all n tasks.

The proof for the “if” part is by construction. We show how to obtain a feasible schedule
when max,{Ti/31 L,} =< I. This construction requires the notion of a disjoint processor
system (DPS). A processor G is said to be idle in the interval [1), &2] if it operates at nonzero

552 S. SAHNI AND Y. CHO

speed in this interval and no task has been assigned it in this interval. Two processors G,
and G; are said to be disjoint in the interval (1, t;] if they have disjoint idle times (i.e., no
overlap in idle times) in this interval. A set D of processors is a disjoint processor system in
the interval [1,, t,] (abbreviated DPS[t,, t,]) iff the processors of D are pairwise disjoint in
[t 1:]. When 1, and ¢, are clear from the context, we denote DPS[r,, ;] simply by DPS.
Note that our definition permits several processors with no idle time in the interval [#,,]
to be in a DPS[1, .]. Further, the union of the idle times on all processors in a DPS[1, 1]
need not stretch from ¢, to ;. Hence this definition is more general than the one used in
[2]. For any DPS[1,, t2], let R denote its remaining effective processing capability. R is the
sum of the effective processing that can be carried out in the idle time of each processor in
the DPS. :

If max,{T./}j-1 L;} < I, then the n independent tasks may be scheduled to complete in
[0, d] as follows. Initially, each generalized processor G; is regarded as a separate
DPS[0, d]1, D.. So we start with an ordered set {D,, D, ..., D,} of DPSs where D; =
{G:}. We use R, to denote the remaining effective processing capability of D;. Since no
tasks have yet been scheduled, we have R; = L;, | =i =< m. Starting from this configuration,
the n tasks will be scheduled one by one using one of the three scheduling rules R1-R3
(to be described soon). Each of these rules has associated with it a condition, and a rule
may be used to schedule a task only if the task satisfies the condition associated with the
rule. The condition for R1 is tested first, then the condition for R2, and finally that for R3.
The first condition satisfied results in a rule application. Preceding and following the use
of a rule, the following conditions will be true:

Cl. We shall have a set {Dy, Do, ..., Di}, k < m, of k DPSs. The idle time in a DPS is
continuous and stretches from ¢’ to d, where ¢ = 0. Let {G;,, Gi,. ..., G;} be the
ordered set of processors in D; that have some idle time. The ordering is given by the
requirement that iy > i» > -+. > i, There exist uf, u}, ..., uj such that 0 < uf,
u;=d, ur < ure, 1 =r<j,and G is idle exactly from u;-, to u,. Note that this
implies that speed in the idle time of a DPS is nondecreasing (left to right). It will
also be the case that ub < ué*', | < i< k.

C2. RizRin, l=si<k

It should be easy to see that the set of DPSs {Dy, Dy, ..., Dn,} defined above satisfies
both C1 and C2 initially (i.e., when no tasks have been scheduled).

In the following statement of the three scheduling rules, ¢ is the processing requirement
of the task to be scheduled.

Rule R1

Condition: t < Ry.

Action: Let {Gy,, Gr,, . . ., ij.), ki > ko > ... > kj, be the processors with idle time in
Dy Let uf, ..., u*be as defined in C1. Schedule the task from «§ up to time ¢’ such that

the effective processing assigned equals ¢. In case t = Ry, append all the processors of Dy
to Dry (if k # 1). Replace k by k& — 1. Note that this assignment leaves behind a set
(possibly empty) of DPSs having the properties C1 and C2.

Rule R2

Condition: R; = t for some i, | <i<k.

Action: Schedule this task on D; so as to use up all the available idle time in D;. Combine
the processors of D; with those of D, to form a new DPS with index i. Reindex the DPSs
Disa, ...y Dy to Disy, . . ., Dyoy. Replace k by k — 1. Once again, Cl and C2 hold.

Rule R3

Condition: Riv1 <t < R;forsome i, |l =i<k.

Action: Let {(Gi, Giy, . . ., G,j}, iy > i > -+ > ij, be the processors in D; that have some
idle time. Let {G,, Gy, ..., G}, 1 > r2 > - -+ > rq, be the processors in D+, that have

some idle time. Let uo, 1, ..., u; be such that G,, is idle exactly from us-i to u,. Let

Scheduling Independent Tasks with Due Times 553

Vo, Vo De the corresponding times for D..;. Note that v, = 4, = d. From C1 1t follows
that uo < vo. Let Q be the effective processing available in D, from uo to vo. If 0 + Rici =
t, then schedule the task to use up all the idle time in D.,,. The remainder of the task is
scheduled on D; from uo up to ¢" where ¢’ is such that the effective processing assigned on
D; from ug to ¢’ plus that assigned on D;.; from v to d equals ¢. Note that 1" = wy. In case
Q + R,y <t, determine ¢” such that the effective processing time available in D, from wo
to t” plus that available in D;,; from¢” to d equals ¢. Note that because of the relationships
among f, R;, R.+1, and Q, such a t” must exist. Schedule the task for processing in the idle
time of D; from uo to t” and in the idle time of D.+, from ¢” to 4. Combine the processors
of D; and D;,, to form a new DPS with index i. Reindex Diso, ..., D to Disy, ..., Diy
and replace k by k — 1. It should be easy to"verify that this scheduling rule preserves Cl
and C2. »

The fact that scheduling by these three rules leads to a DD-schedule (whenever one
exists) is established in Lemma 2.

LemMa L. Let {Dy, Dy, ..., Dy} be a set of DPSs each consisting of exactly one
generalized processor. Assume that no tasks are initially scheduled on any of these DPSs. Let
{D1, Dy, ..., D} be the set of DPSs remaining following the scheduling of some number of
tasks using rules R1-R3, Let | D}| be the number of processors in Dj.

0y Ifj<r, then exactly | Dj| — | tasks are scheduled in D,
(iiy If j = rand rule Rl has never been used, then | D;| — 1 tasks are scheduled in D].

ProoF (BY INDUCTION ON | Dj[). The proof for both parts is the same. If j < r, then
rule R1 could not have been used to schedule any task in D}, as this rule can be used only
on the last DPS. So for the remainder of the proof we may assume that D] is such that nc
task was scheduled in it using rule R1. Whenever rule R2 or R3 is used to schedule a task,
two DPSs Dy and D, get combined. Hence if | Dj| = 1, then no task has been assigned
to D; and the lemma holds. Assume that the lemma is trlie whenever 1 < | D]! < u and
that Dj has no task scheduled by an application of rule R1. We now show the lemma to
be true when | D;| = u. Consider the last task scheduled in D}. Either rule R2 or R3 was
used to schedule this task. Let D, and D;.; be the two DPSs combined during this rule
application. Since | D;| < u. | D1 | < u, and neither DPS contains a task scheduled by R1,
it follows from the induction hypothesis that the number of tasks scheduled in each DPS
is|D;] — 1 and | Dj.| — 1, respectively. | Dj| = | D,;| + | D;+1], and the number of tasks
scheduled in Djis |Dy|— 1+ | D | -1+ 1=|Dj|—-1 O

Lemma 2. LetGul<si=smi,l<sismT,1<i<mL,1=<i<m and d be as
defined in Theorem 1. Assume that max,{T,/Y) L,} = | and that initially the set of DPSs is
{D1, Dy, ..., Dn}={{G}, {Gs},...,{Gu}}. If the n tasks are scheduled one by one, in any
order, using rules R1-R3, then a DD-schedule is always obtained.

ProoF. Suppose the tasks are being scheduled in the order o(1), o(2). ..., o(n) and
that we are unable to schedule the ith task in this sequence. The task time ¢ of this task is
toiy. Since task o(7) cannot be scheduled, none of the conditions for R1-R3 holds. Let
{Di' D5 5 D;} be the DPSs existing at this time. If k =< [. then it must be that
T.,/¥" L, > 1. This contradicts the assumption on d. and so we may assume that k > .
From Lemma 1 it follows that exactly | Di| — | tasks are scheduled in D:. Let 7" be the
sum of the task times of these tasks. Clearly, 7" + 1 = 7}5,,. From the way in which DPSs
get combined by the scheduling rules, we see that the processors in D are Gi. G.. G,
where j = | D}|. The total processing initially available on these j processors is Y1 L,. Since
task o(/) cannot be scheduled. + > R, where R, 1s the remaining effective processing
capability of Di. Hence 7" + ¢ > Y{ L, and so T,/¥% L, > 1. This contradicts the
assumption on d. Hence R1-R3 cannot fail to construct a DD-schedule. I

In passing, we note that the algorithm resulting from rules RI-R3 can be used to

554 ; S. SAHNI AND Y. CHO

generate minimum finish time schedules if we first find the smallest d for which the
conditions of Theorem 1 hold.

3. The Algorithm

We are now ready to describe our algorithm for obtaining a DD-schedule (if one exists)
for a uniform processor system. It should be noted that the discussion holds just as well for
a GPS. Let di, | =i = k, be the distinct due times of the n tasks. We may assume that
d; < di+, 1 =i<k. Let n, > 0.be the number of tasks with due time d;, 1 <i=< k. Clearly,
Yni = n. Let Q; ; be the jth task with due time d;, and let s, 52, . . ., s, be the speeds of the
m uniform processors. We assume that s; = s;41, | <i < m. The DD-schedule is constructed
in k phases. :

Phase 1 begins with the GPS {G,, ..., G.} where each G; is idle from 0 to d; and
has constant speed s; throughout this interval. The tasks 0, ;, 1 =< j < n,, are scheduled on
this GPS as described in Section 2. In case all tasks cannot be scheduled, our algorithm
terminates with the conclusion that no DD-schedule exists for the given task set. In case
all tasks are scheduled, the algorithm described in Section 2 will leave behind a set
{Ds, ..., Dy} of p DPSs. The GPS {G}, G, ..., Gn} for the next phase is constructed
from {D,, ..., D,} as follows. For i < p, let ub, u, ..., u} be as in Cl of Section 2. G
operates at speed 0 from 0 to ub. From ug to u} its speed is given by the speed in the idle
time of D;. From u} = d, to d; the speed of Giis s;, | < i< p. For i > p, G/ operates at
speed 0 from 0 to &, and at speed s; from di to do. Using the fact that ub < "', 1 =i <
(see Cl), it should be easy to verify that {G}, ..., Gn} as constructed is a GPS. In phase
2, the tasks (s j, | < j =< ny, are scheduled on {G1, ..., Gn} in the interval [0, do]. Again,
this is done as in Section 2. From the DPS left behind, the GPS for the next phase may be
constructed as above. This process is repeated until k phases have completed or one of
them is unsuccessful in scheduling the tasks for that phase. If the former happens, a DD-
schedule has been obtained. Otherwise, as we shall see, no DD-schedule exists at all!

Example 1. This example illustrates the working of the 'algorithm described above. We
have-m = 5 uniform processors {P1, P2, ..., P5} with speeds 4, 3, 2, 2, and 1, respectively.
Ten tasks are to be scheduled. The first four tasks have a due time d; = 5. The task times
are 12, 3, 13, and 12. The remaining six tasks have a due time d> = 10. The task times are
{13, 29, 10,.12, 5, 12}. One may readily verify that this task set satisfies the conditions of
Theorem 1 for both phases. So a DD-schedule exists.

In phase | the GPS consists of five uniform processors available from 0 to d,. Tasks with
due time d, are scheduled in this phase. Steps 1-5 of Table I together with the figures of
Figure 1 corresponding to these steps describe how the algorithm proceeds in phase 1.
Initially each processor forms a DPS and we have five DPSs. The effective processing
capability available on each of the DPSs is 20, 15, 10, 10 and 5, respectively. Task 1 has a
task time of 12. Rule R3 is used and the DPSs D2 and D3 are combined. Figure 1 shows
- the schedule. The task is processed up to time 2 on P2 and from 2 to 5 on P3. Four DPSs
remain. The available processing capabilities are 20, 13, 10, and 5. Task 2 is scheduled
using rule R1. Task 3 is scheduled on D2 using rule R2. We are now left with three DPSs
(see Figure 1 for step 4). Task 4 is scheduled using rule R3. It is to be processed on Pl
from O to 1 and on P4 from | to 5. We are now left with two DPSs. D1 includes processors
P1-P4 and D2 includes the single processor PS. This completes phase 1.

Step 6 reflects the initial configuration for phase 2. We have five generalized processors
G1-G5. Gl operates at speed 2 (i.e., as P4) from O to 1, at speed 4 from 1 to 5 (as Pl from
D1), and at speed 4 from 5 to 10. G2 operates at speed 0 from 0 to 3 (as D2 has no idle time
in this interval), at speed 1 from 3 to 5 (i.e., as P5), and at speed 3 from 5 to 10. The solid
area in Figure 1 (step 6) indicates processor operation at zero speed. Steps 7-12 indicate
how the remaining six tasks are scheduled on G1-GS5. For instance, task 5 is scheduled
using rule R3. It is processed on G2 from 3 to 6 and on G3 from 6 to 10. Note that in terms

Scheduling Independent Tasks with Due Times 555

TABLE 1. SCHEDULING RULE APPLIED AND RESULTING DPSs

Num-
ber of
Task Rule DPSs Processing capability
Step Task time Condition applied left for each DPS (R))
1 Initial 0 0 0 5 20, 15, 10, 10, 5
2 1 12 Rs<12<R, R3 4 20, 13, 10, 5
3 2 3 3<R4 R1 4 20, 13, 10, 2
4 3 13 13=R; R2 3 20, 10,2
5 4 12 R:< 12<R; R3 2 18,2
6 Initial 0 0 V] 5 38,17, 10, 10, 5
7 5 13 Ry<13<R. R3 4 38, 14,10, 5
8 6 28 R; <28 <R, R3 3 24,10, 5
9 7 10 R, = 10 R2 2 24,5
10 8 12 R:<12<R, R3 1 17
i1 9 5 5<R; R1 1 12
12 10 12 12=R, R2 -0 0

of the original processors P1-P5, this means that this task is to be processed on P5 from 3
to 5, on P2 from 5 to 6, and on P3 from 6-10. Figure 2 shows the final schedule. [

We now prove that the algorithm described above actually generates a DD-schedule for
every set of n tasks Qij, | =j=n; I = i<k, Yni = n, for which such a schedule exists.

THEOREM 2. The algorithm described above generates a DD-schedule for every task set
0ij, 1 <j<n, | < i<k, for which there exists a DD-schedule.

Proor. The proof is by induction on the number of distinct due times k. When k = 1.
the proof follows from Lemma 2. Assume the algorithm works for all tasks sets that have
DD-schedules and at most K —1 due times. We proceed to show that the algorithm works
for all task sets that have DD-schedules and have K distinct due times. Let S be a DD-
schedule for the task set Q,;, l <j<m, 1 =i K. Letr,r= 0, be the number of tasks with
due time at least d, which have been assigned for a nonzero amount of processing in S in
the interval [0, dy]. Let the amount of processing carried out in this interval for these r
tasks be ci, Ca, . .., ¢ Let {Dy, Do, ..., Da} be the set of DPSs following the scheduling
in this interval (i.e., following phase 1 of the algorithm but before construction of the new
GPS for phase 2). Then, from Theorem I it follows that ¢y, ¢, . . . , ¢, can also be scheduled
on this set of DPSs. Hence there exists a DD-schedule for the task set Qi) | =j=n; 2=
i < K, on the GPS constructed prior to the start of the phase 2 scheduling. From the
induction hypothesis it follows that the algorithm will construct a DD-schedule for this set
of tasks and this GPS (as the number of distinct due times is now K — 1). O

Number of Preemptions

LemMa 3. Let {Dy, Ds, ..., D/} be the set of DPSs resulting from the scheduling of
some tasks on the GPS {Gy, Gs, ..., Gn}. Let p; and gq;, respectively, be the number of
preemptions and number of processors with idle time in D;. Let | D;| be the number of
processors in D;. Then p; + ¢: — 1 = 2(| D:| = 1).

Proor. If there are no tasks scheduled on the processors in D;, then [Di| = L, p: = 0,
and ¢; = 1. Clearly the theorem is true for this case. Assume the theorem is true for all
DPSs with at most « tasks scheduled on them. Let D; be such that u + 1 tasks have been
scheduled on the processors of D..

If the last task is scheduled using rule R1, then pi + ¢/ — 1 = 2(|Di| = 1) preceding the
scheduling of the (u + 1)st task. p; and ¢/ are the number of preemptions and number of
processors in D; with idle time. The scheduling of the (u + 1)st task uses up all the idle
time on x —! processors and a fraction (or all) on another processor. The number of

556

S. SAHNI AND Y. CHO

o {f/ Dl{//,l// ERERI727N\\
g L 77 w7771, R NN
b, o [o, 7 %0
Ml 2 3 5 : 10
NN\ '
MR
T
5 \\\\z\\w
Dlr 3 6 10 [\\XQ\\\\f 6 10
7 5, A7/
A Y2
NN s g
[VNN r//////\\\\z\\\\
v R NI,
IR RS
8 Y0
NNz | m\\\¥\\\§//y N
VAN VAN
B RS KK
\Y////é// / \\‘17/,3\///

FiG. 1. Scheduling in Example 1.

N
o
-l

Scheduling Independent Tasks with Due Times

1 2 3 4 5 6 7 10
PL |4 l 6 I 8 |9 10
P2 1 3 5 6
P3 3 i 6 5
P4 |6] 4 7
P5 2 [5 19 8

FiG. 2. Final schedule for Example I.

preemptions introduced is at most x — 1. The number of processors with some rémaining
idle time isat most ¢; — x + 1. Hence p; + ¢i — I = pi+x - 1+ qi—x+ 1 - 1=pi+
qi—1=2(Di| - D).

If the (u + 1)st task is scheduled using rule R2, then D; is created from two DPSs D; and
Di... For these we have pi + g/ — 1 = 2(|Di| —) and piv1 + gl — L = 2(|Dina| — D).
The scheduling of the (v + 1)st task uses up all the idle time in D;. The number of
preemptions introduced is ¢; — 1 and ¢; = ¢/y1. Hence p; + ¢; — | = pi + ply + qi —
1+ gini—1=2(D{| = 1)+ 2(|Din| =) =2(ID:| = 2) < 2(|D:| = D).

If rule R3 is used to schedule the (# + 1)st task, then let D; and D/, be the two DPSs
combined. Assume that the task is scheduled on v of the processors in D; and w of the
processors in Di.i. Then p; = pi + pisy + v+ w— 1, ¢ < g/ + gisy — v — w + 2. Hence
pi+qi_ lSp:+q,,+P,/+1 +q:+152|D” -1 +2]D,+1| -1 =2(ID,'— l) O

If the n tasks to be scheduled have k distinct due times, then the algorithm described
earlier obtains the schedule in k phases. At the beginning of phase i we have a GPS
available from time O to time d; where d; is the ith smallest due time. Assume that the
DPSs remaining after the ith phase are D}, D4, Let pj be the number of preemptions
in D!. This number includes only the preemptions introduced in phase i and not those due
to the mapping of the DPSs of the previous phase into the GPS for this phase. Let g be
the number of processors in D} with some idle time. Then from Lemma 3 it follows that
ps+q5—1=2(D}| — 1). Hence ¥ /% p’ + Y %1 ¢ < 2m — w;, where w; is the number of
DPSs. The total number of preemptions introduced in all phases is Y., p% This sum is at
most 2km — Y(w; +Y %1 ¢9).

To get a bound on the total number of preemptions we need to add the preemptions
that result from the mapping of uniform processors to generalized processors (see Figure
3). The phase 1 scheduling introduces no additional preemptions of this kind, as each
generalized processor is a uniform processor. For the remaining phases, however, each
generalized processor will in general represent different uniform processors in different
time intervals. If a generalized processor represents b different uniform processors, then at
most b — 1| additional preemptions can be introduced when the schedule is mapped back
onto the uniform processors. Thus the additional phase 2 preemptions are at most Y5 ¢ .
(Note that a processor in phase 2 is a DPS of phase | followed by a uniform processor.) If
f preemptions of this type are actually introduced in mapping the phase 2 schedule onto
the uniform processors, then no more than Y{? ¢7 +- i q; — f such preemptions can be
introduced by mapping the phase 3 schedule from the generalized processors back onto
the uniform processors. In general, the total number of additional preemptions that can be
created by mapping the GPS schedules onto the uniform processors is at most

%, Y5 ¢4, Thus the total number of preemptions in the DD-schedule constructed by
our algorithm is at most Y&, Y%, p; + Y&, Y%t ¢;". Using our earlier result we obtain
2km — Y, wi— Y% ¢} as a bound on the number of preemptions.

Let n, be the number of tasks with due time d;. Then Y1 n; = n. If n; < m, then w, =
m — n;. To see this, note that each time a task is scheduled, the number of DPSs either
remains unchanged (rule R1 is used) or decreases by one (rules R2 or R3). At the beginning
of each phase the number of DPSs is m. If n; = m, then w; = 1. This observation allows us
to further simplify the bound on the number of preemptions. The bound now becomes
2km— Yt (m—n) — Y, q<km+ n.

558 S. SAHNI AND Y. CHO

I [l e =

oo [/////. //I1 g [ZEROKZ 2] p2

l V/ /7177 s { ZERO]] 3

D2 l//////I2 | »a | [ZERO] | pa

(a) (b)

.

R

T T -

D1

l]

D2

B | g w

© Y
Fi6. 3. Additional preemptions caused by a GPS. (a) DPSs D1 and D2 following phase 1. (b) GPS for phase
2. (c) DPSs D1 and D2 following phase 2. Note: In Figure 3c there is an uncounted preemption at #, on Pl and
at di on P2. Another may occur at d; on P, later as uniform processor P3 is to the left of d,, while uniform
processor Pl is to the right.

The bound km + n can actually be reduced to k(m — 1) + n. To see this, consider the
first DPS Di remaining at the end of phase i. If this DPs has idle time, then this time must .
be from v to d; for some v, 0 < v < d;. In case the uniform processor P; does not represent
any of this idle time, then rule R2 must have been used at least once in the ith phase. From
the analysis carried out in Lemma 3, it follows that p} + g} < 2(| D{| — 1); i.e., there is at
least one fewer preemption contributed in this phase. In case the uniform processor P is
idle in Dj, then it must be idle from v’ to d; for some v’ < d,. The generalized processor G;
constructed for phase / + 1 is therefore made up of the same uniform processor on both
sides of the boundary time d;. Hence, when the resulting schedule is viewed in terms of the
original uniform processors, the boundary d; on G does not contribute to a preemption
(this preemption was added into the bound of km + n). In case D; has no idle time at all
it is again clear that the scheduling of the last task produces one fewer preemption than
included in the bound. Hence we conclude that the bound km + n includes at least &
preemptions more than is possible. The new bound is therefore k(rm — 1) + n.

THEOREM 3. The scheduling algorithm that results from the use of rules R1-R3 generates
DD-schedules with at most k(m — 1) + n preemptions. k is the number of distinct due times.
Since k = n, no more than mn preemptions exist in any DD-schedule constructed by the
algorithm.

In the next example we show that there exist task sets for which the minimum number
of preemptions in any DD-schedule is almost (m — 1)a.

Scheduling Independent Tasks with Due Times 359

Example 2. Let s, 1 = i = m, be the speeds of m uniform processors
(P, Py, ..., Py}. Lets;>siv1, | <i<m. Letd, | <i=<n, n>m, bethe due times of the
n tasks. Assume that d; < dix1, | <i < n. Define do = 0 and t; = Y1 (d, — d)-1)*Siv1-
1 =i < m. Define t; = Y7\ (dis1—; — dij)*s;, m < i = n. It should be obvious that there
exists only one DD-schedule for this set of tasks. In this schedule task i is scheduled on
processor i + 1 — j in the interval d;; to dj, | <j<i 1 <i=m Fori>m, taskiis
scheduled on processor j in the interval di; to di+1—» | = j = m. The total number of
preemptions is ¥727" i + (m — 1) (n — m). This is equal to (m — 1)}(n — m/2). l

By using appropriate data structures it is possible to implement the scheduling rule
described in O(mn + n log n) time. n log n time is needed to sort the tasks by due times.
Since each GPS has at most m processors in it, each task can be scheduled in O(m) time.
Hence a total of O(nm) time is needed to schedule all the tasks. The implementation details
appear in the appendix. It is shown that all updates of GPSs and other overheads do not
increase the asymptotic complexity of the algorithm.

Finally, we wish to point out that the scheduling rule described in this paper can be used
on a more generalized processor model.' In this model the speed of machine i is given by
a function y; where

(1) yi(7) is the speed of machine i at time 7 = 0 (y«(7) = 0),
(2) v: is a nondecreasing function of 7,
(3) the y/s satisfy the ordering property that if i < j, then yi(t) = y(7), = 0.

Appendix

In order to determine the asymptotic computing time requirements of the proposed
algorithm, it is necessary to specify the algorithm in greater detail. In particular, we need
to specify the data structures to be used to represent the DPSs.

Each DPS will be represented by a chain of nodes. The chain will have a head node
with five fields: UP, DOWN, LINK, LAST, and R. R is the remaining effective processing
capability of the DPS. The field LINK is used to link to the remainder of the chain for the
DPS. LAST is a pointer to the last node on this chain. The head nodes of the DPS chains
are linked together as a doubly linked list by using the fields UP and DOWN. Each node
in a DPS chain (other than the head node) has three fields: M, ST, and LINK. LINK is
used to link to the next node in the chain. For each distinct processor in the DPS that has
idle time, there is one node on the DPS chain. The M field is the index of the processor
and the ST field is the time at which this processor becomes available. The nodes on the
chain are in increasing order of ST. If X and Y are two adjacent nodes on such a chain,
then processor Pux) is idle from ST(X) to ST(Y). If Y is the last node on the chain and
the algorithm is in phase i, then Puy) is idle from ST(Y) to d.. d; is the ith distinct due
time. Figure 4 shows the representation of the DPSs following the initialization for phase
2 of Example 1. The positions of various fields is shown in Figure 5.

Our algorithm for scheduling tasks is more formally stated as procedure ONERT (see
Figure 6). The algorithm assumes the existence of standard list processing algorithms
GETNODE and RET. The former provides a chain node currently not in use. The latter
frees a chain node that was in use and is no longer needed. There are m head nodes
indexed D(i), | =i =< m. It is assumed that the tasks have been sorted into nondecreasing
order of their due times. The number of distinct due times is k. The due times themselves
ared, | <i<k,and d; < dis;, | <i< k. We assume dp = 0 has also been defined. Tasks
with the same due time are in order of nonincreasing task times. The n tasks have task
times t1, f2, . . ., t,. The speeds of the m processors are s, | < i < m. It is assumed that
$i = sin1, | =i < m. For convenience, the algorithm uses ¢;, 0 < i < k. The g/’s are defined

such that all tasks with index j, g.-1 <j = ¢;, have due time d, | =i =< k. Note that go =
0 and ¢ = n.

' We are grateful to an anonymous referee for pointing out this generalization.

560 ‘ S. SAHNI AND Y. CHO
Ty
Lol fss[d—efo] F-{s[s]0]
s
Uly[v]d4—{s[s] 42]5]0]

Ty T 4—{s]s5 0]

Ay
LIl [aol'l+—lals o]

o [i
[lofs[[4—sls]o]

F1G. 4. Representation for Example I.

| vp | pown | r] rast [Lonk |

(a) (b)
F16. 5. Node structures. (a}) Head node. (b) Chain node.

Much of the code that should be in ONERT has been replaced by calls to four different
algorithms: RULE_R1, RULE__R2, RULE__R3, and INIT. In an actual program these
would be written in line rather than as separate subalgorithms. For this reason our
statement of these subalgorithms contains no parameters.

The main loop (lines 2-20) cycles through the k scheduling phases. Procedure INIT sets
up the GPS for this phase. It uses A to determine whether any DPSs remain from the
previous phase. H = 0 iff there are no DPSs with idle time remaining at the end of the
previous phase. Since the DPSs are always linked in order of nonincreasing R(D(?)), the
test in line 5 correctly determines whether task j can be scheduled. The loop of lines 8-19
schedules the tasks with due time 4; one by one. At the start of each iteration of this loop
H either points to a DPS with R(D(H)) = ¢, or if this is not the case, then there is no DPS
with this property. One may readily verify that lines 11-18 correctly determine the
scheduling rule to be used. '

The four unspecified subalgorithms used in ONERT work as follows:

I. INIT (Figure 7). INIT sets up the initial » DPSs for each phase. When H = 0, no
DPSs with idle time remain following the previous phase. When H 3 0, some DPSs with
nonzero idle time remain. These are represented by the list of head nodes D(1);
DOWN(D(1)); DOWN(DOWN(D(1))); etc. Each of these is associated with a processor
that is available from d;_; to 4;. This association is done by simply linking the list for a
DPS from the previous phase to a node representing the uniform processor available from
di—1 to d; (lines 4-14). In case the fastest processor on the DPS is the same as the one to
which it is being associated, no new node is needed. The availability of the uniform
processor is implicit in the start time of the fastest processor in the DPS. Only the effective
processing capability is to be updated in this case. Lines 15-21 set up the DPSs that are
available only from d,-, to d.. Note that we do not explicitly represent the portion of a
generalized processor that operates at speed zero.

II. RULE__R1 (Figure 8). At entry to this subalgorithm H points to the DPS onto
which task j is to be scheduled. In the loop of lines 4-12 we move down the list for D(H)
until units of processing time have been accumulated. The DPS is appropriately updated

Scheduling Independent Tasks with Due Times S61

line procedure ONERT{s. 5. d. m. k. q)
//see text for an explanation of variables in use//

1 H « 0 //initialization parameter//
2 for i < | to k do //phase i//
3 call INIT //set up GPS//
-4 j < g1+ | //nexttask//
5 if R(D(1)) < ¢, then [print(“no DD-schedule™)
6 stop]
7 H < largest index v such that R(D(v)) = 1,
8 for j < g,-1 + 1 to g, do //all tasks with due time d,//
9 if H =0 or R(D(H)) < then [print(“no DD-schedule™)
10 stop)
//find last DPS for j//
11 while DOWN(D(H)) # 0 and R(D(H)) > ¢, do
12 H «— DOWN(D(H))
13 end
14 case .
15 :DOWN(D(H)) = 0 and R(D(H)) = 1, call RULE R
16 :R(D(H)) = 1, call RULE__R2
17 :else: call RULE__R3
18 end
19 end
20 end

21 end ONERT
Fi1G. 6. Procedure ONERT.

line procedure INIT

1 v «- | //next DPS 1o set up//

2 if H # 0 then [//concatenate last phase DPSs//

3 He1

4 while H = 0 do

5 D(v) — D(H). R(D(v)) « R(D(v)) + s, ~(d, — d,)

6 if M(LAST(D(v))) # v then ot
7 [call GETNODE(X)

8 M(X) «v: ST(X) «—d, .

9 LINK(X) <0

10 LINK(LAST(D(v))) « X
1 LAST(D(v)) — X]

12 H <« DOWN(H), DOWN() v + |
13 UP(v) e=v— Lvev+1

14 end]

15 for u « v to mdo

16 call GETNODE(X)

17 LINK(D(u)) « X. LINK(X) « 0

18 R(D(u)) « six(di — di-1): M(X) «—u

19 UP(D(u)) «—u — 1; ST(X) «— d,;

20 DOWN(D(u)) «—u + 1

21 end

22 UP(D(1)) « DOWN(D(m)) «— 0

23 end INIT

Fic. 7. Procedure INIT.

to reflect the assignment of task j (lines 15-17). Finally, in lines 18-23, H is updated to
point to a DPS with enough available capacity to accommodate the next task (if any). If
R(D(H)) = 0, then lines 20-21 delete the DPS. If UP(D(H)) # 0, then the next task must
fit on UP(D(H)) as tasks are in nonincreasing order of task times. If no idle time remains,
then H is set to zero (line 22).

I11. RULE__R2 (Figure 9). Task j is scheduled to use up all the idle time on D(H)
(lines 1-8). This DPS is removed from the list of DPSs (line 9) and H updated to point to
a DPS onto which the next task must fit. In case no DPS with idle time remains,
DOWN(H) = 0 and H is updated to zero in line 11.

562 S. SAHNI AND Y. CHO

line procedure RULE__RI1

1 sum « 0 //amount already assigned//

2 Q « LINK(D(H)) //first node in chain//

3 st «— ST(Q)

4 loop

5 next — LINK(Q)

6 if next = O then ft «— d,

7 else f1 «— ST(next)

8 if sum + (ft — st)*sm@ = 1, then exit

9 . print (“schedule,” j, “on,” M(Q), “from,” st, “to,” f1)
10 sum <« sum + (f1 — st)*sm@

1 call RET(Q); QO « next; st — ft
12 forever .
13 gt « (t; — sum)/smg + st
14 print (“schedule,” j, “on,” M(Q), “from,” st, “to,” q1)
15 if ft # qt then [ST(Q) < g1, LINK(D(H)) « Q]
16 i else LINK(D(H)) « next
17 R(D(H)) < R(D(H)) — ¢;
19 case
19 UP(D(H)) # 0 and R(D(H)) % 0: H «— UP(D(H))
20 UP(D(H)) # 0 and R(D(H)) = 0: H « UP(D(H))
21 DOWN(D(H)) « 0
22 UP(D(H)) =0 and R(D(H)) =0: H <0
23 end

24 end RULE__RI1
Fi1G. 8. Procedure RULE__RI.

line procedure RULE__R2
Q « LINK(D(H)); st «— ST(Q)
while Q # 0 do
next «— LINK(Q)
if next = O then ft «— d;
else fi «— ST(next)
print(“schedule,” j, “on,” M(@), “from,” st, “to,” 1)
call RET(Q); Q « next; st « ft
end
9 delete D(H) from the doubly linked list of head nodes
10 if UP(D(H)) 0 then H «— UP(D(H))
11 eise H «— DOWN(D(H))
12 end RULE_R2

Fi6. 9. Procedure RULE__R2.

00 2 O\ W bW N

IV. RULE_R3 (Figure 10). Initially, task j is assigned to run on the DPS H from
time 0 to time d;. SUM represents the total amount of processing that can be done by the
current assignment. In the loop of lines 5-20, this initial assignment is modified so that
task j is assigned to the DPS U from 0 to TU and on H from TU to d:. Note that the DPSs
H and U may operate at speed zero for some initial portion of either or both of these
intervals. TH represents the time up to which the DPS H operates at speed SX. In the
while loop of 6-14, portions of task j are moved from H to U. (LT-TU)*(smy) — SX)
represents the effective increase in processing that can be achieved by transferring j from
H to U for LT-TU time units. Note that smy; — SX = 0 by definition of a GPS. In case
the conditional of line 11 is true, the equalizing time is between TU and LT. Otherwise, it
must be larger than L7. In the latter case task j is reassigned to U from TU to LT. On a
normal exit from the loop of lines 6-14 it is necessary to reassign more of j from H to U.
Lines 15-19 reset the variables so that reassignment can be carried out up to time TH. On
exit from line 11, line 21 correctly determines the additional amount to be moved from H
to- U so that exactly ¢ units of processing are obtained and the processors in H and U
together form a DPS. Note that smy) — §X > 0 as otherwise the movement from H to U
cannot increase SUM to exceed ¢ (line 11). Having found the equalizing time TU (line 22),
the remainder of the algorithm schedules j on U from 0 to 7U (line 23) and on H from TU
to d; (line 25). Note that since U operates at speed 0 from 0 to ST(LINK(D(U))) and H

Scheduling Independent Tasks with Due Times 563

line procedure RULE__R3
1 SUM « R(D(H)). U « UP(D(H))

2 Y « LINK(D(U)); TU « ST(Y)
3 X « LINK(D(H)); TH « ST(X)
4 NeY, SX«0
5 loop
6 while TU < THdo
7 Y « N; N « LINK(N)
8 if N=0then FT « d;
9 " else FT — ST(N)
10 LT « min{TH, FT}
1 if SUM + (LT — TU)*(smy) — SX) = ¢, then go to L1
12 SUM « SUM + (LT — TU)*(smv) — SX)
13 TU « LT
14 end
15 X1 « LINK(X)
16 if X1 = 0then FT « d,
17 else FT « ST(X1)
18 SX — sumxy, X« X1, TH « FT
19 NevY
20 forever
21 Ll: DEL « (1, = SUM)/(smy) — SX)
22 TU « TU + DEL
23 print schedule for j on U from ST(LINK(D(U)) to TU
24 TH «— max{TU, ST(LINK(D(H)))}
25 print schedule for jon H from TH to d,
26 combine the idle time on DPS H from ST(LINK(D(U))) to TH with the
idle time on DPS U from T'U to d; to form a new DPS U
27 return all nodes freed in line 26
28 delete D(H) from the doubly linked list of head nodes
29 if UP(D(U)) # O then H — U

else H — UP(D(U))
30 end RULE_R3 t:
Fi1G. 10. Procedure RULE__R3.

operates at speed 0 from 0 to ST(LINK(D(H))), lines 23 and 25 omit the schedule portion
at zero speed. Line 26 combines the list for H with that for U. Only those nodes
representing available idle time are retained. Others are discarded (line 27). Line 29 resets
H so that the next task to be scheduled must fit on this DPS.

ANALYsIS OF ONERT. INIT clearly takes O(m) time. It should be clear that the list for
any DPS has at most m nodes at any time. Hence each application of any of the three rules
takes at most O(m) time. Since n applications are made, the total time for rule applications
as well as for GPS initializations is O(mn). If we include the time needed to initially sort
the tasks in order of due times, then the total time needed to obtain a DD-schedule is
O(mn + n log n). From the discussion in the previous section it is clear that at most
k(m — 1) + n preemptions are introduced. k is the number of distinct due times. When
k =1, it may be shown that at most 2(m — 1) preemptions are introduced.

REFERENCES

(Note. Reference [4] is not cited in the text.)
1. BRUNO, J., AND GonzaLEz, T. Scheduling independent tasks with release dates and due dates on parallel
machines Tech. Rep. No. 213, Pennsylvania State U., University Park, Pa., Dec. 1976.
2. GonzaLez, T., AND SAHNI, S. Preemptive scheduling of uniform processor systems. J. ACM 25, | (Jan.
1978), 92-101.
3. HorN, W. Some simple scheduling algorithms. Nav. Res. Log. Qtr. 21 (1974), 177-185.
4. Liu, J., aND L1u, C. Bounds on scheduling algorithms for heterogeneous computing systems. In Information
Processing 1974, North Holland, Amsterdam, pp. 349-353.
5. SAHNI, S. Preemptive scheduling with due dates. Oper. Research 27, 5 (Sept.~Oct. 1979), 925-934.

RECEIVED MAY 1977; REVISED MARCH 1979; ACCEPTED JUNE 1979

Journal of the Association for Computing Machinery, Vol. 27. No. 3, July 1980.

